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Two-body scattering without angular-momentum decomposition
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Two-body scattering is studied by solving the Lippmann-Schwinger equation in momentum space without
angular-momentum decomposition for a local spin-dependent short-range interaction plus Coulomb. The
screening and renormalization approach is employed to treat the Coulomb interaction. Benchmark calculations are
performed by comparing our procedure with partial-wave calculations in configuration space for p-10Be, p-16O,
and 12C-10Be elastic scattering, using a simple optical potential model.
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I. INTRODUCTION

The aim of the present work is to solve the two-body
Lippmann-Schwinger equation without partial-wave decom-
position for a local short-range interaction plus Coulomb.
This is a first step toward the ultimate goal of solving exact
three-body equations without partial-wave decomposition as a
means to describe complex nuclear reactions where three-body
degrees of freedom play a significant role.

The inclusion of the long-range Coulomb force between
charged particles of equal sign has become possible, in
recent years, through a novel implementation of the method
of Coulomb screening and renormalization [1,2] in the
framework of Alt, Grassberger, and Sandhas (AGS) exact
three- [3] and four-body [4] integral equations, leading to fully
converged results for three- [5,6] and four-nucleon scattering
[7,8] and for direct nuclear reactions dominated by three-body
degrees of freedom [9–12].

In all these calculations [5–12] the equations were solved
using the partial-wave decomposition of the multivariable
integral equations and taking as many partial waves as needed
for convergence of the observables. Although we get fully
converged results, at intermediate energies the partial-wave
expansion converges very slowly and may get unstable if we
increase the energy beyond the values we used or if we address
reactions with two heavier nuclei such as 12C-11Be where 12C
and 10Be are considered as inert cores. In this case, even at
moderate energies the relative 12C-11Be wave length is so
small that a very large number of partial waves is required
for convergence.

Therefore, to get exact three-body results at higher energies
or involving the collision of two heavy nuclei one may need
to develop calculations without partial-wave decomposition.
The group at Ohio University has already made progress in
this direction for two-body [13,14] and three-body scattering
[15,16], following an earlier work by Belyaev et al. [17].
However they do not include the exact treatment of Coulomb
in their calculations, though in their early works [18–20] they
introduced Coulomb in an approximate way in the context of
a multiple-scattering framework.

In the present article, we show results for the solution of the
two-body Lippmann-Schwinger equation for p-10Be, p-16O,
and 12C-10Be elastic scattering at intermediate energies.

The novelty of the present work vis-à-vis the Ohio group
two-body calculations is that we include Coulomb between
two charged cores of mass Ai and atomic number Zi together
with standard optical potentials that include a central plus a
spin-orbit interaction.

This article is structured as following. In Sec. II we present
the formalism of the Lippmann-Schwinger equation for central
and the spin-orbit potentials. In Sec. III we summarize the
Coulomb treatment. In Sec. IV we show the results for different
reactions. In Sec. V we summarize and give conclusions.
Finally in Appendix A we present the analytical expressions
for the Fourier transform of the potentials used in this work
and in Appendix B we explain the method used to solve the
Lippmann-Schwinger equation.

II. LIPPMANN-SCHWINGER EQUATION

The Lippmann-Schwinger equation for the scattering of
two particles is

T = V + V G0T , (1)

where V is the two-body potential between the particles,
G0 = (Z − H0)−1 the free two-body resolvent, and T the
transition operator. The matrix element of the transition
amplitude in momentum space, T (q′, q, Z) ≡ 〈q′|T (Z)|q〉,
satisfies the integral equation

T (q′, q, Z) = V (q′, q) +
∫

d3q ′′V (q′, q′′)

× 1

Z − h̄2q ′′2
2µ

T (q′′, q, Z). (2)

Here, q is the relative wave vector, µ is the reduced mass of
the two particles, and Z the appropriate energy.

A. Central interaction

First we consider the case of a central interaction only
where we follow the same procedure as Elster et al. [13].
In this case, the matrix elements in momentum space of
the potential and the transition amplitude, V (q′, q) and
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T (q′, q, Z), respectively, are scalar functions

V (q′, q) = V (q ′, q, q̂′ · q̂), (3)

T (q′, q, Z) = T (q ′, q, q̂′ · q̂, Z). (4)

Therefore Eq. (2) can be expressed as follows

T (q ′, q, x ′, Z) = V (q ′, q, x ′) +
∫ ∞

0
dq ′′q ′′2

∫ 1

−1
dx ′′

×
∫ 2π

0
dϕ′′V (q ′, q ′′, y)

1

Z − h̄2q ′′2
2µ

× T (q ′′, q, x ′′, Z), (5)

where x ′ = q̂′ · q̂, x ′′ = q̂′′ · q̂, and y = q̂′′ · q̂′. We take the
incoming wave vector q in the direction of the z axis and the
arbitrary azimuthal angle ϕ′ for q′ is chosen to be zero. We
can then express y through x ′ and x ′′ as

y = x ′x ′′ +
√

1 − x ′2
√

1 − x ′′2 cos ϕ′′. (6)

Defining

v(q ′, q ′′, x ′, x ′′) ≡
∫ 2π

0
dϕ′′V (q ′, q ′′, y), (7)

the integral Eq. (5) becomes

T (q ′, q, x ′, Z) = 1

2π
v(q ′, q, x ′, 1) +

∫ ∞

0
dq ′′q ′′2

×
∫ 1

−1
dx ′′v(q ′, q ′′, x ′, x ′′)

× 1

Z − h̄2q ′′2
2µ

T (q ′′, q, x ′′, Z), (8)

leading to a two-dimensional integral equation in the off-shell
wave vector q ′′ and the cosine of the scattering angle x ′′.

B. Spin-orbit interaction

Next, we consider the case in which we have a spin-orbit
interaction. In this case, Eq. (2) becomes a set of coupled
equations

Ts ′λ′,sλ(q′, q, Z) = Vs ′λ′,sλ(q′, q)

+
∑
s ′′λ′′

∫
d3q ′′Vs ′λ′,s ′′λ′′(q′, q′′)

× 1

Z − h̄2q ′′2
2µ

Ts ′′λ′′,sλ(q′′, q, Z), (9)

where s is the spin of the system and λ its projection in the z

axis. The spin-orbit potential, commonly expressed as

Vso(r) = vso(r) σ · l, (10)

is not central anymore. The σ · l term introduces a dependence
on the azimuthal angle ϕ′ that makes Eq. (8) not valid.
Nevertheless, it is possible to reduce Eq. (9) to a two-variable
integral equation. From the partial-wave analysis of the

T matrix

Ts ′λ′,sλ(q′, q, Z)

=
∑
JMJ

∑
L′M ′

∑
LM

YL′M ′(q̂′)〈L′M ′s ′λ′|JMJ 〉

× T L′s ′Ls
J (q ′, q, Z)〈LMsλ|JMJ 〉Y ∗

LM (q̂), (11)

assuming, as before, the initial wave vector q to be along the
z axis, it follows that the ϕ′ dependence of Ts ′λ′,sλ(q′, q, Z) is
determined by the spherical harmonics YL′M ′(q̂′) in terms of
eiM ′ϕ′

with fixed M ′ = λ − λ′ because M = 0. Therefore the
T matrix can be written in factorized form as

Ts ′λ′,sλ(q′, q, Z) = ei(λ−λ′)ϕ′Ts ′λ′,sλ(q ′, q, x ′, Z), (12)

whereTs ′λ′,sλ(q ′, q, x ′, z) is the solution of a set of two-variable
integral equations

Ts ′λ′,sλ(q ′, q, x ′, Z)

= 1

2π
vλ

s ′λ′,sλ(q ′, q, x ′, 1)

+
∑
s ′′λ′′

∫ ∞

0
dq ′′q ′′2

∫ 1

−1
dx ′′vλ

s ′λ′,s ′′λ′′(q ′, q ′′, x ′, x ′′)

× 1

Z − h̄2q ′′2
2µ

Ts ′′λ′′,sλ(q ′′, q, x ′′, Z). (13)

Here vλ
s ′λ′,s ′′λ′′ (q ′, q ′′, x ′, x ′′) includes the phase from the T

matrix and ϕ′ is chosen to be zero

vλ
s ′λ′,s ′′λ′′ (q ′, q ′′, x ′, x ′′)

≡
∫ 2π

0
dϕ′′ei(λ−λ′′)ϕ′′

Vs ′λ′,s ′′λ′′ (q′, q′′)|ϕ′=0. (14)

As discussed in Refs. [13–15,21] these calculations are
time-consuming if the potential is given in configuration space
and the transform to momentum space (Fourier transform)
is performed numerically. Therefore in the present work
we develop in Appendix A analytic Fourier transforms
for Woods-Saxon interactions, central, surface, and spin-
orbit, together with the screened Coulomb interaction. In
Appendix B we outline the numerical procedure we follow
to solve the integral equations.

III. TREATMENT OF COULOMB INTERACTION

The inclusion of the Coulomb interaction in momentum
space is a very complicated task due to its 1/q2 singularity
that together with the G0(Z) singularity renders the kernel of
the Lippmann-Schwinger equation noncompact. This fact has
been a handicap for performing momentum space scattering
calculations involving charged particles. Over the years several
methods have been proposed to overcome the Coulomb
singularity that introduce a cutoff parameter: the pioneer work
was done by Vincent and Phatak [22] that is, in principle,
exact and works well for proton-proton scattering but does not
yield sufficiently precise results for proton-nucleus scattering
at intermediate energies [23] where accuracy in the high
partial waves is needed for convergence; in addition this
method cannot be extended to the three-body problem. An
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FIG. 1. Comparison between the screening function used in this
work with R = 5 fm (full line) and the screening function used in
Ref. [5] with R = 10 fm and n = 4 (dashed line).

improved method was also developed in Ref. [23] that is
capable of producing more accurate quantitative calculations
than Vincent and Phatak for the reaction observables for
smaller values of the cutoff radius but still converges slowly
with the cutoff radius for large scattering angles. An alternative
method was proposed in Ref. [18] in which the limits of the
cutoff parameter are taken analytically. More recently a novel
technique was proposed [24] but its application is still limited
to the numerical solution of the pure Coulomb problem [25],
and its numerical accuracy for high partial waves is yet to be
tested.

The screening and renormalization approach [1,2] has also
been recently revisited leading to the treatment of the Coulomb
interaction proposed in Ref. [5] together with a new screening
function. For completeness we present in here a summary of
the procedure. First, we work with a Coulomb potential ωR ,
screened around the separation r = R between the two charged
particles. In this work, we choose a screening function that
differs from the one used in Refs. [5–9]

ωR(r) = ω(r)

{
�(R − r) + 1

2
�(r − R)�(3R − r)

×
[
1 + sin

(πr

2R

)]}
, (15a)

ω(r) = αeZpZt

r
, (15b)

where αe is the fine structure constant and Zp and Zt the
ratio to the proton charge for both projectile and target nuclei.
Unlike the screening function used before [5–9], this one has an
analytical Fourier transform. In addition, it possesses the same
properties as the previous one, i.e., preserves the Coulomb
interaction at short distances and for r > R goes smoothly
to zero. In Fig. 1 the shape of this new screening function
is compared with the previous one, [ωR(r) = ω(r)e−(r/R)n],
for n = 4. The screening radius for Eq. (15a) corresponds
approximately to the double of the former one. The screening
radius R is chosen to be larger than the range of the strong
interaction. However, it will be always very small compared
with the nuclear screening distances that are of atomic scale
(i.e., 105 fm). Thus, the employed screened Coulomb potential
ωR is unable to simulate the physics of nuclear screening

or even model all features of the true Coulomb potential.
However, following the prescription given in Ref. [1] and
the technical developments proposed in Ref. [5], the results
corresponding to unscreened Coulomb can be obtained. This
procedure involves the use of a two-potential formula that
separates the long range part from the Coulomb modified short
range contribution. Therefore the amplitude T for nuclear plus
Coulomb scattering reads

T = Tc + lim
R→∞

{
z
−1/2
R

[
T (R) − T (R)

c

]
z
−1/2
R

}
, (16)

where Tc is the pure Coulomb amplitude that is known
analytically and is given in Appendix A. The pure Coulomb
transition matrix that has no on-shell limit is not needed in
the method of screening and renormalization [1,2,5]. The
amplitudes T (R) and T (R)

c are calculated with the nuclear
plus screened Coulomb potential and the screened Coulomb
potential alone, respectively, as described in Sec. II. The
second term on the right side of Eq. (16) corresponds to
the Coulomb modified nuclear short range amplitude that is
calculated numerically for different R, but whose R → ∞
limit is reached with high accuracy at finite R [5]. The
renormalization factor zR in Eq. (16) is given by

zR = exp (−2iφR), (17)

where φR is defined in Appendix A.
Unlike the work in Refs. [24,25] the method of screening

and renormalization has limitations at low energy because the
screening radius has to be at least greater than the wavelength
associated with the relative motion of two particles in the initial
state. The lower the energy the higher the screening radius
needed for convergence leading to numerical instabilities.
Nevertheless for the typical energies of direct nuclear reactions
the method is extremely accurate as demonstrated in the
following section where convergence is reached at finite
screening radius (R � 12 fm). Although there is no a priori way
to predict the screening radius that leads to a converged result,
we find that convergence is readily obtained by monotonically
increasing R until the calculated observables change by less
than a given percentage value, typically 1% or less.

IV. RESULTS

In this section we are going to apply the formalism
presented above to different two-body reactions. To show that
the method works properly for a wide range of energies and ob-
servables we consider first the calculation of p-10Be and p-16O
elastic scattering observables obtained with a projectile-target
optical model potential plus Coulomb at different energies
(Elab = 50, 100, 150, and 200 MeV). The results are compared
with the solutions obtained by solving the Shrödinger equation
in configuration space, where the screening of the Coulomb
potential is not needed. These calculations are performed with
the code FRESCO [26] that uses the standard method described
in most quantum mechanics textbooks where, in each partial
wave, the numerical solution of the differential equation for
nuclear plus Coulomb potentials is matched, at some radius,
with the appropriate asymptotic Coulomb wave functions that
are known analytically. Convergence of results has to be tested
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FIG. 2. Differential cross section relative to Rutherford cross
section for p-10Be elastic scattering at 50 MeV, calculated with
different values of the screening radius R.

with respect to the number of partial waves included and the
matching radius. The numerical accuracy of this method is
well known and is documented in Ref. [26].

For both reactions, we have used the parametrized optical
potential of Watson [27] at the corresponding energy per
nucleon. The screening radius is taken to be R = 5 fm for
p-10Be and R = 7 fm for p-16O. To perform the numerical
integrations we need to introduce a certain number of mesh
points as explained in Appendix B. For the p-10Be reaction
we take nϕ = 40, nθ = 64, and nq = 64 and for p-16O we use
nϕ = 50, nθ = 80, and nq = 80. The CPU time needed for
convergence on an AMD Opteron (2.4 GHz) single processor
is about 10 minutes for p-10Be and 30 minutes for p-16O.

First, we show the convergence of the method itself with
respect to the screening radius R in Fig. 2. The different
lines are the differential elastic cross section relative to the
Rutherford cross section for the reaction p-10Be at 50 MeV as
the screening radius increases. From R = 5 fm all curves fall
on top of each other showing the convergence with R and the
numerical stability of the calculation.
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FIG. 3. (Color online) Differential cross section relative to
Rutherford cross section for p-10Be elastic scattering. Full lines
are partial-wave calculations in configuration space and points are
plane-wave calculations in momentum space. The lines (a), (b), (c),
and (d) correspond to Elab = 50, 100, 150, and 200 MeV, respectively.
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FIG. 4. (Color online) Differential cross section relative to
Rutherford cross section for p-16O elastic scattering. Full lines
are partial-wave calculations in configuration space and points are
plane-wave calculations in momentum space. The lines (a), (b), (c),
and (d) correspond to Elab =50, 100, 150, and 200 MeV, respectively.

Then, in Figs. 3 and 4, we show the differential elastic
cross section relative to the Rutherford cross section for
these two reactions at the energies considered. The full lines
represent configuration space partial-wave calculations, and
the points show the plane-wave calculations in momentum
space. Both calculations are in very good agreement at all
the different energies. For p-16O scattering we also show
in Fig. 5 the analyzing power Ay at the same energies
as before. Again we obtain a very good agreement with
the configuration space calculations. The perfect agreement
between the two calculations indicates that the method of
screening and renormalization can be used accurately in high
partial waves, unlike the methods used in Refs. [22,23].

Second, we consider the reaction 12C-10Be. We study this
reaction at 49.3 MeV/nucleon taking the optical potential used
in Ref. [28]. The screening radius is taken to be R = 12 fm and
the number of mesh points used are nϕ = 80, nq = 300, and
nθ = 240 divided in three regions to have more points where
they are necessary. The CPU time needed for convergence
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FIG. 5. Analyzing power for p-16O elastic scattering. Full lines
are partial-wave calculations in configuration space and points are
plane-wave calculations in momentum space. The lines (a), (b), (c),
and (d) correspond to Elab = 50, 100, 150, and 200 MeV, respectively.
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FIG. 6. Differential cross section relative to Rutherford cross
section for 12C-10Be at 49.3 MeV/u elastic scattering. Full line
is partial-wave calculation in configuration space and points are
plane-wave calculation in momentum space.

on the same machine as above is now of about 1 hour
using 16 processors. The correspondent elastic scattering cross
section relative to the Rutherford cross section is shown in
Fig. 6. The full line shows the configuration space partial-
wave calculation, and the points represent the plane-wave
calculation in momentum space. Both results are again in very
good agreement. However, the convergence with the screening
radius is slower than in the previous reactions and slower than
using a partial-wave dependent renormalization factor as in
Ref. [5].

V. SUMMARY AND CONCLUSIONS

The two-body scattering has been studied by solving the
Lippmann-Schwinger equation in momentum space without
partial-wave decomposition. The Coulomb and spin-orbit
interactions have been included. The screening and renormal-
ization procedure has been used for including the Coulomb
interaction.

The method has been applied to different reactions,
p-10Be, p-16O at 50, 100, 150, and 200 MeV, and 12C-10Be
at 49.3 MeV/u. The results are in good agreement with those
obtained through the solution of configuration space equations
using the partial-wave decomposition.

This work shows that this procedure is reliable for a
two-body reaction and encourages its extension to three-body
reactions where the partial-wave decomposition becomes
unstable at high energies or when two of the three particles
are massive.
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APPENDIX A: FOURIER TRANSFORM

In this Appendix we present the analytical expressions for
the Fourier transform of the potentials used in this article.

For a central potential V (r), the Fourier transform is a scalar
function

V (q ′, q, y) = 1

(2π )3

∫
d3rV (r)e−i(q−q′)·r, (A1)

where y is the cosine of the angle between q and q′. Integrating
in the polar angles (θ, ϕ), one gets

V (q ′, q, y) = 1

2π2

∫ ∞

0
drr2V (r)

sin (|q − q′|r)

|q − q′|r . (A2)

which involves a single r integral.

A. Screened Coulomb potential

If we define the screened Coulomb potential as in Eq. (15a),
the Fourier transform can be performed analytically. Starting
from Eq. (A2), the integral is

ωR(q ′, q, y) = αeZpZt

2π2k2

[
1 − π2 cos (2kR) cos (kR)

π2 − (2kR)2

]
, (A3)

where k = |q − q′|. When k → 0

ωR(q ′, q, y) → αeZpZt

4π2
(5 − 8/π2)R2. (A4)

The renormalization phase φR is given in Ref. [1],

φR = κ(q0)
∫ ∞

1/2q0

ωR(r)dr, (A5)

which for the ωR(r) given in Eq. (15a) becomes

φR = κ(q0)

{
ln(2q0R)

+1

2

[
ln(3) + Si

(
3π

2

)
− Si

(π

2

)]}
, (A6)

with

Si

(
3π

2

)
− Si

(π

2

)
≈ 0.23761058, (A7)

and

κ(q0) = αeZpZtµ/q0. (A8)

The pure Coulomb amplitude Tc needed in Eq. (16) is given
as a function of the center-of-mass (c.m.) scattering angle θc.m.

by

Tc = κ(q0)

2(2π )2µq0 sin2
(

1
2θc.m.

) �[1 + iκ(q0)]

� [1 − iκ(q0)]

× exp
{−2iκ(q0) ln

[
sin

(
1
2θc.m.

)]}
. (A9)

B. Short-range Coulomb potential

The Coulomb potential inside the nucleus is usually taken
as the Coulomb potential for a uniformly charged sphere of
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radius r0 whose difference from point Coulomb is

ωCR(r) = αeZpZt

[
1

2r0

(
3 − r2

r2
0

)
− 1

r

]
. (A10)

Again starting form Eq. (A2) we get

ωCR(q ′, q, y) = −αeZpZt

2π2k2

× (kr0)3 + 3kr0 cos (kr0) − 3 sin (kr0)

(kr0)3
.

(A11)

When k → 0

ωCR(q ′, q, y) → −αeZpZt

20π2
r2

0 . (A12)

C. Woods-Saxon potential

The Woods-Saxon potential, usually used for optical poten-
tials, has the form

vws(r) = v0

1 + e
(r−r0)

a

, (A13)

leading to the Fourier transform

vws(q
′, q, y) = v0

2π2k

∫ ∞

0
dr

r sin (kr)

1 + e
(r−r0)

a

. (A14)

Defining x = r/a, b = r0/a, and c = ka we have

vws(q
′, q, y) = v0a

2

2π2k

∫ ∞

0
dx

x sin (cx)

1 + ex−b
, (A15)

which, except for the constant v0a
2/2π2k, may be calculated

as the imaginary part of the integral I(x), along the x axis,

I(x) =
∫ ∞

0
dx

xeicx

1 + ex−b
. (A16)

To calculate this integral we consider the integral in the
complex plane I(z) over the first quadrant

I(z) =
∮

dz
zeicz

1 + ez−n
= I(x) + I(y), (A17)

that equals the sum of the same integral over the positive axes
x and y because the integration over the arc is zero. Applying
the Cauchy’s theorem we have

I(z) =
∑

n

2πiRes

(
zeicz

1 + ez−b

)
n

= 2πi

∞∑
n=0

(
zeiczeb−z

)
z=b+iπ(2n+1)

= 2πeicb e−cπ

1 − e−2cπ

(
π

1 + e−2cπ

1 − e−2cπ
− ib

)
. (A18)

Now we need to calculate I(y)

I(y) =
∫ 0

i∞
dz

zeicz

1 + ez−b
=

∫ ∞

0
dy

ye−cy

1 + eiy−b
. (A19)

Using the Taylor series for the function f (y) = 1/(1 + y)

I(y) =
∞∑

n=0

∫ ∞

0
dyye−cy(−1)ne(iy−b)n

=
∞∑

n=0

(−1)ne−bn

∫ ∞

0
dyye−y(c−in)

=
∞∑

n=0

(−1)ne−bn c2 − n2 + 2inc

(n2 + c2)2
. (A20)

This series converges very fast because it has a negative
exponential increasing with n. Therefore our integral is

Im[I(x)] = Im[I(z) − I(y)]

= 2π
e−cπ

1 − e−2cπ

[
π sin (cb)

1 + e−2cπ

1 − e−2cπ
− b cos (cb)

]

− 2c

∞∑
n=1

(−1)ne−bn n

(n2 + c2)2
. (A21)

When k → 0

Im[I(x)]

k
= a

3
(π2b + b3) − 2a

∞∑
n=1

(−1)ne−bn 1

n3
. (A22)

D. Derivative of Woods-Saxon potential

The derivative of the Woods-Saxon potential is usually
defined as

vD
ws(r) = −4a

dvws(r)

dr
= 4ws

e(r−rs )/a

[1 + e(r−rs )/a]2
. (A23)

Now we follow the same procedure as in the former subsection
but with a new function. Defining again x = r/a, b = rs/a,
and c = ka, we have

vD
ws(q

′, q, y) = 4vsa
2

2π2k

∫ ∞

0
dx

ex−bx sin (cx)

(1 + ex−b)2
, (A24)

from which we can define

I(z) =
∮

dz
zeiczez−b

(1 + ez−b)2
= I(x) + I(y), (A25)

as the integral over the first quadrant leading to

I(z) =
∑

n

2πiRes

[
zeiczez−b

(1 + ez−b)2

]
n

= 2πi

∞∑
n=0

[
(icz + 1)eiczeb−z

]
z=b+iπ(2n+1)

= 2πieicb e−cπ

(1 − e−2cπ )2

[
e−2cπ (1 + cπ ) + (cπ − 1)

− ibc(1 − e−2cπ )
]
. (A26)

Now we need to calculate I(y)

I(y) =
∫ 0

i∞
dz

zeiczez−b

(1 + ez−b)2
=

∫ ∞

0
dy

ye−cyeiy−b

(1 + eiy−b)2
, (A27)
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for which we use the Taylor series expansion of the function
f (y) = 1/(1 + y)2 to obtain

I(y) =
∞∑

n=1

∫ ∞

0
dyye−cy(−1)n+1e(iy−b)nn

=
∞∑

n=1

(−1)n+1ne−bn

∫ ∞

0
dyye−y(c−in)

=
∞∑

n=1

(−1)n+1e−bn c2 − n2 + 2inc

(n2 + c2)2
. (A28)

This series converges again very fast because it has a negative
exponential increasing with n. Therefore our integral is given
by

Im[I(x)] = Im[I(z) − I(y)]

= 2π
e−cπ

(1 − e−2cπ )2
{cb sin (cb)(1 − e−2cπ )

+ cos (cb)[e−2cπ (1 + cπ ) + (cπ − 1)]
}

− 2c

∞∑
n=1

(−1)n+1e−bn n2

(n2 + c2)2
. (A29)

When k → 0

Im[I(x)]

k
= a

(
π2

3
+ πb2

)
− 2a

∞∑
n=1

(−1)n+1e−bn 1

n2
. (A30)

E. Spin-orbit potential

The spin-orbit potential, given by Eq. (10), is not central so
Eq. (A2) is not valid. In this case, the Fourier transform of the
spin-orbit term is

〈q′|vso|q〉 = 1

(2π )3

∫
d3rd3r ′e−iq′ ·r′

Vso(r)δ(r′ − r)eiq·r.

(A31)

Taking into account the form of Vso(r) given in Eq. (10) and
the definition of l = r × p = r × (−i∇), we have

〈q′|vso|q〉 = 1

(2π )3

∫
d3rd3r ′e−iq′ ·r′

vso(r)

× δ(r′ − r) [r × (−i∇)] · σeiq·r. (A32)

Integrating in r′ and using the property (a × b) · c =
a · (b × c) we get

〈q′|vso|q〉 = 1

(2π )3

∫
d3rvso(r)r · [q × σ ] ei(q−q′)·r. (A33)

Because vso(r) has the form

vso(r) = −1

r

dvws(r)

dr
, (A34)

one may write

vso(r)r = −∇vws(r), (A35)

leading to

〈q′|vso|q〉 = −1

(2π )3

∫
d3r [∇vws(r)] · [q × σ ] ei(q−q′)·r.

(A36)

Integrating by parts

〈q′|vso|q〉 = −1

(2π )3

[∫
d3r∇ · {vws(r)[q × σ ]ei(q−q′)·r}

− i(q − q′) · [q × σ ]
∫

d3rvws(r)ei(q−q′)·r
]

,

(A37)

and applying Gauss’s theorem,
∫

d3r∇(vws(r)[q × σ ]ei(q−q′)·r)

=
∮

S

vws(r)[q × σ ] · dS = 0, (A38)

together with

(q − q′) · [q × σ ] = −q′ · [q × σ ] = −[q′ × q] · σ,

(A39)

we finally have

〈q′|vso|q〉 = −i

(2π )3
[q′ × q] · σ

∫
d3rvws(r)ei(q−q′)·r. (A40)

where the integral is equals to the Woods-Saxon Fourier
transform developed in subsection C.

APPENDIX B: SOLUTION METHOD

The integral equations for the transition amplitude with
central interaction Eq. (8) and including spin-orbit interaction
Eq. (13) are solved using the well-known method of Padé
summation [29] with a choice of an appropriate mesh for each
variable in Eq. (8) or Eq. (13). For the momenta q we take
a Gauss-Chebyshev mesh converting the interval [−1, 1] into
[0,∞) via

q = b

√
1 + u

1 − u
, (B1)

where b is a scale used to extend or compress the mesh. The
scale used in this work is 5 fm−1. For the cosines x we take the
Legendre mesh in the interval [−1, 1]. Sometimes, depending
on the problem, it is more convenient to divide the x interval in
regions and define a Legendre mesh in each one with different
number of points. This procedure allows us to to increase the
number of mesh points where they are more necessary.

The integral in ϕ in the Eq. (7) and (14) is also calculated
with a Legendre mesh in the interval [0, 2π ]. In the case of
a central potential the integration can be done in the interval
[0, π ] and multiplying by 2. This is very useful if the particles
do not have spin.
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