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Error analysis of nuclear mass fits
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We discuss the least-squares and linear-regression methods, which are relevant for a reliable determination
of good nuclear-mass-model parameter sets and their errors. In this perspective, we define exact and inaccurate
models and point out differences in using the standard error analyses for them. As an illustration, we use
simple analytic models for nuclear binding energies and study the validity and errors of models’ parameters and
uncertainties of its mass predictions. In particular, we show explicitly the influence of mass-number-dependent
weights on uncertainties of liquid-drop global parameters.
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I. INTRODUCTION

Mass, or binding energy, is one of the most fundamental
properties of atomic nuclei. Measuring and modeling nuclear
masses has been for many years, and still is, at the center
stage of nuclear physics. See Ref. [1] for a recent review.
Determination of mass from first principles, viz. quantum
chromodynamics (QCD), is extremely difficult and possible
only in lattice quantum chrmomodynamics for composite
particles like mesons or nucleons [2] and is beyond anything
possible or sensible for nuclei. For light nuclei, one can
quite accurately calculate nuclear masses by using many-body
techniques that employ parametrized models of nucleon-
nucleon (NN ) and NNN interactions; see, e.g., Ref. [3]. In
these so-called ab initio models, parameters are partly fitted
to observables other than mass (like NN phase shifts) and
partly to masses (NNN interactions). There are many other,
less sophisticated, methods to calculate nuclear masses, and
all of them include fitting to mass data to a larger or smaller
extent. Therefore, there is an extensive history of mass fits in
nuclear physics.

Nevertheless, and strangely enough, the history of error
analyses of these mass fits is virtually nonexistent (see notable
examples in Refs. [4,5]). As a consequence, many mass tables
and mass predictions exist in the literature, but there are no
estimates of the reliability of these results that would be based
on thorough methods of analyzing their uncertainties.

In the present study, we aim at (i) recalling the well-known
methods that must be used to analyze errors along with any
fits of parameters and (ii) pointing several particular features
of such analyses that are characteristic in applications to mass
fits. At present, one cannot overestimate the importance of
quantitatively analyzing the predictivity of mass calculations
when applied to exotic nuclei far from stability. However,
such mass calculations must be accompanied by predictions
of their theoretical error bars. Professional error analyses will
put predictions on firm grounds—often showing explicitly that
such predictions are simply impossible, when they are based
on a given model fitted to a given set of masses. However, they
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will give quantitative information on how much measuring the
mass of the last available isotope (often very difficult) will
improve predictivity of models.

As a benchmark number that characterizes mass fits, one has
the mass root-mean-squared (rms) deviation, which nowadays
does not go below about 0.6 MeV [1,6,7]. Down to this level,
nuclear models were successfully used to describe nuclear
masses, and, moreover, they often correctly describe other
observables such as charge radii and excitations. In the present
study we do not enter into the discussion of which observables,
apart from mass, should be used to fit given models to data. Of
course, error analyses should be performed when fitting any
kinds of observables, although our particular example below
concerns only a mass model.

The best Skyrme and Gogny energy-density-functional
(EDF) methods [8], fitted to large numbers of nuclei, have
resulted in rms deviations of 0.7–1.0 MeV from experimental
masses. The deviations from experiment are not random but
show systematic patterns [9]. These patterns are a clear sign
that the functionals are too simplified; see also Ref. [10].
Systematic methods are needed to improve EDF models
by introducing new terms (for example, by using density-
dependent coupling constants; see, e.g. Refs. [11,12], or
higher-order derivative terms [13]) and testing the importance
and physical feasibility of the new terms.

Current EDF models typically use 10–14 parameters or cou-
pling constants. Skyrme functionals, for example, have clear
physical interpretation for all parameters of the functional.
However, if the number of model parameters is drastically in-
creased, the meaning and importance of parameters might not
always be apparent. To be able to understand the significance
of each parameter, clear and efficient methods must be used,
as is discussed in this study.

II. METHODS OF REGRESSION ANALYSIS

In this section we briefly review the methods used in the
standard linear regression method [14]. Along with presenting
the necessary definitions and main results, we also discuss
several aspects that are specific to our particular problem of
nuclear mass fits.
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Let us assume that we have a model describing j =
1, . . . , m observables ej in terms i = 1, . . . , n parameters xi ,
i.e.,

ej = fj (�x). (1)

To find an optimal set of parameters, a fitting procedure has to
be used, whereupon the rms deviation [including in regression
analysis, a 1/(m − n) normalization]

�2
rms = 1

m − n

m∑
j=1

Wj

[
fj (�x) − e

exp
j

]2
(2)

between experimental values of observables, e
exp
j , and the

observables given by model is minimized by adjusting the
model parameters. This is called the least-squares fitting
procedure. As is usually the case, the number of observables
is larger than the number of parameters, m > n.

Each term in the sum of Eq. (2) is multiplied by a weight
factor Wj > 0. In this respect we can single out two limiting
situations of an exact and an inaccurate model:

(i) The model of Eq. (1) is exact and deviations in Eq. (2)
result solely from imprecisely measured experimental
values. In this case, one takes the weights Wj = (�ej )−2,
where �ej are experimental variances of observables ej .

(ii) The model of Eq. (1) is a poor approximation of reality
and deviations in Eq. (2) are much larger than the
experimental variances of observables. In this case, the
choice of weights is quite arbitrary and can be based
only on intuition. By using different weights one can,
in fact, differentiate between the importance of various
observables in determining the model parameters. It is
clear that the result of adjustment may crucially depend
on the choice of weights.

In the nuclear mass fits discussed in the present article, we
obviously have the case of an inaccurate model, by which
typical experimental errors are of the order of a few tens
of keV [15] but can also be as low as about 100 eV [16],
whereas average deviations of mass models do not go below
about 0.6 MeV [1]. In the case of several different kinds of
observables included in the fit, dependence of the results on
weights is obvious, see, e.g., the recent comprehensive analysis
in Ref. [5]. However, even if only nuclear masses are fitted,
the “natural” choice of weights, Wj = 1, is only a choice, and
many other choices are possible, i.e., depending on whether
one wants to put more weight into the measured values of light
or heavy or stable or exotic nuclei. We will illustrate this point
in Sec. III below.

A. Determination of parameters

The function (2) has an extremum when all its partial
derivatives with respect to the model parameters xi are
simultaneously zero,

∂
(
�2

rms

)
∂xi

= 0, i = 1, . . . , n. (3)

These partial derivatives are in general nonlinear functions
of the model parameters; thus to get manageable equations,
Eq. (1) has to be linearized, i.e.,

fj (�x) � fj (�x0) +
n∑

i=1

(
∂fj

∂xi

)
�x=�x0

(xi − x0,i). (4)

For observables related to total or single-particle energies, the
nonlinearities can actually be quite small [4,10], but in general
this is not the case and the linearized equations have to be
solved iteratively.

We now introduce the notation that �x0 is the set of
parameters from previous iteration, by which xi − x0

i is the
change of parameters to be determined. We also denote the
weighted deviations of observables from experiment by yj ,

yj ≡ √
Wj

[
e

exp
j − fj (�x0)

]
, (5)

and the weighted matrix of regression coefficients is denoted
as

Jji ≡ √
WjIji (6)

for

Iji =
(

∂fj

∂xi

)
�x=�x0

. (7)

Then, Eq. (2) can be written as

�2
rms = 1

m − n

m∑
j=1

[
n∑

i=1

Jji

(
xi − x0

i

) − yj

]2

, (8)

and Eq. (3) takes the form:

(J T J )(�x − �x0) = J T �y. (9)

It is now obvious that the parameters lying in the null space
of J T J (if it is singular) cannot be determined. Moreover,
during the fitting procedure it often happens that some
parameters are very poorly determined by the experimental
data. These parameters should be removed from the set
because they have very large uncertainties and, if kept, would
destroy the subsequent error analysis (see below). The poorly
determined parameters can be found by first transforming to a
new set of parameters, here called “independent parameters”
and then eliminating all nonimportant independent parameters
from the fit.

This can be achieved by making a singular value decompo-
sition (SVD) [17] of matrix J ,

Jji =
q∑

k=1

UjkwkV
T
ki , (10)

where columns of the m × q matrix U are orthogonal (UT U =
1), columns of the n × q matrix V are also orthogonal (V T V =
1), and q positive numbers wk are called singular values of
J . Note that for singular matrix J T J one has q < n, and
the vanishing singular values do not contribute to the sum in
Eq. (10).

The SVD of J allows one to calculate the inverse (J T J )−1

outside the null space of J T J = V w2V T ,

(J T J )−1 = V
1

w2
V T , (11)
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and the solution of Eq. (9) can now be expressed as

�x − �x0 = (J T J )−1J T �y = V
1

w
UT �y. (12)

The new independent parameters are now defined as
�z = V T �x. If some singular values become very small, the
associated variables are simply dropped from Eq. (12), i.e.,

zk − z0,k = 1
wk

∑m
j=1 UT

kjyj for wk > ε,

= 0 for wk < ε,
(13)

and the new parameters xi become

xi = x0,i +
∑
wk>ε

Vik

1

wk

m∑
j=1

UT
kjyj . (14)

These new values can now be used to continue iterations.

B. Error estimates

After the iteration has converged, one can determine error
estimates for the obtained parameters xi . The method used here
follows the standard multivariate regression analysis [18,19].
Assume that we take the scaled experimental observables
and perturb them with a random noise that has zero mean
value. The true experimental energies can now be thought
of as being random variables but only one sample that has
the values

√
Wje

exp
j is known. The deviation of each model

parameter xi from its mean can then be calculated from
Eq. (12) as

xi − 〈xi〉 =
∑

j

[(J T J )−1J T ]ij (yj − 〈yj 〉). (15)

Then, the correlation matrix of parameters xi and xi ′ becomes

〈(xi − 〈xi〉)(xi ′ − 〈xi ′ 〉)〉
=

∑
j

∑
j ′

[J (J T J )−1]ji[(J
T J )−1J T ]i ′j ′ 〈(yj − 〈yj 〉)

× (yj ′ − 〈yj ′ 〉)〉 = δ2
rms(J

T J )−1
ii ′ , (16)

where

δrms = tα/2,m−n�rms (17)

and tα/2,m−n is Student’s t distribution [20] for m − n degrees
of freedom, necessary here because of the small sample size.
In Eq. (16) we have assumed that yj and yj ′ are independent
random variables whose expectation values vanish when j �=
j ′ and all have the same standard deviation, i.e.,

〈(yj − 〈yj 〉)(yj ′ − 〈yj ′ 〉)〉 = δjj ′δ2
rms. (18)

The average values of parameters 〈xi〉 are determined by the
least-squars fitting procedure, 〈xi〉 = x0,i . It is also assumed
that the least-squares fitting gives an accurate estimate of
the standard deviation of the observables ej . With these
assumptions from Eq. (16) we get the following formula for
the confidence interval of xi with (1 − α) probability:

�xi ≡
√

〈(xi − 〈xi〉)2〉 = δrms

√
(J T J )−1

ii . (19)

It is now clear that small SVD values that appear in the inverse
matrix of Eq. (11) spoil confidence intervals of all parameters
and have to be removed, as in Eq. (13). One should observe
that Eq. (19) does implicitly depend on the weights through
the definitions of Eqs. (5), (6), and (8).

We have to stress at this point that the error estimates
of Eq. (19) have quite different meaning for the exact and
inaccurate models discussed at the beginning of this section.
In the first case, errors of the parameters result solely from the
statistical noise in the measured observables—their variances
are supposed to be known and define the weights in Eq. (2)
as Wj = (�ej )−2. Therefore, within the exact model, the
assumption of equal variances, Eq. (18), is well justified. Such
a model then gives the minimum value of �2

rms near 1, i.e., the
χ2 test.

For a inaccurate model, the error estimates of Eq. (19) give
only information on the sensitivity of the model parameters to
the values of the observables. They correspond to the situation
where the experimental values are artificially varied far beyond
their experimental uncertainties to induce tangible variations
in the values of the parameters. Equation (18) then means that
the range of this variation is inversely proportional to

√
Wj ,

i.e., it is commensurate with the importance attributed to a
given observable. Here, the error estimates may depend on the
weights and are thus affected by their choices and similarly so
are the values of the parameters.

We are now in a position to discuss the mass predictions
and error propagation. Suppose that we apply the model of
Eq. (1) not only to the measured masses but also to the masses
of unknown nuclei,

ẽj = fj (�x), (20)

where the tilde means that the set of observables ẽj includes not
only those used for the fit, j = 1, . . . , m, but also observables
for, j = m + 1, . . . ,M .

The error estimates of Eq. (19) allow us to estimate
uncertainties of the predicted observables. With the same
assumptions as before, but now with the parameters xi from
the least-squares fit for both observables inside and outside the
fitted set, we get

(ẽj − 〈ẽj 〉)2 =
∑
ii ′

Ĩj i Ĩj i ′ (xi − 〈xi〉)(xi ′ − 〈xi ′ 〉), (21)

where Ĩj i are the regression coefficients, Eq. (7), of observables
ẽj with respect to the model parameters xi . Then, using
Eq. (16) the confidence intervals of predicted observables
become

�ẽj =
√

〈(ẽj − 〈ẽj 〉)2〉 = δrms

√
[Ĩ (J T J )−1Ĩ T ]jj . (22)

Equations (19) and (22) form the basis of the error
analysis of our mass fits. The calculated error bars (19) of
parameters xi must then be further scrutinized to analyze which
parameters are necessary and which should be removed from
the model. The confidence intervals (22) constitute estimates
of predictivity of the model. Note that they should also be
calculated for the observables that have actually been used in
the fit. It is these intervals, and not the residuals yj/

√
Wj ,

which have to be analyzed when discussing the quality of the
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model. It is obvious that the residuals can be arbitrarily small
for some observables, or for some types of observables (e.g.,
masses of semimagic spherical nuclei), whereas the model can
still be quite uncertain in describing these same observables.

III. EXAMPLE APPLICATION

To illustrate the fitting and error analysis techniques of
the previous section we use them within a simple nuclear
mass model. The model expresses nuclear binding energy as
a sum of the liquid drop (LD) and shell energies [21]. The
LD energy we use closely resembles the Myers-Swiatecki LD
formula [22] with symmetry terms in the volume and surface
energy parts and a modified Coulomb part. It has the form

ELD(N,Z) = aV A + aSA
2/3 + aV,symI 2A + aS,symI 2A2/3

+ aC

Z(Z − 1)

A1/3
+ aP

P

A1/2
, (23)

where I = (N − Z)/A and 2P = (−1)N + (−1)Z . The shell
energy is modeled by polynomials of N and Z:

Ei
SE(n, z) = xi,1 + xi,2n + xi,3z

+ xi,4n
2 + xi,5nz + xi,6z

2

+ xi,7n
3 + xi,8n

2z + xi,9nz2 + xi,10z
3

+ xi,11n
4 + xi,12n

3z + xi,13n
2z2

+ xi,14nz3 + xi,15z
4, (24)

where z = Z − Zi and n = N − Ni . The index i enumerates
15 different rectangular areas on the nuclear mass chart
delaminated by magic numbers; see Fig. 1. In each such an
area, N and Z values are between given magic numbers Ni

and Zi . We restrict parameters of polynomials (24) in such a
way that the shell effects be continuous across magic proton
and neutron numbers; however, the derivatives thereof can
be noncontinuous. In this way the model can produce the
binding-energy cusps at magic nucleon numbers.

The continuity requirements impose 19 conditions at
semimagic nuclei; see Fig. 1. Each condition results in p + 1
linear equations for xi , where p is the polynomial order.
Thus for the second-, third-, or fourth-order polynomials
(p = 2, 3, or 4) we get (p + 1) × 19 = 57, 76, or 85 equations
for 90, 150, or 225 parameters, respectively, resulting in 33,
74, or 130 independent variables of the shell energy, Eq. (24).
Together with the six parameters of the liquid-drop energy,
Eq. (23), the model thus contains 39, 80, or 136 independent
parameters.

It should be noted that the model described above is fully
linear. This means that the iteration procedure consists of
just one step, because matrix J is then constant and the
convergence is obtained after just one iteration. In this respect
the simple model considered here does not accurately resemble
realistic EDF models. However, it allows us to test and
showcase all the error analysis methods that can also be used
in realistic nonlinear EDF calculations.

We used the 1995 mass evaluation of Audi and Wapstra [15]
as our experimental nuclear binding energies. These masses
are outdated, but they serve only for illustrative purposes.
The full model with fourth-order polynomials was fitted to
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FIG. 1. (Color online) Areas of nuclear mass chart where the shell
energy polynomials of Eq. (24) are defined. The black dots mark
lines of semimagic nuclei for which the shell energy polynomials
of adjacent rectangles are constrained to have the same values. The
numbers in the rectangles show how many nuclei in the given area
was used in the fit. Semimagic and magic nuclei belong always to the
rectangle to the right and up.

m = 2844 experimental and extrapolated binding energies of
nuclei with N,Z � 8. The resulting set of parameters was used
to create metadata masses that approximate the experimental
masses with rms deviation of 1.1 MeV. In this way, we have
constructed the dataset of masses, which is exactly described
by the n = 136 parameters of the full model. Values of the LD
parameters used to define the metadata are listed in Table I.

We do not ascribe any particular physical importance to the
model of Eqs. (23) and (24), and we are not really concerned
with the question of how well it describes the experimental
data, cf. the recent discussion in Refs. [23,24]. The model
serves us only for the purpose of creating the metadata, and
only these metadata are the subject of the error analysis.

To the metadata given by the fourth-order model we add
Gaussian noise of a given standard deviation σ , i.e., random
numbers are added to all of the 2844 metadata masses. We
stress here that we do not construct any ensemble of data
sets and we do not perform any ensemble averaging. We only
have at our disposal the same number of 2844 “experimental”
metadata points, for which we know exactly what are the model
and noise parameters. From now on, a Gaussian noise of σ =
0.1 MeV is used unless explicitly indicated.

TABLE I. Values and error estimates (in MeV) of the LD
parameters. Values defining the metadata are compared with those
obtained from fitting the exact model to metadata with a Gaussian
noise of 0.1 MeV.

Parameter Defining value Fitted value Error estimate

aV 14.9455 14.9455 0.0008
aS −14.9326 −14.9325 0.0024
aV,sym −22.3303 −22.3293 0.0053
aS,sym 7.5995 7.5965 0.0068
aC −0.65709 −0.65708 0.00005
aP 11.3655 11.3633 0.0187
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The study now concentrates on repeating the least-squares
fits of the above-described second-, third-, and fourth-order
models to the metadata. The fourth-order model is exact,
whereas the second- and third-order models are inaccurate (see
the discussion at the beginning of Sec II). Note that only the
metadata shell effects are imprecisely described by the second-
and third-order models—the LD parts of Eq. (23) always have
the same form.

Our purpose is to study the fitting procedure, values of
parameters, error estimates, and confidence intervals in the
situations of exact and inaccurate models. In particular, we
analyze dependence of the least-squares fits on the weights
chosen for the definition of the rms deviation. To this end, we
chose weights in the form

Wj = mAα
j∑m

j=1 Aα
j

, (25)

where Aj is the mass number of the given nuclide and α is a
parameter. For α = 0, one has a “natural” choice of all weights
being equal, Wj = 1, which is the choice most often used in
nuclear mass fits.

However, it is obvious that we can equally well argue in
favor of other choices. On the one hand, for α = −2, the fit
would correspond not to fitting binding energies, but binding
energies per particle, E/A, which may seem to be a reasonable
choice when discussing the LD model parameters. Naturally,
this choice simply corresponds to placing more importance in
masses of light rather than heavy nuclei. On the other hand,
for α > 0, heavy nuclei are considered to be more important
for mass fits than light nuclei, which can be motivated by the
fact that these nuclei are closer to the infinite-matter limit.
Obviously, these arguments can be debated, but ultimately one
has a freedom of choice in this matter. The parameter α will in
the following be varied from −1 to 1, and the value of α = 0
is used whenever not explicitly indicated.

We begin by discussing the influence of the Gaussian noise
added to the metadata. In Fig. 2 we show dependence of the
rms deviations of the least-squares fits (8) as functions of
the standard deviation of the Gaussian noise σ . For the exact
model, the fitting procedure reproduces the standard deviations
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FIG. 2. (Color online) The rms deviations of the least-squares fits
(8) as functions of the standard deviation of the Gaussian noise σ

added to the metadata.
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FIG. 3. (Color online) Distributions of fit residuals for three
different polynomial fits to metadata. Bin widths are 0.1 MeV.

of the added noise perfectly well. For the inaccurate models,
i.e., for the second- and third-order polynomial fits, one obtains
the rms deviations that are higher than the added noise.

Of course, when the added Gaussian noise goes to zero, the
rms deviation of the exact model also vanishes. For inaccurate
models, in this limiting case the rms deviations level out
and converge to about 1.6 and 1.0 MeV for the second-
and third-order models, respectively. One can say that the
inaccurate models introduce their own intrinsic noises, which
are not statistical in nature but represent averaged inaccuracies
of the models. One can see that at nonzero Gaussian noise,
for inaccurate models the rms deviations are much smaller
than the rms of the Gaussian and intrinsic noises. It appears
that the intrinsic noise is gradually disappearing inside the
Gaussian noise. This is in fact the limit, in which inaccurate
models become quite good at describing less well determined
experimental data.

In Fig. 3 we show the distributions of fit residuals,

δej = e
exp
j − fj (�x0), (26)

obtained by fitting the three considered models to metadata
containing the σ = 0.1 MeV Gaussian noise. As expected,
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FIG. 4. (Color online) Singular values of the fit matrix J of
Eq. (10) when three different polynomial orders are used in the
least-squares fit.
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FIG. 5. (Color online) The rms deviations (8) of the least-squares
fits to metadata, calculated for the models of Eqs. (23) and (24), as
functions of number of singular values kept for matrix J , Eq. (14).

for the fourth-order (exact) model, the distribution is perfectly
Gaussian with the same width of 0.1 MeV. For the second- and
third-order inaccurate models, the distributions are not only
wider, with the widths of 1.6 and 1.0 MeV given above, but
also do not have exactly Gaussian shapes. This again illustrates
the nonstatistical nature of the intrinsic noise within inaccurate
models.

Next, we illustrate the problem of eliminating poorly
determined model parameters, as explained in Eq. (14).
Figure 4 shows the singular values obtained by fitting the
second-, third-, and fourth-order models to the metadata. When
the third- and fourth-order polynomials are used in the fit,
and the maximum numbers of parameters is kept in Eq. (14),
a number of parameters become ill defined. This happens
because some singular values of matrix J become extremely
small. As a result three smallest singular values of the matrix J

must be eliminated when the third-order polynomials are used
in the fits to the metadata. Similarly, the 14 smallest singular
values have to be eliminated for fourth-order polynomials. The
extreme smallness of the singular values is a direct result of
some redundancy in the model parameters. This is obviously
the case in Fig. 1 for those rectangles where the numbers of
experimental data are small.

As can be seen from Fig. 5, even more unimportant
parameters could be eliminated from the fits without losing
a significant amount of fit quality. If the second- or third-order
polynomials are used to represent the shell effects, only about
60% of the independent uncorrelated model parameters (of
39 or 80, respectively) are relevant and the remaining 40%
do not contribute significantly to the fit and can be safely
removed. For the fourth-order (exact) model this is not the
case, and many more parameters (about 85% of 136) are
required to go down to the value of the rms deviation equal
to 0.1 MeV, corresponding to the Gaussian noise in the
metadata.

Figures 6 and 7 present results of fits performed for different
choices of weights Wj , defined in Eq. (25). We first observe
that fits of the fourth-order (exact) model give results that are
entirely independent of weights. For α = 0, values of fitted
parameters and their error estimates are given in Table I.
Small differences between the fitted values and values defining
the metadata, and small values of errors, illustrate the quite
small impact of the 0.1 MeV Gaussian noise included in the
metadata.

The situation is drastically different for fits of the inaccurate
models. Here the values of the fitted parameters, shown in
Fig. 6, are not only quite different form the exact ones but also
rather strongly depend on the choice of weights. It is clear that
the weights strongly affect the balance between the volume and
surface parameters. For weights giving greater importance to
heavy nuclei (α > 0), all absolute values of volume and surface
parameters decrease. The effect is particularly large for the
surface symmetry parameter aS,sym, which for the second-order
model decreases from about 9 MeV at α = −1 to nearly zero
at α = 1.

Variations of parameters, seen in Fig. 6, are much larger
than their error estimates shown in Fig. 7. It means that
the standard way of estimating errors, Eq. (19), may give
significantly overoptimistic results. We stress here once again
that the obtained variations in the LD parameters are induced
by imperfect descriptions of shell effects only. One can say
that such imperfections do contain smooth particle-number
dependencies, which are then captured by the fitting procedure
and get transferred to values of the LD parameters.
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FIG. 6. (Color online) Values of the LD
parameters obtained from fits with weight
factors of Eq. (25), as functions of parameter α.
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FIG. 7. (Color online) Same as in Fig. 6
but for the error estimates, Eq. (19), of the LD
parameters.

One can, in principle, argue that macroscopic (LD) and
microscopic (shell) effects should not be mixed but rather
should be fitted separately to avoid cross-talk effects described
above. This is certainly possible in macroscopic-microscopic
models [6] that use separate expressions and/or methods to
describe these two features of the mass surface. However, such
separation induces ambiguities on its own, see, e.g., Ref. [25],
and, moreover, it cannot be realized in self-consistent methods,
which describe the LD and shell effects by the same set of
parameters.

In Figs. 8 and 9 we show the confidence intervals and
residuals, Eqs. (22) and (26), respectively, of the binding
energies predicted in lead isotopes. For nuclides used in the
fit (the range denoted by dotted vertical lines), confidence
intervals and residuals obtained for the fourth-order (exact)
model nicely reproduce the 0.1-MeV Gaussian noise included
in the metadata.

The situation is quite different for the inaccurate models,
which correspond to fitting the second- or third-order polyno-
mials. In lead isotopes, residuals of the third-order model are
still quite small, well below the rms deviation of 1.0 MeV,
which is the value characterizing this fit. It simply means
that for these observables, the model performs quite nicely.
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FIG. 8. (Color online) Confidence intervals (99% confidence
level) of binding energies of the model defined in Eqs. (23) and
(24), calculated in lead isotopes using Eq. (22).

However, the confidence intervals tell us that the quality of
the model even in lead nuclei is not that great as suggested
by small residuals. For the second-order model, residuals
become quite high but the confidence intervals indicate that the
quality of the model does not, in fact, deteriorate. Confidence
intervals and residuals give us diverging evaluations of the
quality of the models, because the former represent global
characteristics, which depend only on the standard deviations
of the parameters, whereas the latter illustrate only local
properties of the models.

An interesting property of the confidence intervals is the fact
that, for nuclei outside the fit, the confidence intervals quickly
increase, independently of the complexity of the model. This
result is in accordance with results obtained within realistic
nuclear mass models, whose predictions (for nuclei outside
the fit) deviate greatly from each other. On the one hand, such
an increase of the confidence intervals is a reflection of poor
predictivity of models when they are extrapolated to exotic
nuclei. On the other hand, the confidence intervals simply
quantify this uncertainty of extrapolation and constitute precise
measures of the fact that such extrapolations must be uncertain.
This is so because the model parameters are rather loosely
defined by the metadata, and therefore, important information
is missing from the models.
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FIG. 9. (Color online) Same as in Fig. 8 but for the binding-energy
residuals, Eq. (26).
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The discontinuity of confidence intervals at N = 126 is
an artifact of the model, which uses different parameters in
rectangles delimited by magic numbers; see Fig. 1. Note that
the model ensures the continuity of binding energies, but the
confidence intervals need not be continuous.

IV. CONCLUSIONS

In the present study, we have pointed out the necessity of
estimating errors along with estimating values of parameters
that define nuclear mass models. Such errors allow for not only
quantifying quality of models in terms of confidence intervals
instead of fit residuals but also for putting theoretical error bars
on mass predictions.

A crucial element in the error analysis is the fact that the
nuclear mass models belong to the class of inaccurate models,
which describe data with accuracy that is much lower than
that of the data themselves. For such models, standard least-
squares methods to estimate errors and values of parameters
are not based on statistical assumptions but rather pertain to
analyzing the sensitivity of the model parameters to the data.
Consequently, results may, and do, depend on weights that
are used when defining the rms deviations between the model
results and the data.

The discussion of error analysis was illustrated by using
a simple mass model that includes a global liquid-drop part
and a locally fluctuating shell-effect part, with a number of
model parameters. A set of metadata masses was generated by

fitting the most complex variant of the model with the fourth-
order shell-effect polynomials to experimental nuclear binding
energies. The metadata were then used as an “experimental”
input for performing fits that used less sophisticated second-
and third-order polynomials. In this way, we had at our disposal
the exact model of the metadata and two inaccurate models that
mimicked realistic mass fits.

Within such a scheme, we were able to illustrate many prop-
erties of nuclear mass fits. In particular, we showed explicitly
the relationship between the statistical noise in the metadata
and error estimates. We also presented methods to differentiate
between important and unimportant model parameters, which
are based on the singular value decomposition of the regression
matrix. By performing mass fits with mass-number dependent
weights, we showed that values of the model parameters may
involve much larger uncertainties than those given by standard
error estimates. Finally, we have shown the role of confidence
intervals and fit residuals in evaluating the quality of exact and
inaccurate models.
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[5] P. Klüpfel, P.-G. Reinhard, and J. A. Maruhn, arXiv:0804.3402.
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