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Inversion doublets of 3N + N cluster structure in excited states of 4He
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Excited states of 4He are studied in four-body calculations with explicitly correlated Gaussian bases. All the
levels below Ex = 26 MeV are reproduced reasonably well using realistic potentials. An analysis is made to
show how the 0+

2 state becomes a resonance but those having almost the same structure as this state in different
spin-isospin channels are not observed as resonances. The role of tensor force is stressed with a particular attention
to the level spacing between the two 0− states. The calculation of spectroscopic amplitudes, nucleon decay widths,
and spin-dipole transition strengths demonstrates that the 0+

2 state and the three lowest-lying negative-parity
states with 0− and 2− have 3H + p and 3He + n cluster configurations, leading to the interpretation that these
negative-parity states are the inversion-doublet partners of the 0+

2 state.
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I. INTRODUCTION

The competition of particle-hole and cluster excitations is
one of the most interesting issues in the structure of light nuclei.
They emphasize different aspects of nuclear excitation modes
and often coexist in the low-lying spectrum. These excitations
are usually described in quite different languages, thus defying
the reproduction of such a coexistence in a single scheme.
In fact, some intruder states have still not been reproduced
even in large-space calculations based on realistic interactions.
For example, the excitation energy of the so-called Hoyle
state, which is recognized to have large overlap with 3α

configuration [1], is predicted too high in the no-core shell
model [2]. According to the shell model, negative-parity states
should appear first in the excited spectrum of 16O, but they
show up just above the first excited 0+ state, which is also
understandable from 12C + α structure [3].

The 4He nucleus is the lightest system offering the co-
existence of both particle-hole and cluster excitations in its
spectrum. Its ground state is doubly magic and tightly bound,
but its first excited state is not a negative parity but 0+, as in
the case of 16O. This state was first conjectured as a breathing
mode, but an extensive study has confirmed it as a cluster
state of 3N + N (3H + p and 3He + n) configuration [4].
Accepting this interpretation for this state, we are led to the
following questions. Because the 3N and N clusters having
spin 1/2 and isospin 1/2 move in a relative S wave, four
states may appear that all have basically the same 3N + N

configuration but different JπT with 0+0, 1+0, 0+1, 1+1.
These states may be called quartet states. The first question
we set here is “Why do we actually observe only one of them,
0+0?”

The second question is concerned with the concept of an
inversion doublet that is known in molecular spectroscopy.
For a system consisting of asymmetric molecules (clusters),
one may expect a partner state of negative parity as in the
ammonia molecule. These positive- and negative-parity pairs
are called inversion doublets. In analogy to the molecular
case, we may ask the question “What about the possibility
of observing negative-parity partners in which the 3N and

N clusters move in a relative P wave?” The negative-parity
partners would have Jπ = 0−, 1−, and/or 2−, which result
from the coupling of the spins of the two clusters and
the relative orbital angular momentum between them. The
centrifugal barrier for the P wave is more than 3 MeV at
the 3N -N relative distance of 4 fm, so that the expected
partner states may appear in the region of the excitation energy
Ex = 21–23 MeV. In fact, the 0− and 2− states are observed
in this region. Traditionally, these states are considered s3p

shell-model states, but could be better understood from the
3N + N configuration. A variational calculation incorporating
two-body correlations explicitly seems to suggest this picture
for the negative-parity states [5] but no discussion was given
on the relationship between them and the 0+

2 0 state. According
to recent large-space shell-model calculations, these 0±0 states
show quite different convergence [6] and, because of its slow
convergence, the 0+

2 0 state is attributed to a radial excitation.
The purpose of this study is to answer the two questions

by performing four-body calculations with realistic poten-
tials. Thus we are mainly interested in the three excited
states 0+0 (Ex = 20.21 MeV), 0−0 (21.01 MeV), and 2−0
(21.84 MeV), but also consider other excited states that all
have widths larger than 5 MeV. We do not invoke any model
ansatz; that is, our calculation is based on neither the shell
model nor a resonating-group-method (RGM) calculation [7,8]
that couples 3H + p,3 He + n, and d + d two-cluster channels,
but treats the four nucleons equally in a sufficiently large
configuration space. We obtain the energies and wave functions
of the excited states of 4He using a basis expansion method.
The basis used here is square integrable, so that the excited
states are obtained in a bound-state approximation. As we show
later, this approximation works fairly well for predicting the
three lowest-lying excited states, but it gives only a qualitative
prediction for the other broad levels.

Section II gives a brief description of the basis functions
used to solve the four-body problem. Section III presents the
results of calculation together with some discussion. We show
the energy spectrum of 4He in Sec. III A, discuss the problem
relating to the quartet in Sec. III B, and answer the question
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concerning the inversion doublets in Sec. III C. Section IV
summarizes the results of the present work.

II. FORMULATION

The Hamiltonian H for a system of two protons and two
neutrons consists of the kinetic energy (T ) and a nucleon-
nucleon potential including the Coulomb potential (VCoul).
The center of mass kinetic energy is properly subtracted. A
three-body force is ignored as it has a small effect on the
spectrum above the 3N + N threshold [9]. We thus believe that
its inclusion would not change the basic features concerning
the structure of the 4He excited states studied here. For the
two-nucleon interaction we use the G3RS [10] and AV8′ [11]
potential models. Both of them contain central (Vc), tensor
(Vt ) and spin-orbit (Vb) terms. The L2 and (L ·S)2 terms of
the G3RS potential are ignored. The ground-state properties
of d,3H, 3He, and 4He given by these potentials are similar
to each other [12]. The tensor and spin-orbit forces of the
AV8′ potential are, however, stronger than those of the G3RS
potential, while the central force of the AV8′ potential is
weaker than that of the G3RS potential.

A variational solution �JMJ T MT
for the Schrödinger equa-

tion is obtained by taking a linear combination of many basis
states, each of which has the form

�(LS)JMJ T MT

= A
{
e− 1

2 x̃Ax[[YL1(ũ1x)YL2(ũ2x)
]
L
χS

]
JMJ

ηT MT

}
, (1)

where Y�(r) = r�Y� (̂r) is a solid spherical harmonic. Here A
is the antisymmetrizer, x is a column vector whose elements
are three relative coordinates (x1, x2, x3), and A is a 3 × 3
positive-definite, symmetric matrix whose six independent
elements are variational parameters. The vectors u1 and u2

each contain three elements determining the weightings of
the relative coordinates and are used to specify the angular
motion of the basis (1). The tilde stands for the transpose of a
column vector, and thus the inner product ũ1x, which we call
a global vector, is a vector in three-dimensional coordinate
space. However, the inner product x̃Ax denotes a scalar in
three-dimensional space as it is defined by

∑
i xi ·(Ax)i =∑

i,j Aij xi ·xj .
The global vector representation for the rotational motion

used in Eq. (1) is found to be very useful. The reader
is referred to Refs. [12] and [13] for more details. The
spin function χSMS

in Eq. (1) is specified in a successive
coupling, [[[ 1

2
1
2 ]S12

1
2 ]S123

1
2 ]SMS

, and all possible intermediate
spins (S12, S123) are taken into account in the calculation. The
isospin function ηT MT

is also treated in exactly the same way
as the spin function. For both T = 0 and 1, the states with
spin-parity Jπ are obtained including in Eq. (1) the following
(LS) values:

Jπ (LS)
0+ (00), (22) ; (11)
1+ (01), (21), (22) ; (10), (11), (12), (32)
0− (11) ; (22)
1− (10), (11), (12), (32) ; (21), (22)
2− (11), (12), (31), (32) ; (20), (21), (22), (42).

Here the semicolon divides a natural-parity set from an
unnatural-parity one. For a given L, the values of L1, L2 in
Eq. (1) are chosen to be L, 0 for natural parity and L, 1 for
unnatural parity. Any basis functions with Lπ = 0− are not
included in the present calculation.

Each basis function differs in the choices of A, u1, and
u2. The exponential part specified by A is called an explicitly
correlated Gaussian. An alternative expression for this part is
given using the single-particle coordinate r i as [14]

e− 1
2 x̃Ax = exp

−1

2

∑
i<j

(
r i − rj

bij

)2
 . (2)

Specifying the elements of A using the six variables
(b12, b13, . . . , b34) is convenient for controlling the spatial
extension of the system.

III. RESULTS

A. Energy spectrum

The accuracy of our solution depends on the basis dimen-
sion and the optimization of the variational parameters. The
selection of the parameters is performed by the stochastic
variational method [14,15]. As all the states but the ground
state are resonances, increasing the basis size unconditionally
does not always lead to a solution we are seeking. Namely, if
the variational parameters are allowed to extend very far in the
spatial region, the energy for the excited state would fall down
to the 3H + p threshold.

Some details of the calculation are given below. The bij

parameters in Eq. (2) are restricted to 0<bij <8 fm for all
the states but the 0−1 state. This choice covers a configuration
space large enough to obtain accurate solutions for both the
ground and first-excited states [12]. Each element of ui is al-
lowed to take a value in the interval [−1, 1] under the constraint
that its norm is unity, i.e., ũiui = 1. Note that changing the
normalization of ui does not actually alter the basis function
(1) except for its normalization. We found that using 600 basis
states of the form given in Eq. (1) (that is, 600 choices of
parameters for A, u1, u2, L, S, S12, S123, T12, T123) enabled
us to obtain converged solutions for both the ground and
first-excited states. See Fig. 1 of Ref. [12]. Solutions for
the other states are obtained in a basis dimension of 300.
Figure 1 displays the energy convergence of the three lowest-
lying negative-parity states with JπT = 0−0, 2−0, and 2−1
as a function of basis dimension. The energies of these states
are rather stable with increasing basis size, though they do
not have the proper asymptotic behavior characteristic of a
resonance. The energies obtained for the higher levels, which
present much larger widths, are not as accurate. Therefore, the
results of our calculations for these states are more qualitative.
In particular we found that the energy of the 0−1 state, which
has a width of about 8 MeV, was not as stable as the other
states. We thus obtained its energy by restricting the range of
bij to 0<bij <6 fm.

Figure 2 compares the experimental and theoretical spectra
of 4He. The calculated binding energy of 3H is 7.73 MeV
for G3RS and 7.76 MeV for AV8′ [12]. Thus the calculated
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FIG. 1. The energy convergence of the three lowest-lying
negative-parity states of 4He calculated using the G3RS potential.

3H + p threshold energy misses the experimental one by about
0.7 MeV. As we are interested in comparing the excitation
spectra, the experimental and theoretical 3H + p thresholds in
the figure are drawn at the same level. The theory reproduces
the level sequence of the spectrum as a whole and especially the
excitation energies of the 0+

2 0, 0−0, and 2−0 states very well.
The levels above Ex = 23 MeV are predicted to be slightly
lower than experiment except for the 0−1 level with AV8′. As
their widths are all larger than 5 MeV, this discrepancy may
be allowable in the bound-state approximation for unbound
states. Noteworthy is that the calculation predicts three states
with 0+1, 1+0, and 1+1 around Ex = 23 MeV, as denoted
by dashed lines. These states together with the 0+

2 0 state are
the members of the quartet relevant to the first question. As
speculated, they show up in the present calculation, but no
such states are observed experimentally.
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FIG. 2. Energy levels of the excited states of 4He labeled with
J πT . Three states of the quartet are denoted by dashed lines. The
dotted lines indicate the 3H + p and 3He + n thresholds, respectively.
Experimental values are taken from Ref. [16].

TABLE I. Percentages of (LS) components of the quar-
tet states calculated using the G3RS potential. Unnatural
parity components are negligibly small.

0+
2 0 0+1 1+0 1+1

(00) 93.0 93.4 – –
(01) – – 93.3 93.4
(21) – – 3.0 3.4
(22) 6.9 6.6 3.7 3.1

B. Quartet

To resolve the first problem on the quartet, we begin
by understanding why only the 0+

2 0 state gets considerably
lower than the other quartet members. As shown in Table I,
all the members of the quartet consist of about 93% L = 0
components and 7% L = 2 components. These values are
almost equal to the corresponding components in 3H and
3He [12], consistent with the conjecture that the quartet has
3N + N cluster structure with a relative S-wave motion.

We list in Table II the energy contributions to the quartet
members. To this end we express the wave function �JMJ T MT

of the quartet member as a sum of the components with
different L values,

�JMJ T MT
= �0 + �2 + �1 + · · · , (3)

where �L includes the basis functions with all possible S

values for a given L. For example, in the case of Jπ = 1+, �2

consists of the basis functions with (LS) = (21) and (22). The
matrix elements of the Hamiltonian H as well as those of its
various components are shown in a matrix form in the table.
The row and column labels of the 3 × 3 matrix correspond
to the order of L = 0, 2, and 1. The L = 3 contributions
are negligibly small and are omitted. The diagonal element
indicates the value of 〈�L|O|�L〉 for the operator O, while
the off-diagonal elements in the upper triangular part indicate
the sum of 〈�L|O|�L′〉 + 〈�L′|O|�L〉.

We see from the table that the key elements which give
the 0+

2 0 state binding energy about 3 MeV larger than that
of the other members are the kinetic energy as well as the
tensor force. The kinetic energy contribution from the main
channel listed in Table I is found to be about 2 MeV smaller
in the 0+

2 0 state than in the other states. This is a consequence
of the symmetry of the orbital part of the wave function as
understood from Wigner’s supermultiplet theory [17]. The spin
and isospin function of four nucleons contains more numbers
of antisymmetric pairs in the S = 0, T = 0 channel than in
other ST channels, so that the orbital part of the 0+

2 0 state
is more symmetric with respect to the nucleon exchange than
the other orbital functions. Furthermore, the 0+

2 0 state gains
about 1 MeV energy compared to the others states, due to the
tensor coupling between the L = 0 and L = 2 components.
In fact, it is interesting to realize from Tables I and II that the
tensor force matrix element, 〈�0|Vt|�2〉/

√〈�0|�0〉〈�2|�2〉,
is −44.6 MeV. This large matrix element gives the �0 state
the energy shift of about 12 MeV despite the fact the energy
of the �2 state, 〈�2|H |�2〉/〈�2|�2〉, is as high as 158 MeV.
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TABLE II. Energy contributions to the total energies of the quartet states, given in MeV, and their decomposition into the contributions
from the kinetic energy and the different potential pieces. The row and column of each 3 × 3 matrix correspond to the configuration spaces
with L = 0, 2, and 1. See text for the details. The G3RS potential is used.

T = 0 T = 1

0+ 1+ 0+ 1+

4.58 −22.65 −0.00 6.48 −21.74 −0.01 6.30 −21.67 −0.00 6.62 −21.31 −0.01
H 10.97 −0.29 10.64 −0.16 10.58 −0.12 10.45 −0.15

0.14 0.08 0.06 0.08
29.26 – – 31.09 – – 31.45 – – 31.73 – –

T 10.99 – 10.30 – 10.31 – 10.08 –
0.15 0.08 0.06 0.08

−25.07 – – −25.00 – – −25.54 – – −25.50 – –
Vc −1.56 – −1.26 – −1.28 – −1.17 –

−0.01 −0.00 −0.00 −0.00
0.39 – – 0.39 – – 0.39 – – 0.40 – –

VCoul 0.03 – 0.03 – 0.03 – 0.02 –
0.00 0.00 0.00 0.00

– −22.65 – – −21.75 – – −21.67 – – −21.31 –
Vt 1.54 −0.30 1.61 −0.16 1.56 −0.13 1.55 −0.13

0.01 0.00 0.00 0.00
– – −0.00 – – −0.01 – – −0.00 – – −0.01

Vb −0.02 0.00 −0.03 0.00 −0.05 0.00 −0.03 0.00
0.00 0.00 0.00 0.00

Now we discuss whether or not the quartet states can
be observed as resonances in 3H + p and 3He + n decay
channels. To this end we calculate a spectroscopic (or reduced
width) amplitude (SA) defined as

y(r) =
√

4!

3!

〈[[
� 1

2 , 1
2 mt

(3N )φ 1
2 , 1

2 −mt
(N )

]
I
Y�(R̂)

]
JMJ

× δ(R − r)

Rr

∣∣∣∣�JMJ T 0(4He)

〉
. (4)

Here R is the 3N -N relative distance vector, �1/2,1/2 mt
the

normalized 3N ground-state wave function, and φ1/2,1/2 −mt

the nucleon spin-isospin function. They are coupled to the
channel spin I . The label mt distinguishes either 3H + p

(mt = 1/2) or 3He + n (mt = −1/2) channel. The 3N wave
function �1/2,1/2 mt

used here is obtained in the calculation
using the basis of type (1) with (LS) = (0 1

2 ) and (2 3
2 ) [12].

The L = 1 component is very small (0.05%) and is ignored
unless otherwise indicated. Figure 3 displays the 3He + n SAs
of the quartet. The orbital angular momentum between the
clusters is set to � = 0, and so I is equal to J . The 3H + p

SA is virtually the same as the 3He + n SA (except for the
phase). The 0+

2 0 state exhibits behavior quite different from
that of the others in that its peak position of 3 fm is outside
the 3N radius (∼ 2.3 fm). Moreover, the spectroscopic factor,
defined as

∫ ∞
0 y2(r)r2dr , is very large with a value of 1.03. In

a sharp contrast to the 0+
2 0 state, the SAs of the other quartet

members show nothing of resonant behavior in that the peaks
are located extremely far outside the 3N radius, and the y2

value is small in the inner region. Therefore, we conclude
that none of the quartet members except for the 0+

2 0 state is a
physically observable resonance. This conclusion is consistent
with the RGM phase-shift analysis, which finds no resonance

around the 23 MeV excitation energy region [8]. In passing we
note that the SA of the ground state has a sharp contrast with
that of the 0+

2 state in that the peak appears near the origin and
the amplitude is confined mostly in the 3N radius.

Because our variational solution is expected to be fairly
accurate at least in the inner region, a decay width can be
estimated with an R-matrix type formula,


N = 2P�(kr)
h̄2r

2µ
y2(r), (5)

where k is the wave number given by k =
√

2µE/h̄2 with
the decay energy E,µ is the reduced mass of the decaying
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FIG. 3. (Color online) SAs of the quartet states for the S-wave
3He + n decay. The G3RS potential is used.
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TABLE III. Percentage of (LS) components of the negative-
parity states calculated using the G3RS potential. The natural and
unnatural parity channels are separated by a rule.

(LS) T = 0 T = 1

0− 1− 2− 0− 1−
1 1−

2 2−

(10) – 19.7 – – 51.0 42.9 –
(11) 95.5 74.2 93.0 96.9 43.0 53.1 93.7
(12) – 0.8 0.3 – 0.0 0.6 0.2
(31) – – 2.9 – – – 2.8
(32) – 3.4 2.0 – 4.3 0.1 1.7

(20) – – 0.0 – – – 0.0
(21) – 1.8 0.5 – 1.1 1.5 0.5
(22) 4.5 0.2 1.4 3.1 0.5 1.8 1.1
(42) – – 0.0 – – – 0.0

particles, and P� is the penetrability,

P�(kr) =
{

kr

F 2
� (kr)+G2

�(kr)
for 3H + p

kr

(kr)2[j 2
� (kr)+n2

�(kr)]
for 3He + n,

(6)

which is expressed in terms of either Coulomb wave functions
or spherical Bessel functions. The decay width (5) depends on
the channel radius r , but its dependence is found to be mild in
that the 
p values of the 0+

2 0 state are 0.69, 0.74, and 0.67 MeV
at r = 4, 5, and 6 fm, in good agreement with the empirical
value of 0.50 MeV [16]. The above analyses all confirm that
the 0+

2 0 state has a well-developed 3N + N cluster structure,
in accordance with the conclusion of Ref. [4].

As discussed above, all the quartet members except for the
0+

2 0 state fail to gain enough energy to come down below the
3He + n threshold. The 0+

2 0 state actually shows up between
the 3H + p and 3He + n thresholds thanks to their Coulomb
energy difference. Isospin conservation leads to an almost
equal mixing of the open (3H + p) and closed (3He + n)
channels for the 0+

2 0 state. The effects of both the isospin
conservation and the 3H + p Coulomb barrier make the 
p

value of the 0+
2 0 state rather small. This state is thus a good

example of a Feshbach resonance [18].

C. Negative-parity partners of the first excited 0+ state

Before coming to the inversion doublet issue, we first com-
ment on the features of the negative-parity states. According to
the shell model, the negative-parity states basically arise from

the s−1
1/2p3/2 or s−1

1/2p1/2 particle-hole excitation, which predicts
Jπ = 0−, 1−, 1−, and 2− for both T = 0 and 1. However,
a particular combination of the two 1− states with T = 0
corresponds to the state with the excitation of the center of
mass, leaving only one intrinsically excited state with 1− and
T = 0. Seven negative-parity states observed experimentally
below Ex = 26 MeV include three states with T = 0 and four
states with T = 1, which is in agreement with the shell-model
prediction. However, this agreement may not necessarily mean
that the negative-parity states have shell-model like structure
because the present four-body calculation also produces seven
negative-parity states, as shown in Fig. 2.

The level sequence is 0−, 2−, and 1− in the order of
increasing energy for T = 0, while it is 2−1−0−, and 1− for
T = 1. Therefore the energy difference between the 0−0 and
0−1 states becomes much larger than the one between the
1−0 and 1−1 states or between the 2−0 and 2−1 states. It is
interesting to clarify the mechanism of how this large energy
difference is produced compared to the other negative-parity
states with the same Jπ . Table III lists the percentage analysis
of the seven negative-parity states according to their (LS)
channels. The main component has L = 1 as expected from the
shell model. Those states that have the same Jπ but different
T values present rather similar percentages. This similarity is
not as clear in the case of the 1− states, because in the T = 1
channel the strength is fragmented between two 1−1 states.
The main channel with L = 1 itself has a contribution from
the tensor force but also gets a contribution from the other
channels through the tensor coupling. For example, the tensor
force couples the natural parity channel (11) with the unnatural
parity channel (22).

Table IV lists the contributions to the energy from the
various components of the Hamiltonian. Most striking are
the different contributions from the tensor force. Compared
to the 0−1 state, the 0−0 state gains about 9 MeV energy
from the tensor force, while the contribution from the central
force to the energy gain is only about half this. The energy
contributions given by the AV8′ potential are similar to those
of the G3RS potential: The gain from the tensor force is even
larger, about 12 MeV, and the central force gives a 3 MeV
difference. The tensor force is most attractive in the triplet even
NN state, and it can be taken advantage of by having more
antisymmetric NN pairs in the isospin space. The number of
such antisymmetric pairs is obtained from 〈ηT MT

| ∑i<j (1−
τ i ·τ j )/4|ηT MT

〉, which gives [A(A+2)−4T (T +1)]/8 for an
A-nucleon system. Thus the 0−0 state gains more attraction

TABLE IV. Energy contents, given in MeV, of the negative-parity states. The G3RS
potential is used.

0−0 0−1 2−0 2−1 1−0 1−
1 1 1−

2 1

〈H 〉 −6.40 −2.86 −5.78 −4.62 −3.69 −4.54 −1.84
〈T 〉 48.38 39.10 41.08 40.25 37.72 39.30 32.48
〈Vc〉 −28.92 −24.79 −25.71 −25.82 −23.50 −25.14 −22.01
〈VCoul〉 0.48 0.44 0.42 0.43 0.40 0.43 0.42
〈Vt 〉 −26.63 −17.75 −21.39 −19.30 −18.32 −19.13 −12.67
〈Vb〉 0.29 0.14 −0.18 −0.18 0.006 0.005 −0.06
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FIG. 4. (Color online) SAs of the three lowest-lying negative-
parity states for the P -wave 3He + n decay with I = 1. The G3RS
potential is used.

than the 0−1 state through both the (11)-(11) diagonal and
(11)-(22) off-diagonal contributions [12]. If the unnatural
parity basis states were not included in the calculation, the 〈Vt 〉
value of the 0−0 state would decrease to about half [12] and the
0−0 state would lose significant energy. The role of the tensor
force in lowering the energy of the 0−0 state was discussed
many years ago [5,19]. To be exact, the energy difference
between the two states is actually a combined effect of the
tensor, kinetic, and central terms.

Now we discuss the characteristics of the low-lying
negative-parity states from the viewpoint of clustering. In
Fig. 4 we display the 3He + n SAs calculated from the three
lowest-lying negative-parity states with 0−0, 2−0, and 2−1.
The � value for the 3He − n relative motion is 1, and the
channel spin I is 1. As expected, each of the three curves
shows behavior suggesting 3N + N cluster structure: The
peaks are centered around 2 fm near the 3N surface, and
the y2 values are fairly large in the inner region. It is the
centrifugal potential that makes the peak positions closer to
the origin than for the first excited 0+0 state. The 3N + N

spectroscopic factors are quite large, being 0.58, 0.52, and
0.53 for the 0−0, 2−0, and 2−1 states. When we estimate the
nucleon width, the channel-radius dependence is again mild,
so we choose r = 5 fm. The results for (
,
p/
), where

 is the total width in MeV, are (0.61, 0.72), (1.14, 0.58),
and (1.85, 0.53) for 0−0, 2−0, and 2−1, respectively. These
values are to be compared to those extracted from the R-matrix
analysis [16], (0.84, 0.76), (2.01, 0.63), and (5.01, 0.53). The
theory predicts the width of the 0−0 state very well and gives
about half of the width for the other states. Though the degree
of clustering is somewhat reduced in the negative-parity states
compared to the 0+

2 case, the analysis of SA and decay width
supports our conjecture that the 0−0 and 2−0 states as well as
the 2−1 state constitute inversion-doublet partners of the first
excited 0+ state. The RGM phase-shift analysis of 3H + p

scatterings [8] supports the P -wave resonance interpretation
for these negative-parity states. The SAs of the 1− states around
Ex = 24 MeV show some degree of 3N + N cluster structure,

though their amplitudes are considerably smaller compared to
the 0−0 and 2−0 states in particular.

An inversion doublet picture in nuclei was first proposed to
understand the low-lying positive- and negative-parity rotation
bands in 16O and 20Ne from an α-core molecular structure [20].
The appearance of positive- and negative-parity partners is
a natural consequence of the underlying intrinsic structure
dominated by the existence of asymmetric clusters. We
have shown that the three lowest-lying negative-parity states
have a significant component of 3N and N clusters whose
relative motion is in P wave. It is important to realize that this
result is obtained in a calculation that assumes no cluster ansatz
for the wave functions. A physical reason for the appearance
of the inversion doublet partners is that they are located near
the 3N + N threshold.

Very unique to the inversion doublets in 4He is that the 3N

and N clusters have both J = 1/2, and the channel spin I is
different in the doublets: It is 0 for 0+

2 0 and 1 for 0−0, 2−0,
and 2−1. The negative-parity partners with T = 0 should
thus be characterized by an isoscalar spin-dipole operator,
Oλν = ∑4

i=1[σ i ×(r i −x4)]λν , where x4 is the center of mass
of 4He, connecting them to the 0+

2 state. Note that r i −x4

is proportional to the distance vector between nucleon i and
the center of mass of the other three nucleons. The transition
strength to the 0+

2 0 state, |〈0+
2 0||O0||0−0〉|2, is 11.9 fm2, which

is 6.9 times larger than that to the ground state. Moreover,
the strength |〈0+

2 0||O0||0−0〉|2 between the doublet partners
occupies 58% of the “sum rule”

∑
n |〈0+

n 0||O0||0−0〉|2, where
n takes all 600 eigenstates with 0+0. A similar enhancement
occurs for the 2−0 state as well. The value |〈0+

2 0||O2||2−0〉|2/5
is 21.7 fm2, which is about 24 times larger than the one to
the ground state, and it corresponds to 78% of the total sum∑

n |〈0+
n 0||O2||2−0〉|2/5.

For the transition between the 2−1 and 0+
2 0 states,

an isovector spin-dipole operator, Oλν,10 = ∑4
i=1[σ i ×(r i −

x4)]λντ3i
, must be considered. The transition strength

|〈0+
2 0|||O2,1|||2−1〉|2/15 is 17.4 fm2, which is 16 times larger

than that to the ground state, where the triple bar indicates
that the reduced matrix element is taken in both the angular
momentum and isospin spaces. This strength between the
2−1 and 0+

2 0 states accounts for 87% of the total strength∑
n |〈0+

n 0|||O2,1|||2−1〉|2/15.
The high collectivity of the spin-dipole strength strongly

indicates that the intrinsic structure of the negative-parity
states, 0−0, 2−0, and 2−1, is similar to that of the first excited
0+

2 0 state.

IV. SUMMARY

A rich portion of the 4He spectrum, including levels
in which particle-hole and cluster excitations coexist, has
been reproduced in a single scheme without recourse to the
assumption of a specific model. This has offered a good
demonstration of the power of the global vector representation
for the angular part for few-body systems. We have explained
how only the 0+

2 state is observed as a resonance among the
quartet states by examining the symmetry property of the
wave functions as well as the role of the tensor force. By
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analyzing the spectroscopic amplitudes, nucleon decay widths,
and spin-dipole transition probabilities, we have confirmed
that both the 0+

2 and negative-parity states with 0−0, 2−0,
and 2−1 are dominated by a 3N + N cluster structure and
that these negative-parity states can be understood as the
inversion-doublet partners of the 0+

2 state in a unified way. We
have shown that the tensor force plays a vital role to reproduce
the level spacing between the 0− states with T = 0 and 1
through the coupling between the main channel with L = 1
and the unnatural-parity channel with L = 2. A study of 16O
in the scheme of 12C plus four nucleons will be interesting
because its spectrum has some similarity to that of 4He.
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[6] P. Navrátil and B. R. Barrett, Phys. Rev. C 59, 1906 (1999); 54,
2986 (1996).
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