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Faddeev and Glauber calculations at intermediate energies in a model for n + d scattering
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Obtaining cross sections for nuclear reactions at intermediate energies based on the Glauber formulation
has a long tradition. Only recently the energy regime of a few hundred MeV has become accessible to ab
initio Faddeev calculations of three-body scattering. In order to go to higher energies, the Faddeev equation for
three-body scattering is formulated and directly solved without employing a partial wave decomposition. In the
simplest form the Faddeev equation for interacting scalar particles is a three-dimensional integral equation in
five variables, from which the total cross section, the cross sections for elastic scattering and breakup reactions,
as well as differential cross sections are obtained. The same observables are calculated based on the Glauber
formulation. The first order Glauber calculation and the Glauber rescattering corrections are compared in detail
with the corresponding terms of the Faddeev multiple scattering series for projectile energies between 100 MeV
and 2 GeV.
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I. INTRODUCTION

The correct and consistent description of high energy
reactions of nuclei with either hadronic or electromagnetic
probes is an interesting and important problem. Today, data
for pA and A(e, e′p) reactions at several hundred MeV and
up to several GeV are available, and often measured to high
precision. From a theoretical point of view, a consistent
microscopic description of these data is difficult, if not
impossible. In principle, one would wish to describe the initial,
bound state of the nucleus and the final state, which typically
consists of a residual nucleus and some nucleons, with the same
microscopic model. In addition, one also needs appropriate
and consistent current operators. For medium and high (i.e.,
GeV) energies, using a fully relativistic formalism is most
appropriate.

A problem like this becomes more complicated with an
increasing number of nucleons involved in the reaction. Even
in the simplest case, employing a deuteron target in an (e, e′p)
reaction, a first principles calculation at GeV energies is
impossible, and one needs to resort to parametrizations of
NN scattering data to describe the final state. Trustworthy ab
initio calculations for the full NN scattering amplitude in this
regime are not available. For nuclei with A � 3, the problem
becomes more involved, both on the theoretical side due to
possible three-body interactions, and on the numerical side,
due to more integrations. For A considerably larger than 3
or 4, the problem is not tractable microscopically. However,
there are very many interesting questions and data available
that pertain to larger nuclei.

Practical calculations of these reactions use an approach
where the description of the ground state, current operator,
and final state are not necessarily consistent, but still capture
the main physical features of the reaction. For the practical
description of the final state interactions, the Glauber approach
[1,2] and closely related models have been both popular and
successful.

Today Glauber amplitudes are widely used to account
for final state interactions in (e, e′p) reactions at high and
intermediate energies [3–5]. Glauber theory is applied to
investigate color transparency, in (e, e′p) reactions and in
the electroproduction of mesons [6,7]. In addition, it is
applied to heavy ion reactions [8]. Most recently, several
generalizations of Glauber theory have been employed for the
description of electron scattering mainly from lighter nuclei,
e.g., the generalized eikonal approximation (GEA) [9,10], or
relativistic eikonal approaches [11,12]. These methods are
applied both to A(e, e′p) and A(p, 2p) reactions. Nuclear
scattering at intermediate energies in the context of radioactive
beams also takes advantage of this formulation [13,14].

With the arrival of ever more powerful computers, and a
concerted theoretical effort, one may hope for more micro-
scopic descriptions of reactions with light target nuclei at
energies that are not too high. However, for the majority of
nuclei and the energy regime of several GeV, Glauber theory
and its offshoots will remain the only practical choice for
realistic calculations.

Despite the relevance and the widespread use of the Glauber
formulation in reactions involving few as well as many-body
systems there has been little work on rigorous tests of the
accuracy and/or limits of the Glauber ansatz. Some studies
discussed the quality of the eikonal approximation for (e, e′p)
reactions [15]. More recently, Glauber theory for elastic proton
scattering from halo nuclei [16] was investigated, and in [17],
second-order eikonal corrections to A(e, e′p) reactions were
considered and found to be small.

Only recently exact Faddeev calculations for three-body
scattering in the intermediate energy regime became available.
This progress is based on a formulation of the Faddeev
equations, which is based directly on momentum variables
and does not rely on traditional partial wave expansions. The
formulation and numerical realization for the nonrelativistic
Faddeev equations [18,19] as well as fully Poincaré invariant
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ones [20–22] have been carried out for scalar interactions up
to projectile energies of 2 GeV.

These new Faddeev calculations present a major im-
provement in three-body calculations for medium energies.
However, a similar calculation for A = 4 is nowhere in sight.
Therefore, in this paper, we compare the Faddeev and Glauber
calculations to test the range of validity of Glauber calculations
at least in the three-body system. We will discuss total and
elastic cross sections.

The naive expectation is that for sufficiently high energies
the total n + d cross section is just the sum of the two total cross
sections for two-nucleon scattering. The question whether this
is valid is an old one and has been investigated in the context
of the eikonal approximation [1,27–29]. It turns out that
rescattering (shadowing) corrections need to be added. Since
at the time no exact calculations were available, the question
remained open, whether those corrections were sufficient and
at which energy the eikonal approximation became valid. We
will investigate such questions in this work and mostly follow
the formulation given in Refs. [27,28]. In order to make closer
contact with that work as well as for transparency, we will
use the nonrelativistic formulation of the Faddeev equation
for our comparison, even though we carry out calculations
in the intermediate energy regime. We will also use the
same two-body scattering amplitude as well as deuteron wave
function in the Glauber calculation as enters in our Faddeev
results, so that we can clearly identify the effects of the Glauber
approximation on the multiple scattering.

In this paper, we are using some simplifying assumptions,
to allow for consistency between the two calculations, and for
transparency. Treating the problem as a problem involving
three identical bosons is of course not realistic. However,
if Glauber and Faddeev disagree already at this level, a
further comparison involving more realistic scenarios is not
necessary anymore. Also, it is often instructive to see how
certain features emerge and evolve when more complicated
scenarios are discussed. Gaining a good understanding of the
strengths and weaknesses of Glauber in this simpler context
is very instructive. Also, some observables, e.g., unpolarized
cross sections and some responses, show very little sensitivity
to spin-dependent final state interactions. Often, Glauber or
generalized eikonal calculations for (e, e′p) reactions use
the central, i.e., spin-independent part, of the NN scattering
amplitude only.

This paper focuses on a careful comparison of Faddeev
and Glauber under very controlled circumstances. It is very
important that both calculations use the same, consistent inputs
for the NN interaction. This is achieved by simplifying the
problem. The two calculations are not supposed to represent
the most realistic calculations for pD reactions that are
available in either case.

In Sec. II we will briefly present the Faddeev framework
and its multiple scattering expansion, and in Sec. III we will
rederive the essential expressions of the Glauber approxima-
tion necessary for the comparison to the Faddeev formulation.
Our numerical results for the total and differential cross section
for elastic scattering in both formulations and their discussion
will be given in Sec. IV. We summarize and conclude in
Sec. V.

II. THE FADDEEV CALCULATION

Various presentations of three-body scattering in the Fad-
deev scheme are presented in the literature [24,25]. We solve
the Faddeev equation for three identical particles in the form

T |φ〉 = tP |φ〉 + tPG0T |φ〉. (2.1)

The driving term of this integral equation consists of the two-
body t-matrix t , the sum P = P12P23 + P13P23 of a cyclic
and anticyclic permutation of three particles, and the initial
state |φ〉 = |φdq0〉, composed of a two-body bound state φd

and the momentum eigenstate of the projectile particle. The
kernel of Eq. (2.1) contains the free three-body propagator,
G0 = (E − H0 + iε)−1, where E is the total energy in the
center-of-momentum (CM) frame.

The operator T determines both, the full break-up ampli-
tude

U0 = (1 + P )T , (2.2)

and the amplitude for elastic scattering

U = PG−1
0 + PT . (2.3)

In this paper we focus on three identical bosons and use a
momentum space representation. For solving Eq. (2.1), we
introduce the standard Jacobi momenta p for the relative
momentum in the subsystem, and q for the relative momentum
of the spectator to the subsystem. The momentum states
are normalized according to 〈p′q′|pq〉 = δ3(p′ − p)δ3(q′ − q).
Projecting Eq. (2.1) onto Jacobi momenta leads to [18]

〈pq|T |φdq0〉 = φd

(
q + 1

2
q0

)
ts

(
p,

1

2
q + q0, E − 3

4m
q2

)
+

∫
d3q ′′ts

(
p,

1

2
q + q′′, E − 3

4m
q2

)
×

〈
q + 1

2 q′′, q′′ |T | φdq0
〉

E − 1
m

(q2 + q ′′2 + q · q′′) + iε
. (2.4)

Here ts(p′, p) = t(p, p′) + t(−p′, p) is the symmetrized two-
body t matrix and the total energy E is explicitly given as

E = Ed + 3

4m
q2

0 = Ed + 2

3
Elab. (2.5)

We assume that the underlying two-body force generates
a t-matrix as solution of a two-body Lippmann-Schwinger
equation, and that the force supports one bound state with
energy Ed . Then Eq. (2.4) is solved directly in momentum
space as function of the vector Jacobi momenta and angles
between them. Since we ignore spin and isospin dependencies,
the matrix element 〈pq|T |φdq0〉 is a scalar function of the
variables p and q for a given projectile momentum q0. Thus
one needs five variables to uniquely specify the geometry of the
three vectors p, q, and q0 in the Faddeev amplitude of Eq. (2.4).
Those variables consist of the magnitudes of p and q, the
angles p̂ · q̂0 and q̂ · q̂0, and last the angle between the normals
spanned by the two planes, q − q0 and p − q0, given bŷ(q0 × q) · ̂(q0 × p). The explicit representation of Eq. (2.4) as
three-dimensional integral equation in five variables is given
in Ref. [18], together with the details of its calculation, e.g., the
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treatment of the singularity structure of the free three-nucleon
propagator.

Finally, the matrix elements of the transition amplitude that
enter the calculation of the matrix elements of the operator U

for elastic scattering given in Eq. (2.3) as

〈qϕd |U |q0ϕd〉 = 2ϕd

(
1

2
q + q0

)(
E − 1

m

(
q2 + q · q0 + q2

0

))
×ϕd

(
q + 1

2
q0

)
+ 2

∫
d3q ′′ϕd

(
1

2
q + q′′

)
×

〈
q + 1

2 q′′, q′′|T̂ |q0ϕd

〉
E − 3

4m
q ′′2 − Ed + iε

. (2.6)

The amplitude for the full break-up process according to
Eq. (2.2), is given by

〈pq|U0|q0ϕd〉 = 〈pq|T̂ |q0ϕd〉
E − 3

4m
q2 − Ed

+
〈 − 1

2 p + 3
4 q,−p − 1

2 q
∣∣T̂ |q0ϕd〉

E − 3
4m

(−p − 1
2 q

)2 − Ed

+
〈 − 1

2 p − 3
4 q,+p − 1

2 q
∣∣T̂ |q0ϕd〉

E − 3
4m

(+p − 1
2 q

)2 − Ed

. (2.7)

Using those expressions, cross sections for elastic scattering
and breakup reactions were calculated up to 1 GeV projectile
kinetic energy in Ref. [18]. A refinement of the numerical
scheme [23] enabled us to extend those calculations to twice
that energy. This allows for the first time to carry out exact
Faddeev calculations in the GeV regime using either Galilean
or Poincaré invariant quantum mechanics [22].

In this work we want to use our exact calculations to
concentrate on the high energy behavior of the cross sections.
In the framework of the Faddeev formulation, we consider
the multiple scattering series defined by the integral equation
given in Eq. (2.1). For the elastic scattering amplitude this
leads to the series expansion

〈φ|U |φ〉 = 〈φ|PG−1
0 |φ〉 + 〈φ|P tP |φ〉

+ 〈φ|P tPG0tP |φ〉 + · · · , (2.8)

which for the fully converged solution is summed as Padé or
Neumann series. Via the optical theorem the total cross section
is related to the imaginary part of the operator U as

σ ND
tot = −(2π )3 4m

3q0
�m〈φ|U |φ〉. (2.9)

This again can be expanded in a multiple scattering series
through

2i �m〈φ|U |φ〉 = 〈φ|U |φ〉 − 〈φ|U |φ〉�
= 〈φ|P (t − t†)P |φ〉 + 〈φ|P tPG0tP |φ〉

− 〈φ|P t†G∗
0P t†P |φ〉 + · · · . (2.10)

It turns out that the Faddeev multiple scattering series for
the total cross sections converges fast for projectile energies
higher than 500 MeV [18,22]. This finding is encouraging for
our study of the Glauber formulation.

One can also start from Eq. (2.10) and derive a high-energy
limit in the frame work of the Faddeev equations. This has been
carried out in Ref. [26]. Here the terms of first and second order
in t have been investigated in the limit E → ∞ leading to the
analytic result

σND
tot = 2σNN

tot + (2π )5

(
4m

3q0

)2

×
[
�e

〈
3

4
q0

∣∣∣∣ t
(

1

m

(
3

4
q0

)2
) ∣∣∣∣3

4
q0

〉]2

×〈φd | 1

r2
|φd〉 1

4π
− (

σNN
tot

)2〈φd | 1

r2
|φd〉 1

4π

= 2σNN
tot + O(t2) + O(t4). (2.11)

In first order this expansion gives twice the two-nucleon cross
section. The second order correction terms can now be tested
against exact Faddeev calculations. In Ref. [26] this was not
possible.

III. THE GLAUBER CALCULATION

For the convenience of the reader we briefly sketch
the derivation of the Glauber amplitude for elastic n + d

scattering, following the work given in Refs. [27,28]. In the
laboratory system with the projectile momentum k and the
momentum transfer q = k − k′ the two-particle scattering
amplitude according to Glauber [1] is assumed to have the
form

fk(q) = ik

2π

∫
d2b eiq·b �(b), (3.1)

where �(b) is given through the eikonal phase χ (b) as

�(b) = 1 − eiχ(b). (3.2)

The vector b is assumed to be perpendicular to a direction n̂,
specified below. Scattering off a deuteron target then leads to

Fk(q) = ik

2π

∫
d2b eiq·b

∫
d3r φ∗

d (r)

× (1 − ei(χ(b−1/2s)+χ(b+1/2s))) φd (r), (3.3)

where φd (r) is the deuteron wave function and r = s + n̂(n̂ · r).
Using these definitions it follows that

Fk(q) = ik

2π

∫
d2b eiq·b

∫
d3rφ∗

d (r)

[
�

(
b − 1

2
s
)

+�

(
b + 1

2
s
)

− �

(
b − 1

2
s
)

�

(
b + 1

2
s
) ]

φd (r).

(3.4)

Using the inverse of Eq. (3.1),

�(b) = 1

2πik

∫
d2q e−iq·bfk(q), (3.5)

and again integrating over a vector q in a plane perpendicular
to n̂ one can eliminate the �’s in favor of the two-particle
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scattering amplitude leading to the expression given in
Refs. [27,28]

Fk(q) = 2S

(
1

2
q
)

f (q) + i

2πk

∫
d2q ′S(q′)

× fk

(
1

2
q + q′

)
fk

(
1

2
q − q′

)
. (3.6)

The deuteron wave function occurs in the form factor

S(q) =
∫

d3r|φd (r)|2eiq·s =
∫

d3r|φd (r)|2eiq·r. (3.7)

From the above expression one obtains the laboratory differ-
ential cross section for n + d scattering as

dσND

d
l

= |Fk(q)|2 (3.8)

and the total cross section for n + d scattering

σND
tot = 4π

k
�mFk(0). (3.9)

In first order in the two-body scattering amplitude Eq. (3.9)
leads to the expected result for the total cross section

σ
ND,1st
tot = 2S(0)

4π

k
�mfk(0)

= 2
4π

k
�mfk(0) = 2σNN

tot (3.10)

and to the differential cross section for elastic n + d scattering

dσND,1st

d
l

= 4S2

(
1

2
q
)

|fk(q)|2. (3.11)

For the total cross section for n + d scattering, including
the second order correction, one obtains

σND
tot = 2σNN

tot + δσtot, (3.12)

where

δσtot = 2

k2

∫
d2q ′ S(q′)fk(q′)fk(−q′). (3.13)

This correction term represents rescattering events.
Adding the rescattering corrections to the differential cross

section for elastic scattering leads to

dσND

d
l

= 4S2

(
1

2
q
)

|fk(q)|2

− 2

πk
S

(
1

2
q
)

�m

[
f ∗

k (q)
∫

d2q ′ S(q′)

× fk(1/2q + q′) fk(1/2q − q′)
]

+
(

1

2πk

)2 ∣∣∣∣ ∫ d2q ′ S(q′)

× fk(1/2q + q′) fk(1/2q − q′)
∣∣∣∣2

. (3.14)

Next, we need to discuss the choice of the two-particle
scattering amplitude fk(q). In the original work of Refs. [1,27,

28], the eikonal phase is given in terms of the potential V (r)
as

χ (b) = −1

v

∫ ∞

−∞
V (b + z) dz

= −2m

k

∫ ∞

0
V (

√
b2 + z2) dz, (3.15)

where z is a vector parallel to k. The above definition
would result in a two-body scattering amplitude in the
eikonal approximation. Studies of the quality of the eikonal
approximation for potential scattering have been carried out
in detail in the past for different potentials. The for us inter-
esting case of Yukawa-type potentials is considered, e.g., in
Refs. [29,30]. Since our main interest is the comparison of the
n + d cross sections, we need to use the same two-particle
scattering amplitude fk(q) for our Glauber calculation as
we use for the Faddeev calculation. Thus we need to use
the scattering amplitude obtained from the solution of a
Lippmann-Schwinger equation with the potential V as driving
term.

This two-particle scattering amplitude fc(p′, p) is given in
the CM frame and is related to the on-shell two-body t-matrix
as

〈p′|V ∣∣ψ (+)
p

〉 = 〈p′|t
(

Ep = p2

m

)
|p〉 ≡ t

(
p′, p;

p2

m

)
, (3.16)

and leads to the scattering amplitude

fc(p′, p) = −m

2
(2π )2 t

(
p′, p;

p2

m

)
. (3.17)

For a scalar potential t is also a scalar and depends on the
magnitude of |p| = |p′| and the angle xc = p̂′ · p̂ between the
two vectors p′ and p [31],

t

(
p′, p;

p2

m

)
= t

(
p, p, xc;

p2

m

)
≡ t(p, xc). (3.18)

For identical particles we use as in the Faddeev calculations the
symmetrized t-matrix ts(p′, p; p2

m
). The CM differential cross

section for the scattering of two identical particles is then
given as

dσ

d
c

= ∣∣f s
c (p, xc)

∣∣2
(3.19)

and the laboratory differential cross section as

dσ

d
l

= 4xl

dσ

d
c

, (3.20)

where the standard relation between CM and laboratory
scattering angles for two equal mass particles is given as

xl ≡ k̂ · k̂′ =
√

xc + 1

2
(3.21)

xc = 2x2
l − 1.

If one defines

dσ

d
l

= ∣∣f s
l (k, xl)

∣∣2
(3.22)
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the two-particle scattering amplitude in the laboratory frame
reads

f s
l (k, xl) = 2

√
xlf

s
c (p, xc(xl)). (3.23)

All that remains now is choosing the unit vector n̂. The original
suggestion by Glauber [1,28] is

(a) : n̂ = k̂, (3.24)

with the approximation |k| = |k′|. In other works [27,29,30]
the choice

(b) : n̂ = ̂k + k′ (3.25)

is preferred. We will use both choices in our calculations to
explore the differences. The momentum transfer q enters the
scattering amplitude fc in the form of

xc = 1 − q2

2p2
. (3.26)

The Glauber ansatz requires to replace the momentum transfer
q2 by q⊥2 with q⊥ being orthogonal to n̂. For the two cases of
Eqs. (3.24) and (3.25) this leads to

(a) : q⊥2 = k2
(
1 − x2

l

)
,

(3.27)

(b) : q⊥2 = k2
(
1 − x2

l

) 4x2
l

1 + 3x2
l

.

For forward angles both choices become equivalent.
The total cross section for two-body scattering entering into

Eq. (3.10) is then explicitly given as

σNN
tot =

∫
d
c

∣∣f s
c (p, xc)

∣∣2
. (3.28)

The scattering amplitude fk(q) entering Eq. (3.11) can now be
directly obtained from Eq. (3.23) as

fk(q) → f s
l (k, xl). (3.29)

In calculating the angle xc(xl), the momentum transfer of
Eq. (3.26) must then be replaced by q2

⊥, and xl is related
to xc through Eq. (3.21).

For the second order correction to the differential cross
section the integral in Eq. (3.14) needs to be evaluated.
According to the Glauber ansatz the argument of the scattering
amplitude needs to be evaluated as 1/2q⊥ ± q′, so that the
integration is carried out in the plane defined by n̂. Explicitly,
the integral is calculated as∫

d2q ′S(q ′)f s
k

(
1

2
q + q′

)
f s

k

(
1

2
q − q′

)
→ 4

(m

2

)2
(2π )4

∫ qmax

0
dq ′q ′ S(q ′)

∫ 2π

0
dφ

×
√

xl(x(+))xl(x(−)) ts(p, x(+))ts(p, x(−)), (3.30)

with the definition of ts(p, x) from Eq. (3.18) and

x(±) = 1 − 1/4q2
⊥ ± q⊥q ′ cos φ + q ′2

2p2
. (3.31)

Here φ is the angle between the vectors q⊥ and q′. The upper
limit qmax is the maximum momentum transfer allowed for a

given projectile laboratory energy, corresponding to xc = −1
in the angle argument of the t-matrix.

For the second order correction to the total cross section,
Eq. (3.12), we only need to consider the special case q⊥ = 0.
Then the integral of Eq. (3.30) simplifies to

δσtot = 2

k2
m2(2π )5

∫ qmax

0
dq ′ q ′S(q ′)xl(x) �e

[
t2
s (p, x)

]
,

(3.32)

with x = 1 − q ′2
2p2 .

In Ref. [28] a further approximation is suggested arguing
that if the form factor of the deuteron decreases much more
rapidly than the scattering amplitude as function of q ′, then
the integral in Eq. (3.32) may be approximated by

δσtot = 2

k2
m2(2π )5 �e

[
t2
s (p, x = 1)

] ∫ qmax

0
dq ′ q ′S(q ′),

(3.33)

where the scattering amplitude in forward direction (x = 1 or
θ = 0) is taken out of the integral.

IV. RESULTS AND DISCUSSION

Our explicit calculations are based on an interaction chosen
as superposition of two Yukawa interactions of the Malfliet-
Tjon [32] type,

V (p′, p) = 1

2π2

(
VR

(p′ − p)2 + µ2
R

− VA

(p′ − p)2 + µ2
A

)
,

(4.1)

in which the parameters, given in Table I, are fitted such that a
bound state, the ‘deuteron’ is supported with a binding energy
Ed = −2.23 MeV. This interaction enters the nonrelativistic
Faddeev equation for identical bosons via the symmetrized
two-body t-matrix. The Faddeev equation is exactly solved
without a partial wave decomposition, using momentum
vectors and angles between them. This allows us to calculate
three-body observables in the GeV region. The details of the
calculations are given in Ref. [18]. The deuteron wave function
entering the form factor of Eq. (3.7) is obtained as solution of
a bound state equation with the potential of Eq. (4.1) as input.
As a note, we are of course aware that this is a model study,
in which the two-body t-operators are generated through a
nonrelativistic Lippmann Schwinger equation from a simple
Hermitian two-body force.

TABLE I. The parameters and deuteron binding energy for the
Malfliet-Tjon type potential (MT3) of our calculation. As conversion
factor we use units such that h̄c = 197.3286 MeV fm = 1.

VA

[MeV fm]
µA

[fm−1]
VR

[MeV fm]
µR

[fm−1]
Ed

[MeV]

626.8932 1.55 1438.7228 3.11 −2.23
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FIG. 1. (Color online) The total cross section (a), the elastic total
(b), and the breakup total cross section (c) as function of the order
of t in the multiple scattering series for selected laboratory projectile
energies indicated in the figure. Starting from the first order in the
Faddeev calculation, the next three higher orders (rescattering terms)
are successively added.

A. Total cross sections

First we want to explore the convergence of the Fad-
deev multiple scattering series when considering total cross
sections. The top panel of Fig. 1 shows the total cross
section for three-body scattering calculated using Eq. (2.9)
as function of the order in the two-body t-matrix when adding
up successively the terms of the multiple scattering series
created by Eq. (2.1). The convergence is shown for selected
projectile laboratory energies ranging from 200 MeV to
2 GeV. For energies larger than 1 GeV the curves are essentially
flat, meaning that the first order term given by T = tP is
already sufficient to capture the result of a full Faddeev
calculation. At 500 MeV one needs at least one iteration (or one
rescattering term) to reach the exact Faddeev result, whereas
at 200 MeV one needs more terms, which however give small
contributions. The middle part of the panel shows the total
cross section for elastic scattering and the bottom one the
total cross section for breakup reactions. While the total cross
section for elastic scattering converges very fast for projectile
energies above 500 MeV, the one for breakup reactions requires
at least one rescattering term even in the GeV range.

Our Glauber calculation contains only a first order term
and a rescattering correction. First, we concentrate on the
total cross section and compare each order separately with
the corresponding order of the Faddeev calculation. The first
order terms are compared in Fig. 2 as function of the projectile
laboratory energy. According to Eq. (3.10) the first order
contribution to the total n + d cross section is simply given
by twice the two-body total cross section. From Fig. 2 we see
that for energies greater than 200 MeV both first order terms
agree. This is not surprising, since the first order Faddeev
term, T = tP , contains twice the two-body t-matrix, the
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E
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σ to
tN

D
  [
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2 ]

σND
1.order

2 σ NN

FIG. 2. (Color online) The total cross section for three-body
scattering as function of the laboratory projectile energy. Shown are
the first order (in t) Faddeev calculation and twice the two-body total
cross section σNN corresponding to the first order term in a Glauber
calculation as well as in the expansion of Ref. [26].

permutation operator guarantees scattering contributions from
both constituents of the target. Our Glauber calculations start
from the same two-body t-matrix as the Faddeev calculation.
From this point of view it is not surprising that both first order
calculations agree so well. The same conclusion was already
reached in Ref. [26].

A more crucial test is a comparison of the second order
correction term. In Fig. 3 we show the first rescattering
correction to the n + d total cross section, which corre-
sponds to the second order contribution in t of the Faddeev
multiple scattering series. The Faddeev result is shown as
solid line. A first observation is that this rescattering term
contributes significantly at lower energies, and is still present at
2 GeV. Thus, the very naive expectation that the n + d total
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FIG. 3. (Color online) The second order correction to the total
cross section for three-body scattering as function of the laboratory
projectile energy. The solid line represents the second order term,
tPG0tP , of the Faddeev multiple scattering series and the long
dashed line the correction obtained in Ref. [26] from the high
energy limit of the second order Faddeev term. The short dashed
line corresponds to the second order Glauber correction δσtot from
Eq. (3.32), while the dash-dotted line stands for the approximation of
Eq. (3.33).

034002-6



FADDEEV AND GLAUBER CALCULATIONS AT. . . PHYSICAL REVIEW C 78, 034002 (2008)

cross section comprises only the scattering from the target
constituents is not fulfilled in the energy regime up to 2 GeV
which is considered here. There is always a contribution due
to rescattering. The second order Glauber correction δσ from
Eqs. (3.13) and (3.30) is given by the short dashed line. Here
we see that in contrast to the first order contribution the two
lines only start to agree around 1 GeV. This may be understood
when having in mind that the second order Faddeev term is
explicitly given as tPG0tP , where the free propagator G0

describes the arbitrary free motion of the three particles in the
intermediate state. The Glauber second order term assumes
that the target constituents are frozen. At sufficiently high
energy this assumptions seems to be sufficient to describe the
rescattering within the target, which sometimes is referred to
as ‘shadowing’ correction.

Franco and Glauber [28] suggest a further approximation
to δσ . They argue that if the deuteron form factor decreases
much more rapidly than the scattering amplitude as function of
the integration variable q ′, then the integral of Eq. (3.32) may
be approximated by the expression of Eq. (3.33), where the
scattering amplitude is approximated by its value in forward
direction and taken out of the integral. The double-dash-dotted
curve of Fig. 3 represents this approximation. It is quite
obvious that this approximation is too simplistic and gives a
second order contribution almost double the size of the original
correction at all energies considered. The long-dashed curve
represents the analytic evaluation of the second order Faddeev
term in the optical theorem of Eq. (2.11). The contribution
calculated in there overestimates the second order contribution
in a similar fashion. In Ref. [26], integrals over the two-body
t-matrix and the deuteron wave function were evaluated using
the method of steepest descent. This is equivalent to extracting
the dominant part of an integral as a constant from the
integral. The failure of those two approximations should lead
to the conclusion, that although it is true that for higher energies
the scattering amplitude is peaked in forward direction [31],
the integration over the form factor is important and should
not be approximated further.

After comparing the terms of the multiple scattering series
separately, we show in Fig. 4 the sum of the contributions
as function of the projectile laboratory energy. The solid line
represents the exact Faddeev calculation, in which the multiple
scattering series is summed to all orders. As reference, the
dotted line represents twice the two-body total cross section
2σNN , to which the different second order contributions shown
in Fig. 3 are added. The Glauber calculations up to second
order agrees with the full Faddeev result starting from about
1 GeV. Both, the simplification of the Glauber second order
term, Eq. (3.33), and the high energy limit of Eq. (2.11)
considerably overestimate the exact Faddeev result at all
energies considered.

B. Differential cross sections

Similar to the investigations of the total cross section, we
want to start comparing the first order calculations of the
differential cross section at various energies. The differential
cross section for elastic n + d scattering is calculated from
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FIG. 4. (Color online) The total cross section for three-body
scattering as function of the laboratory projectile energy. The solid
line represents fully converged Faddeev calculations, the dotted
line twice the two-body total cross section. To this are added
the correction as extracted from the high energy limit of the
second order Faddeev term from Ref. [26] (dash-dotted line), the
second order Glauber correction δσtot (dash-dash-dotted line), and its
approximation (dashed line).

the operator U for elastic scattering, Eq. (2.3), and given as
function of the laboratory solid angle as

dσND

d
l

= (2π )4 2

9
m2

(
xl +

√
x2

l + 3
)2√

x2
l + 3

|〈φdq̂q0|U |φdq0〉|2 .

(4.2)

Here xl = cos θl ≡ k̂′ · k̂ represent the laboratory scattering
angle for the n + d system, and q0 its CM momentum.
For calculating the Glauber differential cross section from
Eq. (3.11), we have to consider the projection of the momentum
transfer q on to a plane either perpendicular to the laboratory
momentum k or to the sum of incoming and outgoing momenta
k + k′, as indicated in Eqs. (3.24) and (3.25). Since both
choices are employed in the literature, we will consider both
in this study.

Taking the considerations from the previous subsection as
guidance, we start our comparison at 500 MeV projectile
energy and show in Fig. 5 the first order calculations for
the differential cross section as function of the laboratory
scattering angle. The solid line represents the first order
Faddeev calculation, and the dashed and dash-dotted lines
the first order Glauber calculations with the choices (a),
Eq. (3.24), and (b), Eq. (3.25), for the projection of the
momentum transfer. Both choices lead to identical results for
small scattering angles. The first small deviation can be seen
around the first diffraction minimum. Though the Glauber
approximation should only be valid in forward direction,
we plot the entire allowed angle region in order to obtain
quantitative insights in the region of angular validity. Both
Glauber calculations start to deviate from the Faddeev first
order calculation as well as from each other at θl ≈ 50◦, which
corresponds to a momentum transfer of about 740 MeV. For
comparison, we also add the fully converged Faddeev result as
dash-double-dotted line to the figure. An obvious difference
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FIG. 5. (Color online) The differential cross section for elastic
three-body scattering at 500 MeV laboratory projectile energy as
function of the laboratory scattering angle. The solid line represents
the first order Faddeev calculation. The dashed and dash-dotted lines
stand for the first order Glauber calculations for the two choices (a)
and (b) of the direction of the unit vector n̂ (see text). For comparison,
the dash-double-dotted line represents the full Faddeev calculation.

between the first order and the fully converged Faddeev
calculations is the first diffraction minimum, which is filled
in by rescattering corrections. Rescattering contributions are
also important for the large angle (high momentum transfer)
behavior of the differential cross section [18,22].

Figure 6 shows the differential cross section for similar
calculations at the considerably higher energy of 1.5 GeV.
Again, the first order Faddeev calculation and the first order
Glauber calculations with the two different choices of q⊥ are
close to each other up to θl ≈ 50◦, which now corresponds to
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FIG. 6. (Color online) The differential cross section for elastic
three-body scattering at 1500 MeV laboratory projectile energy as
function of the laboratory scattering angle. The meaning of the curves
is the same as in Fig. 5.
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FIG. 7. (Color online) The differential cross section for elastic
three-body scattering at 200 MeV laboratory projectile energy as
function of the laboratory scattering angle. The meaning of the curves
is the same as in Fig. 5.

a momentum transfer of about 1250 MeV. However, the first
order calculations differ from the fully converged Faddeev
calculation already at much smaller angles, around θl ≈ 12◦,
which corresponds to roughly 350 MeV in the momentum
transfer. While the Glauber formulation is intended as high
energy approximation, we are interested in exploring how
the differential cross sections of the first order Glauber and
Faddeev calculations compare at lower energies. In Figs. 7
and 8 the differential cross sections for laboratory projectile
energies of 200 and 100 MeV are displayed. For 200 MeV
the two different choices of q⊥ in the Glauber first order
calculations already differ at θl ≈ 25◦, corresponding to a
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FIG. 8. (Color online) The differential cross section for elastic
three-body scattering at 100 MeV laboratory projectile energy as
function of the laboratory scattering angle. The meaning of the curves
is the same as in Fig. 5.
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momentum transfer of about 270 MeV. At roughly the same
angle the first order Faddeev calculations also deviates from
the converged solution. It is well known that the Faddeev
multiple scattering series converges very slowly at such low
energies [25], so this finding is not surprising. However, at
very small angles, all calculations shown roughly agree. This
becomes different, if one looks at the even lower energy of
100 MeV laboratory projectile energy. Here the first order
Glauber calculations do not agree with the first order Faddeev
calculation even at small angles. It is also very obvious
that at this low energy the first order Faddeev calculation is
quite different from the fully converged one. It is however
noteworthy, that both first order Glauber calculations are closer
to the converged Faddeev result in forward direction than is
the calculation based on the first order Faddeev term. The
two different choices for q⊥ start to differ around θl ≈ 25◦,
which corresponds now only to a momentum transfer of
roughly 180 MeV. The overall observation is that at such a low
energy neither a first order Faddeev calculation nor a Glauber
calculation are a good representation of the fully converged
Faddeev result.

Next we add the Glauber rescattering correction of
Eq. (3.14) to the differential cross section. In Fig. 9 we show the
effect of this term on the differential cross section at 500 MeV
laboratory projectile energy together with the contribution of
the second order Faddeev rescattering term. While the Faddeev
first order rescattering term gives a large contribution to the
first minimum, the Glauber rescattering term fails to do this,
independent of the choice of the unit vector n̂. Obviously,
the minima are more sensitive to the interference of the two
terms of the scattering amplitude. Thus here the very different
structure of the Faddeev and Glauber rescattering terms are
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FIG. 9. (Color online) The differential cross section for elastic
three-body scattering at 500 MeV laboratory projectile energy as
the function of the laboratory scattering angle. In both panels the
short-dashed line represents the first order Faddeev calculation, the
long dashed line the first and second order are considered, and the
solid line stands for the full Faddeev calculation. The left panel (a)
shows the first order (dash-dotted line) and first plus second order
(double-dash-dotted line) Glauber calculation for the choice (a) of the
direction of the unit vector n̂ (see text). The right panel (b) contains
the same for the choice (b).
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FIG. 10. (Color online) The differential cross section for elastic
three-body scattering at 1000 MeV laboratory projectile energy as
function of the laboratory scattering angle. The panels and curves
have the same meaning as in Fig. 9.

clearly visible. It should also be noted that in the first minimum
one Faddeev rescattering term is already sufficient to coincide
with the fully converged Faddeev calculation. At slightly larger
angles more rescattering terms are required in the Faddeev
calculation to reach convergence.

This general feature of the difference between the two
approaches does not change with increasing energy. In
Fig. 10 the differential cross section is shown for a laboratory
projectile energy of 1 GeV. While the total cross section
for both, Faddeev and Glauber calculations started to agree
at energies of 1 GeV and higher when adding the second
order correction term in both schemes, this is not the case
for the differential cross section. The second order Faddeev
rescattering term again gives a much larger contribution in
the first minimum than the Glauber rescattering correction.
This trend continues up to 2 GeV, the highest energy we
consider here. We also can observe that with increasing energy
the difference between the two choices of n̂ decreases. To
investigate at which energies there are differences, we need to
consider lower projectile energies. In Fig. 11 the differential
cross section for 200 MeV projectile laboratory energy is
shown. Here we can first observe, that the second order Glauber
correction also increases the cross section in the first minimum,
but again by far less than the Faddeev rescattering term does.
We also observe a distinct difference between the two choices
of n̂. At 200 MeV the choice (a) almost has no effect at larger
angles, whereas choice (b) shows a big contribution. However,
since the Glauber expression should be valid only in forward
direction, one should not put any physical relevance to this
difference.

After having seen that the Glauber rescattering term does
not compare well with the corresponding Faddeev term in
diffraction minima, we want to consider the differential cross
section in the very forward direction. This is the physical
regime for which the Glauber ansatz was developed and where
it should perform best. In Fig. 12 we show the three-body
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FIG. 11. (Color online) The differential cross section for elastic
three-body scattering at 200 MeV laboratory projectile energy as
function of the laboratory scattering angle. The panels and curves
have the same meaning as in Fig. 9.

differential cross section for very forward angles for laboratory
projectile energies of 100 MeV, 200 MeV, 500 MeV, and
800 MeV. We again compare the results from the first and
second order terms in the Faddeev multiple scattering series to
the fully converged Faddeev calculation, and the first order
Glauber calculation with its rescattering correction to the
Faddeev calculations. Both choices of n̂ coincide for very
small angles. Thus we arbitrarily choose (b) for the Glauber
calculations of Fig. 12. Since we already established from
the comparison of the total cross sections, that the Glauber
calculations do very well for energies of 1 GeV and higher,
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FIG. 12. (Color online) The differential cross section for elastic
three-body scattering in forward direction for 100 MeV (left upper
panel), 200 MeV (left lower panel), 500 MeV (right upper panel),
and 800 MeV (right lower panel) laboratory projectile energy. The
short dashed line represents the first order Faddeev calculation, for
the long dashed line the first and second order are considered, and
the solid line stands for the full Faddeev calculation. The first order
and first plus second order Glauber calculation for the choice (b) of
the direction of the unit vector n̂ are given by the dash-dotted and
double-dash-dotted lines.

we concentrate here on low and intermediate range energies.
At 800 MeV essentially all calculations agree with each other
in the very forward direction. At 500 MeV the first order
Faddeev term slightly overpredicts the fully converged result.
The first Faddeev rescattering term has almost no effect, and
one needs higher order rescattering contributions to achieve
a converged result. The Glauber first order calculation differs
from the Faddeev first order and only slightly overpredicts
the converged Faddeev result. The contribution of the Glauber
rescattering term is small, and lowers the cross section for
the very forward angles directly to the full Faddeev result.
The situation at 200 MeV is similar. Again, the first order
Faddeev and Glauber calculations differ, and the Glauber
calculation already coincides with the fully converged Faddeev
result. The Glauber rescattering contribution again slightly
lowers the cross section in forward direction. At this energy
it is interesting to observe that the first rescattering contribu-
tion of the Faddeev multiple scattering series increases the
cross section in forward direction. To reach convergence eight
terms of the multiple scattering series must be summed up at
this energy. At 100 MeV the Glauber first order calculation
is already quite close to the fully converged Faddeev results,
in contrast to the first order Faddeev calculation. The Glauber
rescattering correction then lowers the cross section essentially
to the exact Faddeev result. Thus, for the differential cross
section in very forward direction the Glauber calculation
corrected by the rescattering term captures the exact Faddeev
result already at 100 MeV. Figure 8 shows that this good
agreement is valid to about θl ≈ 20◦.

The behavior of the differential cross section in the extreme
forward direction appears in a very similar fashion in the total
cross section for elastic scattering, σel , which is obtained by
integrating over the differential cross section. Table II lists
the total cross sections for elastic scattering as function of
the laboratory projectile energy for the converged Faddeev
calculations, Faddeev calculations including only the first two
rescattering terms as well as the Glauber calculations. We
see that already from 200 MeV on the first order Glauber
calculations match the converged Faddeev results reasonably
well. The Glauber rescattering correction is quite small, and
always lowers the cross section, whereas the first Faddeev
rescattering correction increases the cross section, and only
the second rescattering correction (third order in the multiple
scattering series) lowers it. It is also obvious from the table
that at 100 MeV many more terms of the Faddeev multiple
scattering series are necessary to obtain a converged total
cross section. The Glauber result with rescattering correction
is similar in size to the Faddeev result with two rescattering
corrections, though this is most likely accidental. A Glauber
calculation for the total cross section for elastic scattering at
100 MeV is not trustworthy anymore, since the differential
cross sections do not really agree.

The total cross section is the sum of the total cross
sections for elastic scattering and breakup reactions, σND

tot =
σND

el + σND
br . In Refs. [18,22] this relation was used to

estimate the quality of the numerical solutions of the Faddeev
equation. In a Faddeev calculation the total cross section for
breakup reactions is obtained by integration over the fivefold
differential cross section for breakup, i.e., by summing over
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TABLE II. The total cross section for elastic scattering for the first three terms of the Faddeev multiple scattering series, the fully converged
Faddeev calculation, and the first two orders of Glauber calculations based on choices (a) and (b) for the unit vector n̂. The superscripts indicate
the order in the two-body t matrix.

Elab [MeV] σ 1
el [fm2] Faddeev Glauber (a) Glauber (b)

σ 1+2
el [fm2] σ 1+2+3

el [fm2] σ ND
el [fm2] σ 1

el [fm2] σ 1+2
el [fm2] σ 1

el [fm2] σ 1+2
el [fm2]

100 40.66 44.47 30.27 26.53 29.58 28.24 32.60 30.83
200 16.81 18.12 15.84 15.31 15.32 15.06 15.74 15.46
500 6.87 7.04 6.82 6.74 6.59 6.52 6.63 6.56
800 4.29 4.33 4.34 4.32 4.23 4.19 4.25 4.21

1000 3.43 3.46 3.47 3.46 3.44 3.41 3.45 3.43
1200 2.91 2.92 2.95 2.96 2.90 2.88 2.91 2.89
1500 2.32 2.33 2.41 2.41 2.35 2.33 2.35 2.34
2000 1.68 1.68 1.76 1.76 1.78 1.77 1.78 1.77

all possible breakup configurations. Here we can employ this
relation to obtain a total cross section for breakup reactions
within the Glauber framework. This is done in Table III.
The left side lists the Faddeev total cross sections for elastic
scattering and breakup reactions with their sum, the total
cross section, as function of laboratory projectile energy. The
right side lists the Glauber total cross section obtained from
Eq. (3.12). The Glauber total cross sections for breakup
reactions are obtained by subtracting the Glauber total cross
sections for elastic scattering from Table II from these
numbers. For energies less than 500 MeV the so obtained
breakup cross sections are definitely not competitive with the
Faddeev results. However, at 1.5 GeV, the Glauber breakup
cross section starts to match the Faddeev breakup cross section
within 5%. Though this finding may look surprising, it could
indicate that at sufficiently high energy the dominant ejectiles
of a breakup reaction exit into the forward cone. That region
of phase space however is the one, for which the Glauber
ansatz was designed. Thus it seems that for GeV projectile
energies obtaining a total cross section for breakup reactions
from the Glauber total and elastic cross section via the optical
theorem captures the overall breakup reaction. Of course the

description of detailed exclusive n + d observables will never
be accessible in the Glauber formulation.

V. SUMMARY AND CONCLUSIONS

In this study we perform fully converged Faddeev calcu-
lations for three identical bosons (our model for the n + d

system) in the intermediate energy regime between 100 MeV
and 2 GeV. We calculate total cross sections as well as
differential cross sections for elastic scattering. The key
point of those calculations is the use of vector momenta in
the formulation, so that all partial waves are automatically
included. We then calculated the same cross sections using
Glauber formulation [27–29]. However a key difference to
this early work is that the two-body scattering amplitude
entering our Glauber expressions is the solution of a two-body
Lippmann-Schwinger equation, i.e., the same input as is used
in the Faddeev calculations. As two-body interaction we
employ a superposition of two Yukawa terms, one attractive,
the other repulsive, for which the parameters are chosen such
that a bound state at the empirical deuteron binding energy

TABLE III. The total cross section and the total cross section for elastic scattering and breakup reactions as
obtained from the exact Faddeev calculations are listed in the left part of the table. On the right side the total
cross section as obtained from the Glauber calculation (including the second order correction) is given. The
total cross sections for breakup reactions, σbr , is obtained by subtracting the total cross sections [(a) and (b)] for
elastic scattering taken from Table II from the total cross section σ Gl

tot .

Elab [MeV] σND
tot [fm2] Faddeev Glauber

σND
el [fm2] σND

br [fm2] σ Gl
tot [fm2] σ Gl

br (a) [fm2] σ Gl
br (b) [fm2]

100 34.16 26.53 7.63 29.00 0.76 –
200 19.00 15.31 3.69 17.39 2.33 1.93
500 10.30 6.74 3.56 9.49 2.97 2.93
800 7.22 4.32 2.90 6.77 2.58 2.56
1000 6.00 3.46 2.54 5.74 2.33 2.31
1200 5.24 2.96 2.27 5.01 2.13 2.12
1500 4.37 2.41 1.97 4.22 1.89 1.88
2000 3.35 1.76 1.59 3.36 1.56 1.59
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is supported. The deuteron wave function and form factor are
also calculated from this interaction.

By using the identical two-body input for the Faddeev and
Glauber calculations we make sure that both calculations are
based on the same ingredients. This way we can clearly at-
tribute differences in the observables to the different treatment
of multiple scattering in the two formulations. The first order
term in the Glauber formulation is given by twice the two-body
scattering amplitude, which is folded with the deuteron form
factor to give the differential cross section and leads to 2σNN

for the total cross section. The first order Faddeev term is
given by T = tP , thus having a similar structure. Comparing
the total cross sections obtained from the first order term
leads to the conclusion that from projectile energies of about
200 MeV onward both calculations agree. For the differential
cross section agreement to about θl ≈ 45◦ is achieved for
projectile energies of 500 MeV and higher. For 200 MeV the
angular range of agreement is already less, and at 100 MeV the
first order calculations do not agree with each other. In general
we can conclude, that in first order the Glauber and Faddeev
calculations for observables considered, total and differential
cross sections for elastic scattering are remarkably close for
energies higher than 200 MeV projectile energy.

The consideration of the first rescattering correction in
both formulations shows that there is a distinct dependence
on the observables considered. As a reminder, the Glauber
formulation leads only to one rescattering correction, whereas
the Faddeev formulation as integral equation has an in
principle infinite series of rescattering corrections. As far
as the correction to the total cross section is concerned, the
contribution from the first Glauber and Faddeev rescattering
term starts to become close at 500 MeV and is identical in
size at 1 GeV. We also want to point out, that this rescattering
correction to the total cross section, the shadowing (better
named antishadowing here, since the contribution increases
the cross section), is still present at 2 GeV, the highest energy
we considered. Thus we conclude, that for a good description
of the total cross section in the intermediate energy regime the
consideration of the second order correction in the Glauber as
well as in the Faddeev formulation is essential.

For the differential cross section for elastic scattering the
conclusions are twofold. First, when considering the very
forward direction, we find that at projectile energies of 100
and 200 MeV the second order correction brings the Glauber
calculation of the differential cross section in quite good
agreement with the result of the fully converged Faddeev
calculation. In contrast, the first Faddeev rescattering term
even has the opposite effect and moves the cross section
away from the converged calculation. At projectile energies

of 500 MeV and higher, the second order corrections in the
very forward direction are extremely small and the first order
Faddeev and Glauber calculations already agree quite well with
each other and the converged Faddeev calculation. A similar
conclusion can be drawn when considering the total cross
sections for elastic scattering. Second, when concentrating on
the diffractive structure of the differential cross section given in
our model, we see distinct differences between the behavior of
the Faddeev and Glauber second order correction. Whereas the
Faddeev correction fills in the minima, the Glauber correction
cannot do that. A similar observation was made in Ref. [16]
in the context of proton elastic scattering from halo nuclei
considering energies from 100 to 200 MeV per nucleon.
However we find that even at much higher energies the
Glauber second order correction does not come close to the
effect of the Faddeev correction. For energies higher than
500 MeV the first Faddeev rescattering correction already
captures the bulk of rescattering corrections and coincides with
the converged calculation in the first minimum. Diffraction
minima are well known to be sensitive to the dynamics of
the system or interference effects. The assumption of fixed
target particles leading to the specific form of the Glauber
rescattering correction proves to be too simple to capture the
much more involved structure of the first Faddeev rescattering
term. We also need to point out here, that the diffractive
structures shown in the differential cross sections of this
work are a result of our underlying assumption of identical
bosons. The true n + d differential cross section has only one
minimum and one might speculate that a Glauber calculation
at higher energies including the rescattering term and being
based on nucleon-nucleon (NN ) interactions describing the
NN observables has a chance to describe the n + d total cross
and possibly the differential cross section certainly in forward
direction quite well, provided a relativistic formulation is going
to be used.
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