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Three-body scattering from nonperturbative flow equations
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We consider fermion-dimer scattering in the presence of a large positive scattering length in the frame
of functional renormalization group equations. A flow equation for the momentum dependent fermion-dimer
scattering amplitude is derived from first principles in a systematic vertex expansion of the exact flow equation
for the effective action. The resummation obtained from the nonperturbative flow is shown to be equivalent
to the one performed by the integral equation by Skorniakov and Ter-Martirosian (STM). The flow equation
approach allows to integrate out fermions and bosons simultaneously, in line with the fact that the bosons are not
fundamental but build up gradually as fluctuation induced bound states of fermions. In particular, the STM result
for atom-dimer scattering is obtained by choosing the relative cutoff scales of fermions and bosons such that the
fermion fluctuations are integrated out already at the initial stage of the RG evolution.
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I. INTRODUCTION

The scattering of three nonidentical fermions was consid-
ered a long time ago by Skorniakov and Ter-Matrirosian (STM)
[1]. For short-ranged interactions and a positive scattering
length, the two-body sector supports a shallow bosonic bound
state, the dimer. If the scattering length is large compared
to the effective range, then the low energy physics becomes
universal in the sense that all observables may be expressed
in terms of a single length scale, the fermionic scattering
length a. Making use of the insensitivity with respect to the
short distance physics, STM extracted the universal ratio of
fermion-dimer to fermion scattering length to be a3/a = 1.18.

The three-body problem has a long history. In the 1970s,
Efimov extended the results for fermions to the bosonic case,
where a short distance scale is needed to stabilize the particles,
giving in turn rise to the Efimov effect, i.e., the existence
of a sequence of three-body bound states [2]. In subsequent
papers, he revealed the universality of the three-body problem
in systems with large scattering length [3], and furthermore
considered effective range corrections [4].

The first derivation of the STM equation using Feynman
diagrams was performed in [5] using a purely fermionic
formulation. In the 1990s, the three-body problem was
considered in the light of effective field theory. The problem
was reformulated in terms of an effective theory, where the
dimer degree of freedom is implemented explicitly [6,7]; for
a review see [8]. Extensions of the standard STM problem
in this framework include higher order corrections in the
effective range [7] and higher partial waves [9]. Recently,
the problem has seen renewed interest, developing into an
important nontrivial benchmark for new techniques. Those
include nonperturbative methods like quantum mechanical
approaches in position space [10], as well as perturbative
techniques like the ε expansion around the critical dimension
[11].

In this paper, we address the problem of fermion-dimer
scattering in the frame of nonperturbative functional renormal-
ization group equations (FRG) for the effective action [12–14].

This technique has been used successfully to quantitatively
investigate critical phenomena, i.e., to analyze the universal
physics at very long distances close to a phase transition [15].
It has also been applied for the study of complex many-body
systems [16–18], where typical length scales are set by the
mean interparticle spacing and the inverse temperature. In
this paper we demonstrate how it can be used to address
nonperturbative fluctuation problems on even much shorter
distances, i.e., the scattering of few particles. Our approach
is based on a systematic vertex expansion of the effective
action, which keeps the full momentum dependence of the
one-particle irreducible (1PI) vertices.

Vertex expansion schemes have been worked out in various
applications [19]. In these works, the resulting flow equations
exhibit a complexity which necessitates a full numerical
treatment. Here we take advantage of the fact that for the
few-body scattering problem at low energies, the complicated
momentum and frequency dependence can be considerably
simplified. This also allows for a direct comparison of our
method to other schemes. Focusing on three-body (fermion-
dimer) scattering here, we stress that the method is also suitable
to address four-particle (dimer-dimer) scattering [20,21],
which will be discussed in a future publication. Furthermore,
we point out that the diagrams resummed during the flow
involve both inner fermion and boson lines. Situations like
this also appear in various many-body problems, e.g., in the
analysis of quantum critical points where both fermions and
bosons develop zero modes [22]. The STM problem allows
to study the simultaneous elimination of fermion and boson
degrees of freedom in a relatively controlled setting. It may
thus provide valuable hints for the future treatment of coupled
fermion-boson theories in the frame of functional RG, as
initiated in recent work [23].

This paper is organized as follows. In Sec. II, we briefly
sketch the FRG method and formulate the problem in terms
of a two-channel model for both a stable fermion field and
a composite boson field, coupled via the Feshbach coupling
hϕ . In the limit of large Feshbach couplings, universality

0556-2813/2008/78(3)/034001(10) 034001-1 ©2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.78.034001


S. DIEHL, H. C. KRAHL, AND M. SCHERER PHYSICAL REVIEW C 78, 034001 (2008)

emerges naturally as an infrared stable fixed point for the
renormalized Feshbach coupling [24,25], and our model
becomes equivalent to a single channel model with point-like
fermionic interactions. At this stage the problem is formulated
for arbitrary density and temperature. In Sec. III, we then
specify the prescription to project onto the physical vacuum
of vanishing density and temperature, as appropriate for
few-body scattering. The following section is devoted to a
discussion of the (exact) solution of the two-body problem in
the FRG framework. Section V then deals with fermion-dimer
scattering: the FRG equation for the fermion-dimer vertex
is derived and cast into a form closely resembling the STM
integral equation. We then consider solutions of the RG
equations for various choices of the relative cutoff scale at
which fermions and dimers are integrated out relatively to each
other, and show in which limit the STM result is reproduced.
Conclusions are drawn in Sec. VI.

II. METHOD AND APPROXIMATION SCHEME

We study the scale dependence of the effective average
action �k [12], for reviews see [13,14]. It includes all fluctu-
ations with momenta q2 >∼ k2. In the limit k → 0 where the
averaging scale k is removed, all fluctuations are included and
�k→0 approaches the full effective action. In practice, the scale
dependence is implemented by introducing suitable cutoff
functions Rk(q) in the inverse propagators. The dependence
of �k on k obeys an exact flow equation,

∂k�k = 1
2 STr

(
�

(2)
k + Rk

)−1
∂kRk = 1

2 STr ∂̃k log
(
�

(2)
k + Rk

)
.

(1)

Here, the “supertrace” STr sums over spatial momenta �q and
Matsubara frequencies ω as well as over internal indices
and species of fields, with a minus sign for fermions.
The effective action is formulated in Euclidean spacetime.
The second functional derivative �

(2)
k represents the full

inverse propagator in the presence of the scale k. Both �k

and �
(2)
k are functionals of the fields. For the last equation,

the derivative ∂̃k is defined to act on the explicit scale
dependence set by the cutoff function Rk , and not on the
implicit scale dependence of �k . This leads to a compact
notation, and is advantageous to make direct contact with
diagrammatic representations. In practice the above functional
differential equation can only be solved approximately using
a suitable truncation of the full effective action functional.
The vertex expansion is obtained from expanding the last
expression in powers of the fields.

The effective action is the generating functional of the 1PI
n-point correlation functions. In the physical vacuum state
of vanishing density and temperature, these objects can be
directly related to the scattering amplitudes.

The effective action for fermions interacting via a Feshbach
resonance can be described by a simple two-channel ansatz.
In momentum space, and after analytical continuation to Eu-
clidean frequencies (ωM → −iω, where ωM is the Minkowski

frequency) it reads

�k =
∫

Q

[ψ†(Q)(iω + q2 − σA)ψ(Q) + ϕ∗(Q)Pϕ(Q)ϕ(Q)]

−
∫

Q1,Q2,Q3

hϕδ(Q1 − Q2 − Q3)(ϕ∗(Q1)ψ1(Q2)ψ2(Q3)

−ϕ(Q1)ψ∗
1 (Q2)ψ∗

2 (Q3)) (2)

with four-momentum Q = (ω, �q). Here ψ = (ψ1, ψ2) rep-
resents the stable nonrelativistic fermionic atom field. We
further introduce a composite boson field ϕ which mediates the
interactions between the fermions via the Yukawa or Feshbach
coupling hϕ . The composite field can play various physical
roles, depending on the region of parameter space under
consideration [17], as well as on the averaging scale k. Here
we will restrict ourselves to the vacuum limit where the scales
associated to many-body physics vanish (T = n = 0), as well
as to the limit of broad Feshbach resonances, where the value
of the (bare) Feshbach coupling drops out as an independent
scale in the problem, hϕ → ∞. In this limit, the bosonic field
is purely auxiliary at a high scale k with no propagation, and
acquires dynamics only in the limit k → 0 by the virtue of
fluctuations, as will be explained in more detail below. The
only remaining scale in the problem is then the fermionic
scattering length a. This realizes “large” scattering lengths, in
the sense that the observable physics is uniquely determined
by the latter value, becoming insensitive with respect to further
microscopic information. This has an important aspect of
universality, which is discussed for the few body-problem
in [8], and with an emphasis on the implications for the
many-body problem in [24–26]. The projection procedures
on the physical vacuum and on the universal broad resonance
limit are specified in the next section.

Our units are h̄ = kB = c = 1. Furthermore, we measure
all momenta in units of some reference scale k̂, and energies in
units of ε̂k = k̂2/2M , where M is the nonrelativistic mass of
the fermions. This leads to a dimensionless scaling formulation
of the effective action [26]. We have the following relations
between dimensionless and dimensionful (denoted with a hat)
quantities1:

Q = (ω, q) = (ω̂/ε̂k, q̂/k̂), σA = σ̂A/ε̂k,

hϕ = 2Mk̂−1/2ĥϕ, Pϕ(Q) = P̂ϕ(Q̂)/ε̂k, (3)

ψ = k̂−3/2ψ̂, ϕ = k̂−3/2ϕ̂.

The physical meaning of the parameter σA again depends on
the parameter regime under consideration. In the many-body
context at finite density and temperature, it plays the role of
the chemical potential for the fermions. In the vacuum, it
represents half the binding energy of a dimer (cf. Sec. IV),
which is nonzero for positive scattering lengths.

1In an earlier publication [26], the dimensionless quantities were
denoted with a tilde superscript, while the quantities without a
superscript were reserved for “renormalized” (rescaled with the wave
function renormalization) quantities. We do not introduce such a wave
function renormalization here, and it is advantageous to reserve the
simplest notation for the dimensionless quantities.
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The inverse bosonic propagator consists of two contribu-
tions: a classical or “bare” part ν and a fluctuation part δPϕ ,

Pϕ(Q) = ν + δPϕ(Q). (4)

The parameter ν defines the initial condition for the flow of
the boson propagator. It includes the physical detuning ν(B)
from the Feshbach resonance as well as a counter term δνin

needed for the ultraviolet (UV) renormalization of the problem
as discussed in Sec. IV:

ν = ν(B) + δνin, ν = ν̂/ε̂k, ν(B) = µ(B − B0). (5)

ν(B) measures the distance from the Feshbach resonance at
magnetic field B0, with µ being the effective magnetic moment
of the atoms in the open channel. Dimensionless detuning and
dimensionless scattering lengths (in the absence of an open
channel background scattering length) are related by

a = − h2
ϕ

8πν(B)
, a = âk̂. (6)

The inverse fermion propagator

PF(Q) = iω + q2 − σA (7)

does not receive any renormalization corrections in vacuum as
will be shown in Sec. III. Therefore, we do not introduce scale
dependent running couplings in the fermionic part of Eq. (2).
The running couplings for this part of the effective action are
thus hϕ and Pϕ(Q).

In order to describe scattering processes involving more
than two fermions, we need to extend the truncation Eq. (2).
In particular, the scattering amplitude of a fermion off a
dimer is described by the amputated connected part of the
Green function 〈0|ϕψϕ∗ψ†|0〉 [8]. Thus we need to include a
fermion-dimer coupling∫

Q1,...Q4

δ(Q1 + Q2 − Q3 − Q4)δλ3(Q1,Q2,Q3)

×ϕ(Q1)ψ(Q2)ϕ∗(Q3)ψ†(Q4). (8)

The fermion fields are contracted as ψψ† = ψαδαβψ∗
β in spin

space, with δαβ the identity matrix in two dimensions. The or-
der of ψ and ψ† is important due to the Grassmann nature of the
fermionic fields and chosen such that it matches the standard
conventions for the fermion-dimer scattering amplitude. The
coupling depends on three independent four-momenta by mo-
mentum conservation. Still the four-momentum dependence is
very involved and will be largely simplified below. However, a
point-like truncation of the interaction vertices (no momentum
dependence) turns out to be insufficient to reach satisfactory
precision in this problem. The dimensionless and dimensionful
fermion-dimer couplings are related by

δλ3 = 2Mk̂ δλ̂3. (9)

At this point we stress the systematic nature of the trunca-
tion advocated here. The vertex expansion is an expansion in
the number of the fields. Our truncation (2) is complete up to
third order in the fields. At fourth order in the fields, there are
two more terms which are compatible with U (1) symmetry,

namely,∫
Q1,...Q4

δ(Q1 − Q2 + Q3 − Q4)δλψ (Q1,Q2,Q3)

×ψ†(Q1)ψ(Q2)ψ†(Q3)ψ(Q4),
(10)∫

Q1,...Q4

δ(Q1 − Q2 + Q3 − Q4)δλ4(Q1,Q2,Q3)

×ϕ∗(Q1)ϕ(Q2)ϕ∗(Q3)ϕ(Q4).

The first one describes the scattering of two fermions, the
second one the scattering of two dimers, i.e., four-fermion
scattering in the presence of a bound state. The flow of
these couplings has to be taken into account in a systematic
expansion to fourth order in the fields. However, we will show
in Sec. III: (i) The first term is not generated by the flow in the
vacuum limit considered here. This means that the fermionic
two-body sector is fully described by our Feshbach model.
(ii) The second vertex describes interactions in the four-body
sector and is generated in the vacuum limit. In principle, it
could couple into the flow of the other vertices. We find that
this is not the case in the vacuum limit.

Finally, we specify the regulator functions Rk . We work
with a momentum independent, mass-like cutoff function for
fermions and bosons

Rk,F = k2, Rk,ϕ = ck2, (11)

similar to [25]. The choice of the dimensionless number c,
which we specify below, sets the relative scale for the
elimination of the fermionic and bosonic degrees of freedom
in the renormalization group flow. The optimal choice of c

ensures an equal effective cutoff scale for fermions and bosons,
where the effective cutoff scale is composed of the cutoff
function piece plus possible physical mass terms [27–29].

A scheme mass-like cutoff function is possible if the
fermionic “chemical potential” σA < 0, which is indeed the
case in the vacuum on the BEC side. For our purpose the
mass-like cutoff is advantageous since it allows for most direct
comparison with conventional diagrammatic techniques. How-
ever, for high accuracy calculation an optimized cutoff [27]
would be more appropriate.

III. VACUUM LIMIT

In this paper we consider a specific regime in parameter
space where the effective action � = �k=0 describes the
scattering of particles in vacuum, which interact via a positive
s-wave scattering length. The vacuum projection of the
effective action is obtained from � in the limit n → 0, T → 0.

The prescription, which projects the effective action on the
vacuum limit reads [26]

�vac = lim
kF→0

�k=0

∣∣∣
T >Tc

. (12)

Here kF ≡ (3π2n)1/3 is directly related to the density of the
system by definition, such that it can be viewed as the inverse
mean interparticle spacing kF ∼ 1/d. Taking the limit kF → 0
then corresponds to a diluting procedure where the density
of the system becomes arbitrarily low. However, the limit is
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constrained by keeping the dimensionless temperature T =
T̂ /εF = 2MT̂ /k2

F above criticality. This ensures that many-
body effects such as condensation phenomena are absent. Of
course, the system becomes arbitrarily cold, since the absolute
temperature scales as T̂ ∝ k2

F → 0.
We find that for n = T = 0 the crossover at finite density

turns into a second-order phase transition in vacuum [24,26]
as a function of the magnetic field B. In order to see this, we
consider the momentum independent parts in both the fermion
and the boson propagator, −σA (the “chemical potential”
for the fermions in vacuum) and m2

ϕ , which act as gaps for
the propagation of fermions and bosons. Here the bosonic
mass term is defined as the zero frequency and momentum
component of the boson propagator,

m2
ϕ = Pk=0,ϕ(Q = 0). (13)

Taking the vacuum limit in the above mentioned form, we find
the following constraints, which separate the two qualitatively
different branches of the physical vacuum [26]:

m2
ϕ > 0, σA = 0 atom phase (a−1 < 0),

m2
ϕ = 0, σA < 0 molecule phase (a−1 > 0),

m2
ϕ = 0, σA = 0 resonance (a−1 = 0).

(14)

These formulas have a simple interpretation: On the BCS
side, the bosons experience a gap m2

ϕ > 0 and the low-density
limit describes only fermionic atoms. On the BEC side, the
situation is reversed: fermion propagation is suppressed by
a gap −σA. The ground state is a stable molecule, and
the fermionic chemical potential can be interpreted as half
the binding energy of a molecule, εM = 2σA [26], −σA is the
amount of energy that must be given to each fermion in a dimer
to reach the fermionic scattering threshold.

Evaluating the flow equation for the bosonic mass term m2
ϕ

with the constraint (14) on the BEC side (see below), one finds
the well-known universal relation between binding energy
and scattering length in vacuum, ε̂M = −1/(Ma2) in the
broad resonance limit ĥϕ → ∞. This establishes the second
order nature of the vacuum phase transition—the resonance
at a−1 = 0 is smoothly approached. For finite hϕ , scaling
violations O(εM/h2

ϕ) emerge.2 This gives a glance at the status
of universality related to the value of hϕ .

On the technical side, the procedure specified above leads
to a massive simplification of the diagrammatic structure as
compared to the finite density and temperature system. By the
aid of the residue theorem, it is straightforward to prove the
following statement [25]: All diagrams whose inner lines point
in the same direction (thereby forming a closed tour) do not
contribute to the flow in vacuum. Such diagrams have all poles
in the same half of the complex plane. The argument holds for
frequency and momentum dependent vertices provided that
possible poles lie in the same half of the complex plane as
those of the propagators. We can now analyze the one-loop
diagrams which would possibly generate an RG flow of the
couplings under consideration. An analysis of the one-loop

2The situation is further complicated in the presence of an additional
scale set by a finite background scattering length [26].

diagrams is sufficient due to the one-loop structure of the
exact flow Eq. (1). Applying the above statement, we find:

(i) The fermion propagator is not renormalized in vacuum
as can be seen on diagrammatic grounds, and using the
above argument.

(ii) A four-fermion vertex ∼ (ψ†ψ)2 is not generated by
the flow. In our model, we have eliminated such a
vertex to describe fermion-fermion scattering in favor
of the coupling to the auxiliary boson degree of
freedom (Hubbard-Stratonovich transformation). The
fact that the vertex is not regenerated by the flow
indicates that the Hubbard-Stratonovich transformation
is very efficient here. We note that at finite density
and temperature, such a vertex is indeed generated,
describing the effect of particle-hole fluctuations.

(iii) The four-boson (dimer-dimer) vertex Eq. (10) does not
couple into the flow of the couplings we are considering
in the frame of our truncation in vacuum. This implies
that the four-particle sector of the theory does not affect
the three-particle sector, which is physically sound. On
the other hand, we find that the flow in the four-particle
sector, described by the dimer-dimer vertex, is affected
by the fermion-dimer vertex. The same pattern is
observed for the mutual influence of the two- and
three-particle sectors. Our vertex expansion therefore
seems to respect the hierarchy which is expected from
physical intuition. At finite density, the interpretation
of the vertices as representing scattering in sectors with
definite particle number is spoiled. As expected, the
many-body analogs of these vertices then do not respect
the hierarchy any more.

IV. TWO-BODY SECTOR: UV RENORMALIZATION AND
UNIVERSALITY

In order to make contact with experiment, we have to relate
the microscopic or bare parameters which characterize the
theory at a high momentum scale kin to the observables for
two-atom scattering in vacuum, like the scattering length a, the
molecular binding energy or an effective range. We therefore
choose the initial parameters at the UV scale kin such that the
two-body observables are matched in the limit k → 0.

In the two-body sector defined by Eq. (2) we need to
consider the flow of the Feshbach coupling hϕ and the inverse
boson propagator Pk,ϕ(Q).

We consider the flow of the Yukawa coupling first. We find

∂khϕ = 0. (15)

The nonrenormalization of the Feshbach coupling in vacuum
can be traced back to the U (1) symmetry, and extends to
the case of a momentum dependent Feshbach coupling. This
statement holds in the absence of a fermionic background
coupling. Extending the truncation to take such a coupling
into account leads to a renormalization of hϕ [25,26], which is
compatible with charge conservation.

The boson propagator is more involved and we discuss it in
detail. The prescription projecting onto this object is given by
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FIG. 1. Graphical representation of the flow equation for the
inverse bosonic propagator [cf. Eq. (17)] in the vacuum limit. Bosons
(dimers) are denoted by dashed lines, fermions (atoms) by solid lines.
Dots stand for the Yukawa coupling hϕ , which is not renormalized in
vacuum.

the functional derivative

Pk,ϕ(Q1,Q2) = δ2

δϕ∗(Q1)δϕ(Q2)

∣∣∣∣
ϕ=0,ψ=0

�k. (16)

We extract it by applying this prescription to both sides of
Eq. (1), where in practice we expand the logarithm on the rhs
in powers of the bosonic field. The inverse bosonic propagator
is diagonal in momentum space,Pk,ϕ(Q,K) = Pk,ϕ(Q)δ(Q −
K). This yields the flow equation (cf. Fig. 1)

k∂kδPk,ϕ(Q) = −
∫

K

k∂̃k

h2
ϕ

(PF(−K) + k2)(PF(K + Q) + k2)

= h2
ϕk2

8π

1√
iω/2 + q2/4 − σA + k2

. (17)

The flow is large (∼k) for large cutoffs k. This reflects the
presence of a relevant parameter and indicates the necessity of
an UV renormalization in the language of the flow equation. To
make the physics more transparent, we may consider the flows
of the Q 
= 0 and Q = 0 (mass term) components separately,

k∂k[δPk,ϕ(Q) − δPk,ϕ(0)]

= h2
ϕk2

8π

(
1√

iω/2 + q2/4 − σA + k2
− 1√

−σA + k2

)

∼ O(1/k),

k∂kδPk,ϕ(0) ≡ k∂km
2
ϕ

= h2
ϕ

8π

k2√
−σA + k2

∼ O(k). (18)

Thus only the mass term m2
ϕ = δPk,ϕ(0) is UV sensitive, while

the Q 
= 0 components are not. In the broad resonance limit
hϕ → ∞, we therefore find universality from the flow equa-
tions: assuming initial conditions O(1), the loop contributions
are O(h2

φ) and will therefore dominate the physical values of
the couplings in the infrared limit, while memory of the initial
conditions is lost. There is only a single relevant coupling, the
mass term. This is the reason why we do not have to specify
more details of the microscopic inverse boson propagator in
Eq. (2). For a more detailed discussion of universality in the
frame of RG equations, we refer to [25].

As indicated in Sec. II, the initial condition for the inverse
boson propagator is given by Pin,ϕ(0) = ν which defines the
“classical” action for the boson degrees of freedom. Integrating
the mass term in Eq. (18) from the initial scale kin → ∞ down
to the infrared limit k = 0, we find the following relation:

ν(B) + δνin − P0,ϕ(0) = h2
ϕ

8π
kin − h2

ϕ

8π

√−σA. (19)

The UV renormalization is thus performed by the choice
δνin = h2

ϕ/(8π ) kin. Furthermore, we use the exact constraint
Eq. (14) for positive scattering lengths, P0,ϕ(0) = 0, and
conclude the relation [cf. Eq. (6)]

a = − h2
ϕ

8πν(B)
= 1√−σA

. (20)

Since −σA is the gap in the fermion propagator, it may be
interpreted as half the binding energy of a molecule, εM =
2σA : −σA is the amount of energy that has to be given to each
of the fermions bound in a dimer in order to reach the scattering
threshold. Therefore, we find the well known relation between
scattering length and binding energy,

ε̂M = 2σ̂A = −1/Mâ2. (21)

The scale dependent inverse boson propagator in vacuum is
thus given by

�
(2)
k=0(Q) = Pk,ϕ(Q) = ν(B) + δPk,ϕ(Q)

= h2
ϕ

8π
(−a−1 +

√
iω/2 + q2/4 − σA + k2). (22)

In the presence of a nonzero binding energy (σA < 0), we may
expand the square root. Using Eq. (20), we end up with

�
(2)
k=0(Q) ≈ h2

ϕ

32π
√−σA

(iω + q2/2)

= ε−1
k ĥ2

ϕ

M2â

8π

(
iω̂ + q̂2

4M

)
, (23)

which is the inverse Euclidean propagator for elementary
bosons of nonrelativistic mass 2M , dressed with a wave
function renormalization

Zϕ = h2
ϕ

32π
√−σA

= h2
ϕa

32π
. (24)

The wave function renormalization coincides with the one
obtained in [17,25,26] in the frame of a derivative expansion
for the effective action. Switching to Minkowski space we
obtain the dimer dispersion ω̂ = q̂2/(4M). However, in the
following calculations we use Eq. (22).

Let us summarize the results for the two-body problem. We
have shown from diagrammatic arguments that the fermion
propagator and the Feshbach coupling are not renormalized
in vacuum. The renormalization of the boson propagator can
be considered keeping the full frequency and momentum
dependence. The flow is driven by fermionic diagrams only.
We emphasize that the solution of the two-body problem is
exact as expected for point-like interactions. In our formalism,
this is reflected by the fact that the two-body sector decouples
from the flow equations for the higher order vertices: no higher
order couplings enter Eq. (17). Extending the truncation to
even higher order vertices, or including the fermion-dimer
vertex ϕψϕ∗ψ† does not change the situation, since there
are only two external lines in the two-body problem and
the flow equation involves only one-loop diagrams, such that
contributions from such vertices cannot appear.
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FIG. 2. Graphical representation of the STM equation [cf.
Eq. (36)].

V. THREE-BODY SECTOR: ATOM-DIMER SCATTERING

In this section we compute the fermion-dimer scattering
amplitude λ3 from which the fermion-dimer scattering length
a3 can be extracted in the zero frequency and momentum
limit. This problem has been formulated via a momentum
space integral equation a long time ago by Skorniakov and
Ter-Martirosian (STM) [1], for more recent treatments see
[8,10,20,21]. The STM integral equation is derived from a
consideration of possible scattering processes. These pro-
cesses form a ladder structure and can thus be resummed
in a Lippmann-Schwinger-type self-consistency equation,
depicted in Fig. 2.

Here, we present an alternative approach based on a
first principles equation, the exact evolution equation for the
effective action. We derive a flow equation for fermion-dimer
scattering, and show how it relates to the STM result. Under
certain assumptions, we can show the equivalence of both
equations. The validity of these assumptions is checked via
explicit numerical solution of the flow equation.

The fermion-dimer vertex λ3 is computed from

δλ3(Q1,Q2,Q3)δ(Q1 + Q2 − Q3 − Q4)

= δ

δψ∗
1 (Q4)

δ

δϕ∗(Q3)

δ

δψ1(Q2)

δ

δϕ(Q1)
�k. (25)

In the following we work in the center-of-mass (c.m.) frame.
As our vacuum construction in Sec. III implies, we choose
the boson to define the zero-point of energy, such that its
four-momentum at rest in the cm frame is given by P = (0, �0).
The (Minkowski) c.m. four-momentum of the fermion at rest
reads P = (−σA = −εM/2, �0), where εM is the dimensionless
binding energy of the dimer—the fermion propagator is
gapped on the BEC side of the resonance. Our choice of the
zero is different from the one of [20,21], where the fermion
energy is defined to be zero, such that the boson has negative
energy εM = 2σA. Of course such a shift in the zero of energy is
arbitrary and our final equations are independent of this choice.
With the c.m. four-momenta fixed, the effective dependence
of the fermion-dimer amplitude is reduced to two independent
four-momenta, and we will express this fact via the notation
λ3(P1, P2; P ).

We consider the flow equation for the dimensionless
fermion-dimer scattering vertex λ3 for a specific set of external
(Minkowski) four-momenta: Consider an incoming fermion
with P + P1, an incoming boson with −P1. The outgoing
momenta for the scattered fermion and boson can be written
as P + P2,−P2. This configuration is in general off-shell.3

As in the STM integral equation, the full off-shell amplitude is
needed, since the fermion-dimer vertex also appears as a cou-
pling in virtual processes described by one-loop expressions.

We derive a flow equation for the frequency and momen-
tum dependent fermion-dimer vertex as λ3(P1, P2; P ). It is
instructive to consider this equation in a form where the cutoff
derivative on the rhs is not yet performed [arising from the
expansion of the last expression in Eq. (1)], since this allows
for a direct comparison to standard diagrammatic techniques,
see Fig. 3. It reads4

∂kδλ3(P1, P2; P )

=
∫

Q

∂̃k

1

(PF(Q) + Rk,F)(Pk,ϕ(−Q + P ) + Rk,ϕ)

×
[
δλ3(P1,Q; P )δλ3(Q,P2; P )

− h2
ϕ

PF(−Q − P1) + Rk,F
δλ3(Q,P2; P )

− δλ3(P1,Q; P )
h2

ϕ

PF(−Q − P2) + Rk,F

+ h2
ϕ

PF(−Q − P1) + Rk,F

h2
ϕ

PF(−Q − P2) + Rk,F

]
(26)

=
∫

Q

∂̃k

1

(PF(Q) + Rk,F)(Pk,ϕ(−Q + P ) + Rk,ϕ)

×
(

h2
ϕ

PF(−Q − P1) + Rk,F
− δλ3(P1,Q; P )

)

×
(

h2
ϕ

PF(−Q − P2) + Rk,F
− δλ3(Q,P2; P )

)
. (27)

3The on-shell condition reads (ωp1 = ωp2 , | �p1| = | �p2|).
4The flow equation is formulated in Euclidean space, while the

physical frequencies are Minkowski frequencies. Therefore, we
have to analytically continue these Minkowski frequencies ωM to
Euclidean frequencies ω and insert these into the flow equation, where
we use the relation ω = iωM.

FIG. 3. Graphical representation of
Eq. (30). The shaded circles represent δλ3,
the shaded squares λ3. The number of
the corresponding equation in the text is
displayed above the equality signs.
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We observe the emergence of the running coupling

λ3(K1,K2; P ) = h2
ϕ

PF(−K1 − K2) + Rk,F
− δλ3(K1,K2; P )

(28)

on the rhs of the above equation. The rhs thus exhibits a
simple quadratic structure in the full vertex λ3 = h2

ϕ/PF − δλ3.
However, the equation is not a closed equation for λ3, since on
the lhs only the induced coupling δλ3 appears.

It is possible to make the comparison of Eq. (26) to the STM
equation directly. However, for the sake of clarity and simple
notation, we first simplify the above equation as appropriate
for our purposes. This includes two main steps [20,21]:
(i) Integrating out the loop frequency, and (ii) performing an
s-wave projection, since we are only interested in low energy
scattering here.

Step (i) is accomplished by noting that only the first fermion
propagator PF(Q)−1 appears with a positive sign for the loop
momentum Q. For analytically continued (Euclidean) loop
frequencies, there is consequently a single pole in the upper
half plane, while the other propagators (as well as the vertex
δλ3, whose pole structure is generated by the tree contribution

h2
ϕ/PF) are analytical in the upper half plane. We may thus

perform the frequency integration by closing the contour in the
upper half plane, implemented by setting the loop frequency
ω → −i(q2 − σA + Rk,F) in the remaining momentum space
integral. It follows that only values δλ3(P1 = (p2

1, �p1), P2 =
(p2

2, �p2); P ) ≡ δλ3( �p1, �p2) are needed for the solution of
Eq. (26).

At this stage, Eq. (26) depends on six spatial momentum
variables �p1, �p2. However, here we are only interested in low
energy scattering. For microscopic short-range interactions
described by the fermionic scattering length, scattering is
dominated by the s-wave component [8]. We may account for
this fact by performing a suitable projection onto the s-wave.
For this purpose, we average over the (independent) angles
between both incoming and loop momentum, and outgoing
and loop momentum by applying the integration over θ :
1/2

∫ 1
−1 d(cos θ ). For the inner propagators, the averaging is

performed explicitly. For the vertex, we define (pi = | �pi |)

δλ3(p1, p2) = 1

2

∫ 1

−1
d(cos θ )δλ3( �p1, �p2). (29)

With these simplifications, Eq. (27) reduces to an equation
which only depends on the two variables p1, p2. It reads

∂kδλ3(p1, p2)

=
∫

dqq2

2π2
∂̃k


 8π

h2
ϕ

( − a−1 + Rk,ϕ
8π
h2

ϕ
+

√
3
4q2 − σA + k2 + Rk,F/2

)
(
−δλ3(p1, q) + h2

ϕ

4p1q
log

p1q + p2
1 + q2 − σA + Rk,F

−p1q + p2
1 + q2 − σA + Rk,F

)

×
(

−δλ3(q, p2) + h2
ϕ

4p2q
log

p2q + p2
2 + q2 − σA + Rk,F

−p2q + p2
2 + q2 − σA + Rk,F

)


=
∫

dqq2

2π2


λ3(p1, q)


∂̃k

8π

h2
ϕ

( − a−1 + Rk,ϕ
8π
h2

ϕ
+

√
3
4q2 − σA + k2 + Rk,F/2

)

 λ3(q, p2)

+
[
∂̃k

h2
ϕ

4p1q
log

p1q + p2
1 + q2 − σA + Rk,F

−p1q + p2
1 + q2 − σA + Rk,F

]
8πλ3(q, p2)

h2
ϕ

( − a−1 + Rk,ϕ
8π
h2

ϕ
+

√
3
4q2 − σA + k2 + Rk,F/2

)

+ 8πλ3(p1, q)

h2
ϕ

( − a−1 + Rk,ϕ
8π
h2

ϕ
+

√
3
4q2 − σA + k2 + Rk,F/2

)
[
∂̃k

h2
ϕ

4p2q
log

p2q + p2
2 + q2 − σA + Rk,F

−p2q + p2
2 + q2 − σA + Rk,F

]
 , (30)

where we have used Eq. (28) in the second step, and −σA =
a−2 [cf. Eq. (20)]. Further we plug in the scale dependent
solution for the inverse boson propagator obtained from
integrating Eq. (17). In the following it will be useful to
represent Eq. (30) in matrix notation:

∂kδλ3 = λ3 · (∂̃kM) · λ3 + (∂̃kL) · M · λ3 + λ3 · M · ∂̃kL,

λ3 = L − δλ3, (31)

where the matrix elements are denoted by

λ3(q, q ′),

L(q, q ′)

= h2
ϕ

4qq ′ log
qq ′ + q2 + q ′2 − σA + Rk,F

−qq ′ + q2 + q ′2 − σA + Rk,F
,
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M(q, q ′)

= 8πdqq2

h2
ϕ

( − a−1 + Rk,ϕ
8π
h2

ϕ
+

√
3
4q2 − σA + k2 + Rk,F/2

) δq,q ′ .

(32)

The matrix M is diagonal and includes the momentum space
measure dqq2. Furthermore, matrix multiplication means
integration over a momentum variable.5

Equation (30) represents a matrix equation which may
be solved numerically. However, in the limit where the
relative cutoff scale c → ∞ [cf. Eq. (11)], the equation can
be integrated analytically, with a solution that shows the
equivalence to the STM equation in this limit.

To see this most straightforwardly, we introduce a rescaled
cutoff momentum k′ = c1/2k and then draw the limit c →
∞, k′ = const.6 The bosonic regulator then remains constant,
while the implicit scale dependence of the boson propagator
and the fermionic regulator are suppressed ∼ c−1. In particular,
for c → ∞, we have

∂̃k′M(c−1) → ∂k′M(0), L(c−1) → L(0),
(33)

∂̃k′L(c−1) → 0.

The scale derivative ∂̃k′ reduces to a total derivative in the limit
c → ∞. Equation (30) thus reduces to ∂k′δλ3 = λ3 · (∂k′M) ·
λ3, which can be brought in a closed form for λ3 since L is
k′-independent in the above limit,

∂k′λ3 = −λ3 · (∂k′M) · λ3,

or

λ−1
3 · (∂k′λ3) · λ−1

3 = −∂k′λ−1
3 = −∂k′M. (34)

This equation can be integrated straightforwardly with the
result

λ3 = (1 + L · M)−1 · L. (35)

Here λ3 denotes the full fermion-dimer vertex in the limit k′ →
0 where all fluctuations are included. Furthermore, the flow
is initialized with λ3,k′=k′

in
= L, since for k′ = k′

in all virtual
processes are suppressed and only the tree-level graph L is
present by construction of the flow equation.

At this point we observe that quite remarkably, the limit
c → ∞ leads to a solution of the flow equation, which
is independent of the choice of the cutoff function. All
regularization scheme dependences drop out in this limit. This
is because (i) the variables of the differential equation can be
separated, and (ii) the function on the rhs of Eq. (34) becomes
a total derivative. This property is lost if c is taken finite.

We are now in the position to directly compare this result to
the STM integral equation [1,20,21]. Expressed in the above
matrix notation it reads

λ3 = L − L · M · λ3. (36)

5For the numerical solution we have discretized Eq. (31) on a
logarithmically spaced two-dimensional momentum grid.

6In order to find hϕ-independent results appropriate for the broad
resonance limit we need to scale c ∝ h2

ϕ/(8π ), similar to the
detuning ν.

(For a graphical representation, cf. Fig. 2.) This equation is
indeed solved by Eq. (35).

Thus, we reproduce the STM equation in the limit where the
relative cutoff scale c → ∞. From the RG point of view, this
limit implies that the fermions have already been integrated
out at the UV scale where the flow is initialized. Both the
bosonic propagator Pϕ,k′ = Pϕ,c−1k → Pϕ,0 and the tree level
graph Lk′ = Lc−1k → L0 take their infrared values in the limit
c → ∞ already at the initial stage of the RG evolution. Both
these quantities are obtained from the elimination of the
fermionic degrees of freedom. Hence we recover the STM
picture where both the boson propagator and the fermionic
tree level graph are considered as “fundamental” propagators
and couplings, in the sense that they serve as the ingredients
which allow to construct the Feynman diagrams of an effective
theory describing fermion-dimer scattering.

From the RG perspective it appears more natural that
fermionic and bosonic degrees of freedom are integrated out
simultaneously instead of first eliminating the fermions and
then the bosons. This is especially true since the bosons are not
fundamental but build up dynamically as fluctuation induced
fermionic bound states. However, the fermions are gapped
with half the binding energy −σA = −εM/2, while the bosons
become massless in the IR limit. In view of a judicious choice
of c, we may use a simple optimization argument [29]. The flow
is initialized at k2 � −σA. In this regime the cutoff function
strongly suppresses the flow and the choice of c is obviously
arbitrary to a large extent. When k2 >∼ −σA we observe the
onset of nonzero flow. Fermions and bosons couple to each
other. The optimization sketched below Eq. (11) requires equal
effective mass terms for fermions and dimers k2 − σA ≈ ck2.
Thus c ≈ 1 − σA/k2 and we conclude a large optimal value of
c in the relevant flow regime k2 <∼ −σA. We emphasize that the
large value of c is due to the gap −σA in the fermion propagator.
This indicates that only small corrections can be expected
once a full optimization program is implemented. This issue
will be addressed in future work. Our simple prescription
yields a3/a = 1.22. In Fig. 4 we illustrate the impact of the
choice of a k-independent relative cutoff scale on the result
for the scattering length ratio a3/a for a wide range of c. A
c-independent plateau is already reached for 8πc/h2

ϕ ≈ 10.

a
3

/a

8π c /h 2
ϕ

0.001 0.01 0.1 1 10 100 1000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

FIG. 4. Dependence of the scattering lengths ratio a3/a on the
relative cutoff scale c. For c → ∞, the fermions are integrated out
completely when the flow is initialized and the STM equation (lower
dashed line, a3/a = 1.18) is matched. Furthermore, the tree level
scattering length ratio a

(cl)
3 /a = 8/3 is indicated (upper dashed line).
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The shape of the curve in Fig. 4 in the regime of small c will
depend on the choice of the cutoff functions, and only in the
limit c → ∞ do we obtain regularization scheme independent
results. For finite c, further optimization—by changing the
shape of the cutoff function [27–29]—will reduce the cutoff
dependence, and presumably also lower the absolute value of
a3/a.

Finally, we specify the relation between the vertex function
λ3(p1, p2) in the infrared limit k → 0, and the fermion-dimer
scattering length a3 ∼ λ3(0, 0). The proportionality factor is
obtained in the following way: First, the boson propagator has
a nontrivial wave function renormalization Zϕ = h2

ϕa/(32π )
[cf. Eq. (24)]. Absorbing it into the boson field to achieve
a standard normalization of the frequency term, we find a
renormalized vertex λ3,R = λ3/Zϕ . The dimensionful version
of the vertex (λ̂3 = λ3/(2Mk̂)) at zero momenta is related
to the dimensionful fermion-dimer scattering length â3 by
the standard relation, λ̂3/Zϕ = (2π/Mred) â3, where Mred =
2M/3 is the reduced mass of atom and dimer. Expressing
these relations in dimensionless form, we get

a3 = λ3,R(0, 0)

6π
. (37)

VI. CONCLUSIONS

In this paper we have studied fermion-dimer scattering
in the framework of FRG equations. In a systematic vertex
expansion for the effective action, we derive the fully mo-
mentum dependent flow equations governing the two- and
three-particle sector of the theory. The sectors form a hierarchy
in the sense that the three-particle sector is determined by the
two-body equations, but does not feed back into the latter. Our
flow equations involve diagrams with inner fermion lines only
as well as mixed diagrams, where both fermion and boson
propagators appear in the loop diagrams.

We investigate in detail the relationship between the FRG
equation for the fermion-dimer scattering vertex, and the STM
integral equation. In our flow equation approach, the starting
point is a Yukawa-type theory for fermions and auxiliary, non-
dynamical bosons after Hubbard-Stratonovic transformation
on the level of the classical or microscopic theory. We then
derive the flow equations for the two- and three-particle sector
of a theory for fundamental interacting fermions from first
principles, i.e., a systematic vertex expansion of the exact
flow equation for the effective action. In the two-particle
sector, the dimer propagator is generated gradually in the
RG flow. In the three particle sector, we encounter a flow
equation which is diagrammatically equivalent to the STM
equation. In our regularization scheme, we can choose the
relative scale c at which fermions and bosons are integrated
out. Typically, fermionic and bosonic degrees of freedom are
integrated out simultaneously in RG treatments, accounting
for the fact that the dimers are not the elementary particles in
the original purely fermionic theory. In this work, however, we
employ the limit c → ∞, where the fermions are integrated
out completely already at the initial stage of the RG evolu-
tion. Then we can integrate the momentum dependent flow
equation for the fermion-dimer scattering vertex analytically
and show the equivalence to the STM equation, implying a

ratio of fermion-dimer to fermion-fermion scattering length
a3/a = 1.18. We argue that the limit of large values for c

is physically sensible, since the fermions are gapped by half
the binding energy, while the dimers become massless for
positive scattering lengths (cf. Sec. III). We further show that
the limit c → ∞ is independent of the choice of the cutoff
function. Thus the FRG treatment is suited to rederive the
STM result correctly. We see this methodolocigal aspect as
the main contribution of the present work.

Furthermore, the techniques developed in this paper can
readily be generalized. One direction of future work is to
investigate the effects of an effective range, obtained by
considering smaller values for the Feshbach coupling hϕ .
Furthermore, a fermionic background coupling, corresponding
to scattering in the open channel in the atomic physics context,
may easily be included in our framework. A further goal
is the treatment of the four-body problem in the presence
of a positive scattering length, i.e., dimer-dimer scattering
[20,21,30]. The 1PI four-body scattering amplitude 〈ϕϕ∗ϕϕ∗〉
is described by a dimer-dimer vertex and can be derived along
the lines presented above. A preliminary analysis reveals that
the fermion-dimer vertex feeds into the flow for dimer-dimer
scattering. Taking this coupling into account produces the
same diagrammatic topologies as found in the constructions
[20,21], which go beyond the resummation of the bosonic
particle-particle ladder performed in [25,31]. Furthermore,
the hierarchy of the sectors with different particle number is
respected: The dimer-dimer coupling (four-particle sector) is
affected by the couplings in the two- and three-particle sectors,
but does not feed back in the vacuum limit.

Our results are also relevant for a quantitatively accurate
description of the BEC regime in the BCS-BEC crossover
problem [24,26,32]: As long as the binding energy of a dimer
is the largest energy scale in the problem, the molecules should
act as point-like entities. Therefore, the many-body physics is
expected to be completely determined by the value of the
dimer-dimer scattering length. As argued above, the dimer-
dimer scattering length is in turn affected by fermion-dimer
scattering.

Indeed, it has has been demonstrated recently that the value
of the dimer-dimer scattering length in vacuum is directly
reflected in many-body observables at low temperatures [17].
The formalism provided here is not bound to the physical
vacuum, and effects of finite temperature and particle density
can be straightforwardly included. Our technical developments
are therefore useful for future studies of the BCS-BEC
crossover, and may be seen as the first steps toward an approach
which combines quantitative precision with a high degree of
analytical insight into the crossover problem.
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