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Neutron negative central charge density: An inclusive-exclusive connection
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Models of generalized parton distributions at zero skewness are used to relate the behavior of deep inelastic
scattering quark distributions, evaluated at high x, to the transverse charge density evaluated at small distances.
We obtain an interpretation of the recently obtained negative central charge density of the neutron. The d quarks
dominate the neutron structure function for large values of Bjorken x, where the large momentum of the struck
quark has a significant impact on determining the center of momentum and thus the “center” of the nucleon in
the transverse position plane.
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Much experimental technique, effort, and ingenuity has
been used recently to measure the electromagnetic form factors
of the nucleon [1–4]. These quantities are probability ampli-
tudes that the nucleon can absorb a given amount of momentum
and remain in the ground state, and therefore should determine
the nucleon charge and magnetization densities.

In the nonrelativistic case, the form factors are simply
the Fourier transforms of the rest frame spatial distributions,
and the charge and magnetization mean square radii are
derived from the slope of the form factors at Q2 = 0. In the
relativistic case, this interpretation is not correct because the
wave functions of the initial and final nucleons have different
momenta and therefore differ, invalidating a probability or
density interpretation. This is addressed by working in the Breit
frame, where the magnitude of the initial and final nucleon
momenta are identical. However, one needs boost corrections
of order Q2/m2, where m2 is the mass of the constituent
particles to which the boost is applied, to relate the rest frame
and moving nucleon wave functions. These corrections are
model dependent [5], so the use of the Breit frame does not
provide a precise, model-independent measure of the spatial
distribution of the nucleon.

A recent work showed that it is possible to obtain a model-
independent nucleon charge density [6]. In the infinite mo-
mentum frame (IMF), the two-dimensional Fourier transform
of the elastic form factor F1 provides a model-independent
transverse charge distribution, ρ⊥(b), where b is the distance
from the center of momentum in the transverse plane. The
use of existing data and convenient parametrizations [7,8]
yielded a central charge density of the neutron, ρn

⊥(b = 0),
that is negative. We also note that the two-dimensional Fourier
transform of F2 can be interpreted as a magnetization density
[9] and that this yields a difference between the magnetic and
electric radii in the proton.

These findings appear to contradict previous understanding
of the nucleon charge and magnetization distributions based
on the model-dependent extraction of the rest frame charge
distributions. The negative core of the neutron transverse
density also contradicts previous intuition that the component
in which the neutron is represented as a proton surrounded by a

negatively charged pion cloud causes the central charge density
to be positive. This negative core is a feature even in models
that include a pion cloud effect to reproduce the measured
values of Fn

1 . It is therefore important to understand the
differences between this model-independent transverse charge
density and the rest frame charge density to fully understand
the new features of the transverse spatial distributions.

Our goal is to obtain further information about the neutron
charge density by using generalized parton distributions
(GPDs) that contain information about the longitudinal mo-
mentum fraction x as well as the transverse position b. Exper-
imental information regarding the x dependence is obtained
by using GPDs to reproduce both deep inelastic scattering and
elastic scattering data. Thus we use this inclusive-exclusive
connection to better understand the central neutron charge
density.

To start the analysis, we recall that form factors are matrix
elements of the electromagnetic current operator Jµ(xν) in
units of the proton charge. The momentum transfer q is
space-like, so that Q2 ≡ −q2 > 0. The normalization is such
that F1(0) is the nucleon charge, and F2(0) is the proton
anomalous magnetic moment. The Sachs electric and magnetic
form factors are given by GE = F1 − (Q2/4M2)F2 and GM =
F1 + F2.

The widely studied GPDs [10,11] are of high current
interest because they can be related to the total angular
momentum carried by quarks in the nucleon. We consider the
specific case in which the longitudinal momentum transfer ξ

is zero, and the initial and final nucleon helicities are identical
(λ′ = λ). Then, in the light-cone gauge, A+ = 0, the matrix
element defining the GPD Hq for a quark of flavor q and zero
skewness is

Hq(x, t) = 〈p+, p′, λ|Ôq(x, 0)|p+, p, λ〉, (1)

where

Ôq(x, b) ≡
∫

dx−

4π
q
†
+

(
−x−

2
, b

)
q+

(
x−

2
, b

)
eixp+x−

. (2)

We abbreviate Hq(x, ξ = 0, t) ≡ Hq(x, t) and −t = −(p′ −
p)2 = (p′ − p)2 = Q2. The simple form of t results from
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its invariance under transverse boosts [12]: Lorentz trans-
formations, defined by a transverse vector v that transforms
a four-vector k according to k+ → k+, k → k − k+v, and
k− such that k2 is unchanged. These quantities are part of
a kinematic subgroup of the Poincaré group that obeys the
same commutation relations as those among the generators
of the Galilean transformations for nonrelativistic quantum
mechanics in the transverse plane.

GPDs allow for a unified description of a number of
hadronic properties [10]. The most relevant for us are that for
t = 0 they reduce to conventional PDFs, Hq(x, 0) = q(x), and
that the integration of the charge-weighted Hq over x yields
the nucleon electromagnetic form factor:

F1(t) =
∑

q

eq

∫
dxHq (x, t). (3)

The spatial structure of a nucleon can be examined [13–16]
using nucleonic states that are transversely localized. The state
with transverse center of mass R set to 0, |p+, R = 0, λ〉 is
formed by taking a linear superposition of states of transverse
momentum. Maintaining the interpretation that this state is
that of a nucleon with a well-defined longitudinal momentum
requires the use of a frame with infinitely large p+.

The impact parameter-dependent PDF [16] is the matrix
element of the operator Ôq in the state |p+, R = 0, λ〉:

ρ
q

⊥(b, x) ≡ 〈p+, R = 0, λ|Ôq(x, b)|p+, R = 0, λ〉. (4)

We use the notation ρ
q

⊥(b, x) instead of the originally defined
[16] q(x, b) because the quantity truly is a density, giving
the probability that the quark has a longitudinal momentum
fraction x and is at a transverse position b. The quantity
ρ

q

⊥(b, x) is the two-dimensional Fourier transform of the GPD
Hq :

ρ
q

⊥(b, x) =
∫

d2q

(2π )2
e−i q·bHq(x, t = −q2), (5)

with Hq appearing because the initial and final helicities are
each λ. A complete determination of Hq(x, t) (with t � 0)
would determine ρ⊥(x, b).

One can extract the form factor F1 [14] by integrating
ρ

q

⊥(b, x) over all values of x, multiplying by the quark charge
eq , and summing over quark flavors q. The resulting IMF
charge density in transverse space is

ρN
⊥ (b) ≡

∑
q

eq

∫
dx ρ

q

⊥(b, x)

=
∫

d2q

(2π )2
F1(Q2 = q2)e−i q·b. (6)

This quantity gives the charge density at a transverse position
b irrespective of the longitudinal momentum fraction. The
primary difference between the present charge density ρ⊥(b)
and the older interpretation that the charge density is the
three-dimensional Fourier transform of GE is that the present
approach provides a model-independent, two-dimensional
charge distribution in the plane transverse to the motion
of the nucleon in the infinite momentum frame. The boost
corrections here are simply kinematic and are incorporated in

the formalism. In the older interpretation, the model-dependent
boost corrections cannot be avoided.

Our aim is to investigate ρ⊥(b, x) to understand the origin
of the neutron’s negative central charge density. The quantities
are not measured directly, but have been obtained from models
that incorporate fits to parton distributions and electromagnetic
nucleon form factors [17–20]. This method exploits form
factor sum rules at zero skewness, obtained neglecting the
effects of strangeness, to obtain information regarding the
valence quark GPDs, H

q
v ≡ Hq − Hq̄ . This yields the net

contribution to the form factors from quarks and anti-quarks,
although it does not correspond to the valence distribution
within a model for which sea distributions for quarks and
antiquarks have different x or t dependencies. To proceed
further one must model the GPDs, and the results can be
expected to depend on the chosen forms. Diehl et al. [17]
use

Hq
v (x, t) = qv(x) exp[fq(x)t], (7)

where

fq(x) = [α′ log[1/x] + Bq](1 − x)3 + Aqx(1 − x)2 (8)

is the form that gives the best fit to the data. The parameter α′
represents the slope of the Regge trajectory (α′ = 0.9 GeV2),
and the CTEQ6 PDFs [21] are taken as input. Here we
use the best fit parameters, taken from the second line of
Table 8 of Ref. [17]. These are Au = 1.26 GeV−2, Bu =
0.59 GeV−2, Ad = 3.82 GeV−2, and Bd = 0.32 GeV−2. We
note that the labels u and d here refer to the u and d quarks
in the proton. These correspond to d and u quarks in the
neutron, if charge symmetry [22–25] is upheld. It is well
known that for the proton, 2dv/uv falls rapidly for large
values of x, which means that u quarks dominate the parton
distribution for large values of x. This means that in the
neutron, the d quarks dominate the parton distribution for large
values of x. The distributions of Ref. [18] have Aq = Bq = 0
and fq(x) = [α′

q log[1/x]](1 − x). Those of Ref. [19] have a
more complicated form and also include the constraint that
the nucleon consists of three quarks at an initial scale of
Q2

0 = 0.094 GeV2.
Our goal here is to examine the connection between regions

of x and regions of b. To do this we define

ρ
q

⊥(b,�x) ≡
∫

�x

dx eqρ
q

⊥(b, x), (9)

where eq is the quark charge in units of the proton charge (eu =
2/3, ed = −1/3) with ρ

p,n

⊥ being obtained from appropriate
sums of ρ

q

⊥. This represents the contribution to the charge
density from quarks in the x region defined by �x.

An important feature of the present approach is that these
charge distributions are taken with respect to the center
of momentum in the transverse plane. Thus, the transverse
position b is taken with respect to the momentum-weighted
average position of all partons, including the struck quark.
At low x, the struck quark has little impact on the center
of momentum, and this corresponds to the intuitive picture
of spatial distribution. At large x, the struck quark plays a
significant role in defining the CM, and so distribution becomes
localized at small values of b. This can be seen in Fig. 1,
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FIG. 1. (Color online) The proton transverse charge density,
ρ

p

⊥(b,�x), for quarks in different �x regions: x < 0.15 (solid),
0.15 < x < 0.3 (long-dash), 0.3 < x < 0.5 (short-dash), and x >

0.5 (dotted). The curves are calculated from the GPD of Ref. [17]
and have been normalized to unity at b = 0.

where for x ≈ 0.1, the half-maximum width is 0.5 fm, while
for x ≈ 0.8 it is 0.12 fm. The curves have been scaled to
yield unity at b = 0, to emphasize the variation in width. The
four �x regions yield 58, 25, 14, and 3% of the total charge,
with the largest contributions coming from the bins with the
smallest values of x. Thus the large x quarks, dominantly u

quarks in the proton, play an increasingly prominent role in the
charge distribution at small values of b. The figure obtained
using the Guidal et al. [18] parametrization for the GPDs is
barely distinguishable from Fig. 1. The GPDs of Ref. [19] also
have a strong tendency to be constrained to smaller and smaller
values of b as the value of x increases. We evaluate the GPDs
of all three models using the starting scale Q2

0 of each model.
Now consider the charge distribution of the neutron. We

expect that the d quarks dominate at large x and therefore
become important at small values of b. Because the distribution
of quarks at large x will be highly localized near b = 0,
a negative peak can be formed if the large x distribution
is sufficiently dominated by down quarks, thus yielding a
significant contribution of negative charge at large enough
x. At very low x values, the valence distribution for up
quarks in the neutron is roughly half that of the down quarks,
dn

v (x)/un
v(x) ≈ 2, and the net charge coming from u and d

quarks will approximately cancel, although the distribution
as a function of b need not be zero everywhere. Above
x = 0.5, dn

v (x) is at least three times the size of un
v(x) and

increases with x. So for x > 0.5 the net impact to the charge
distribution will be negative and will be peaked at smaller
values of b. We show this explicitly in Fig. 2, where we separate
the contributions to the neutron charge density from u and d

quarks based on the GPD fit of Ref. [17]. The distributions
of Refs. [18] and [19] yield somewhat different results, but
they exhibit the same qualitative behavior. For example, the
GPDs of Ref. [17] shown in Fig. 2 find a negative central
neutron charge density for values of x between 0.15 and 0.3
and between 0.3 and 0.465, but for the the GPDs of Ref. [18]
the central density is positive unless x is slightly greater than
0.465.

The next step is to examine the total charge distribution
of the neutron. Figure 3 separates the contributions from low
and high x regions. For x < 0.23 the charge distribution is
positive for b < 1.5 fm and slightly negative distribution at

FIG. 2. (Color online) The u and d quark contributions to the
neutron transverse charge density, ρu

⊥(b, �x) and ρd
⊥(b, �x). Here

the quark flavor refers to the neutron (u in the proton is d in the
neutron). The curves correspond to the same �x regions as in Fig. 1.
The largest contributions come from small x, where u and d quarks
contribute roughly equal amounts of charge. As one goes to larger x

values, the charge is shifted to smaller values of b, while at the same
time the contribution from the up quarks drops rapidly with respect to
the down quarks, due to the rapid falloff of the neutron u to d quark
ratio at large x.

larger radii. For x > 0.23, the contribution is largely negative
and highly localized below 0.5 fm. The negative region at the
center of the neutron transverse charge distribution arises as
a natural consequence of the model-independent definition of
the charge density. The low momentum partons have a larger
spatial extent and reproduce the intuitive result of the pion
cloud picture: a positive core with a small negative tail at large
distances.

A more intuitive picture of the charge distribution can be
obtained by looking at the distribution of charge relative to the
spectator partons, so that the struck quark does not influence
the definition of the center of mass. This can be approximated
by looking at the position of the struck quark relative to the
spectators. We work in the transverse plane, with the origin set
to the center of momentum, giving

∑
i xibi = 0. For a struck

quark at (x1, b1) ≡ (x, b), we can determine the momentum-
weighted spectator position, bspec, and the relative distance

FIG. 3. (Color online) Transverse charge density for the neutron.
The dotted line is the contribution from x < 0.23, the dashed line is
that for x > 0.23, and the solid line is the total.

032201-3



RAPID COMMUNICATIONS

GERALD A. MILLER AND JOHN ARRINGTON PHYSICAL REVIEW C 78, 032201(R) (2008)

FIG. 4. (Color online) The u and d quark contributions to
ρ

Spec,n
⊥ (Brel, x), see Eq. (12), vs Brel for x = 0.1 (solid), 0.3 (long-

dash), 0.5 (short-dash), and 0.7 (dotted). The curves are scaled to
unity at Brel = 0. Here the quark flavor refers to the neutron (u in the
proton is d in the neutron).

from the struck quark to the spectator quarks:

x1b1 +
∑
i>1

xibi = xb + (1 − x)bspec = 0, (10)

Brel = b − bspec = b
(1 − x)

= Brel. (11)

We exhibit the dependence on Brel by defining the function

ρ
Spec
⊥ (Brel, x) ≡ ρ⊥(Brel(1 − x), x), (12)

which gives the probability that a struck quark of longitudinal
momentum fraction x is a distance Brel away from the spectator
center of momentum. Figure 4 shows this rescaled version of
ρ⊥(b), with the contribution at each x value normalized to unity

at b = 0. The quantity ρ
Spec
⊥ (Brel, x) cannot be determined in a

model-independent manner, but may be a better approximation
to our intuitive picture of the charge distribution, as it removes
the influence of the struck quark on defining the center of the
nucleon. While the charge distribution coming from very low x

quarks has a greater spatial extent, the decreasing width of the
ρ⊥(b) distribution for large x quarks is essentially completely
removed when looking at Brel.

Before concluding, it is worthwhile to comment on the
relation between the present work and the difference between
the electric and magnetic radii of the proton [9]. In the model-
independent, IMF approach presented here, the electric and
magnetic transverse radii have a clear connection to F1 and
F2 and a Foldy [26] term causes a difference between the
transverse radii. The Foldy term is responsible for most of
the charge radius defined by GE . Understanding the neutron’s
negative central density is more subtle and requires knowledge
of ρ(x, b).

We summarize our findings with the statement that, using
the model GPDs of Refs. [17–19], the dominance of the
neutron’s d quarks at high values of x leads to a negative
contribution to the charge density which, due to the definition
of b, becomes localized near the center of mass of the neutron.
This localization does not appear when examined as a function
of the position of the struck quark relative to the spectators.
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