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Nuclear stopping and sideward-flow correlation from 0.35A to 200A GeV
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The correlation between the nuclear stopping and the scale invariant nucleon sideward flow at energies ranging
from those available at the GSI heavy ion synchrotron (SIS) to those at the CERN Super Proton Synchrotron
(SPS) is studied within ultrarelativistic quantum molecular dynamics (UrQMD). The universal behavior of the
two experimental observables for various colliding systems and scale impact parameters are found to be highly
correlated with each other. As there is no phase transition mechanism involved in the UrQMD, the correlation
may be broken down by the sudden change of the bulk properties of the nuclear matter, such as the formation
of quark-gluon plasma (QGP), which can be employed as a QGP phase transition signal in high-energy heavy
ion collisions. Furthermore, we also point out that the appearance of a breakdown of the correlation may be a
powerful tool for searching for the critical point on the QCD phase diagram.
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In recent years, the main aim of studies of ultra-
relativistic high-energy heavy ion collisions (HICs) per-
formed at the CERN Super Proton Synchrotron (SPS)
(
√

sNN ∼ 10A GeV) and the BNL Relativistic Heavy Ion
Collider (RHIC)(

√
sNN ∼ 200A GeV) has been to search for

a new form of matter with partonic degrees of freedom, the
so-called quark-gluon plasma (QGP) [1–4]. Although great
effort has been made, no dramatic changes of experimental ob-
servables, such as jet quenching, elliptic flow, and strangeness
enhancement, have been observed yet, and it is hard to make
a solid conclusion for the occurrence of the QGP phase
transition [5]. Recently, an energy scan program has been
proposed for RHIC to perform HIC experiments with lower
c.m. energy to search for the critical point [6–8], which is an
endpoint of the first-order phase transition line on the QCD
phase diagram. If the critical point exists, it should appear
on the QGP transition boundary at higher baryon chemical
potential and lower colliding energy [9,10]. To extract the
QGP phase transition signal, a large number of possible
experimental probes, such as particle ratio and collective flow,
have been proposed. The time evolution of temperature and
baryon chemical potential of the different colliding nuclei
with various colliding energies would be mapping a much
broader T -µB region on the QCD phase diagram than for a
single nucleus. However, it is complicated to uniformly and
systematically obtain an unambiguous experimental signal for
the QGP phase transition and to also mark the location of the
critical point on the QCD phase diagram; one of the possible
choices is to obtain insight into the universal correlation pattern
of two experimental observables for various colliding systems
(system size and beam energy). Thus, the complication of
colliding-system dependence in searching for phase transition
signals can be reduced.

In this work, the correlation between the nuclear stop-
ping and scale invariant nucleon sideward flow within the
framework of the UrQMD model from energies available
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at the GSI heavy ion synchrotron (SIS) to SPS energies
has been found for various scale impact parameters 0 <

b0 = b/bmax < 1, not just for global fixed impact parameters
as in Ref. [11]. The scale invariant nucleon sideward flow
is defined as F̃ (b0) = ∂(〈px

c.m./A〉/pproj
c.m.)/∂(yc.m./y

proj
c.m.)

∣∣
[−1,1],

first proposed in Ref. [12], the linear fitting slope of the
normalized rapidity dependence of the normalized average
in reaction plane transverse momentum with a fitting range
of −1 < yc.m./y

proj
c.m. < 1, where 〈px

c.m./A〉 is the average trans-
verse momentum projected in the reaction plane per nucleon,
p

proj
c.m. is the projectile momentum in the center-of-mass system

(c.m.s.), and yc.m. and y
proj
c.m. are the nucleon rapidity and

projectile rapidity in the c.m.s., respectively. The nuclear
stopping ratio R as a measurement of degree of stopping
of colliding nuclei at scale impact parameter b0, suggested
in Refs. [13,14], is expressed as R(b0) = 2

π

∑
i |pti |/

∑
i |pzi |,

where pti and pzi are transverse and longitudinal momenta
of the ith outgoing particle in the c.m.s., respectively. A
colliding-system-dependent variable ρmb is also introduced as
a normalization factor for later calculations. It is defined as
ρmb(A,Elab) = MB(0) × u

proj
c.m./A

4/3, where the MB(0) stands
for the meson-to-baryon ratio for central collision (b0 = 0),
u

proj
c.m. = β

proj
c.m.γ

proj
c.m. is the spatial component of four-velocity of

the projectile in the c.m.s., and A is the mass number of a
nucleus in the symmetric colliding system. The overlapping
volume of two colliding nuclei and the nuclear passing
time for central collisions, respectively, satisfy V ∝ A, and
tpass = r/u

proj
c.m. ∝ A1/3/u

proj
c.m., where r is the radius of nuclei.

Thus, we have ρmb ∝ MB(0)/(V tpass), standing for the meson-
to-baryon ratio per unit volume per passing time in the central
collisions, which is used to characterize the strength of particle
production at early stage [15].

The UrQMD model [16] used here is a type of numerical
transport model, which is based on the quark, diquark, string,
and hadronic degrees of freedom. It includes 50 different
baryon species (nucleon, hyperon, and their resonances up
to 2.11 GeV) and 25 different meson species. Two types
of equation of state, the hard EOS with incompressibility
K = 380 MeV (only for beam energy up to 4A GeV) and the
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cascade EOS, are contained in the UrQMD model. The model
has successfully been applied to reproduce the experimental
results from SIS to SPS energies [17].

A group of symmetric colliding nuclei with five pairs,
197Au + 197Au, 129Xe + 129Xe, 96Ru + 96Ru, 58Ni + 58Ni, and
40Ca + 40Ca, are combined with 30 and 12 incident kinetic
energies as follows. The first combination includes a total of
150 = 5 × 30 colliding systems with 30 beam energies per
nucleon from 0.35 to 200 GeV (0.35, 0.5, 0.66, 0.83, 1.0,
1.5, 2.0, 3.0, 4.0, 5.3, 6.6, 8.0, 10.0, 10.93, 11.9, 12.9, 13.93,
15, 16.9, 17.92, 18.95, 20, 24.22, 36.0, 55.0, 76.92, 102.33,
131.33, 163.36, 200.0) for each pair of the colliding nuclei. The
second one includes a total of 60 = 5 × 12 colliding systems
with 12 beam energies per nucleon from 0.35 to 3.9 GeV (0.35,
0.5, 0.66, 0.83, 1.0, 1.5, 2.0, 2.35, 2.7, 3.1, 3.5, 3.9). They
are researched with the cascade and hard EOSs of UrQMD,
respectively.

Figure 1 shows the beam energy and system-size depen-
dence of the central (b0 = 0) nuclear stopping ratio R(0)
and the predefined variable ρmb as well as the semicentral
(0.3 < b0 < 0.4) scale invariant nucleon sideward flow F̃ (b0)
with the cascade EOS. In the left panels of Fig. 1, the R(0) and
F̃ (b0) both decrease monotonously with the beam energy per
nucleon from 0.35 to 200 GeV for three pairs of symmetric
colliding nuclei, Au + Au, Ru + Ru, and Ca + Ca; and a larger
nuclear stopping ratio is observed for heavier colliding nuclei
than for the lighter one for a fixed beam energy. More detailed
information on the system-size dependence of R(0) and F̃ (b0)
is illustrated in the right panels of Fig. 1. Both R(0) and
F̃ (b0) increase monotonously with mass number A, which
is proportional to the size of the colliding system. The defined
variable ρmb, increasing with beam energy and decreasing with
system size, is also shown in the lower panel of Fig. 1.

With the cascade EOS in UrQMD, the observables
R(0), ρmb, and F̃ (b0), with nonzero b0 satisfying 0 < b0 < 0.8
and with an interval of 0.1, are calculated for the mentioned
150 colliding systems with beam energy per nucleon from 0.35
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FIG. 1. (Color online) Left panels: excitation function of the
central nuclear stopping ratio, the variable ρmb, and the semicentral
(0.3 < b0 < 0.4) scale invariant nucleon sideward flow. Right panels:
system-size dependence of the three experimental observables.
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FIG. 2. (Color online) Correlation between the central nuclear
stopping ratio and scale invariant nucleon sideward flow, with b0

varying from 0.2 to 0.6 and an interval of 0.1, calculated for the
mentioned 150 colliding systems within the cascade EOS. The solid
line in each panel is the linear fit of the corresponding correlation.

to 200 GeV. After the logarithmic operations are performed on
both normalized nuclear stopping R(0)/ρmb and normalized
scale invariant nucleon sideward flow F̃ (b0)/ρmb, the resulting
two variables, ln[R(0)/ρmb] and ln[F̃ (b0)/ρmb], show strong
universal correlation for various colliding systems with a given
b0 bin. For illustration, the correlation with the b0 from 0.2 to
0.6 and the corresponding linear fit line are shown in Fig. 2.
For the hard EOS case, the results of the mentioned 60 colliding
systems with beam energy per nucleon from 0.35 to 3.9 GeV
are shown in Fig. 3. The superposed solid line shown in Figs. 2
and 3 are the results of the linear fit for the corresponding
correlation.

By the linear fit of the correlation in Figs. 2 and 3, the
analytic relation between the two variables R(0) and F̃ (b0)
can be expressed as

ln

[
R(0)

ρmb

]
= L × ln

[
F̃ (b0)

ρmb

]
+ m, (1)
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FIG. 3. (Color online) Correlation between the central nuclear
stopping ratio and scale invariant nucleon sideward flow, with b0

varying from 0.2 to 0.6 and an interval of 0.1, are calculated for the
mentioned 60 colliding systems within the hard EOS. The solid line
in each panel is the linear fit of the corresponding correlation.
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FIG. 4. (Color online) Dependence of fitting parameters slope L

and intercept m on the scale impact parameters bF
0 and bR

0 for the
cascade and hard nuclear EOSs.

where the two fitting parameters L and m are introduced
to represent the slope and intercept, respectively. Generally
speaking, there is nothing particular for any of the two variables
R and F̃ , and they are of equal importance. Actually, it
is found that not only the central stopping ratio, but also
the noncentral nuclear stopping ratio is correlated with the
scale invariant nucleon flow F̃ (b0), which means for two
independent scale impact parameters bR

0 and bF
0 , the relation

between the corresponding R(bR
0 ) and F̃ (bF

0 ) can be expressed
as

ln

[
R

(
bR

0

)
ρmb

]
= L × ln

[
F̃

(
bF

0

)
ρmb

]
+ m. (2)

The fitting parameters L and m, depending on both bF
0

and bR
0 for the cascade and hard nuclear EOS cases, are

illustrated in Fig. 4. In the two upper panels of Fig. 4, L

shows almost no dependence on bF
0 and bR

0 , and it is larger
for the hard EOS than for the cascade one. Thus, L can
be regarded as a constant parameter for characterizing the
nuclear EOS. In contrast, m is strongly affected by bF

0 , bR
0

and also by the different nuclear EOS, as seen in the lower
panels of Fig. 4. The two parameters are both colliding-system
independent, as they both are universal fitting parameters for
various colliding systems. The parameter m = m(bF

0 , bR
0 ) is

only a function of bF
0 and bR

0 , and the so-called correlation
function C(bF

0 , bR
0 ) = e−m(bF

0 ,bR
0 ) is defined to describe the

correlation strength between the nuclear stopping ratio R(bR
0 )

and scale invariant nucleon sideward flow F̃ (bF
0 ). Two new

variables R∗(bR
0 ) = R(bR

0 )/ρmb and F̃ ∗(bF
0 ) = F̃ (bF

0 )/ρmb are
defined for simplification of Eq. (2). Then, it can be rewritten
as

F̃ ∗(bF
0

) = (
R∗(bR

0

)
C

(
bF

0 , bR
0

)) 1
L , (3)

where the correlation function, 0 < C(bF
0 , bR

0 ) < 1, is only
related to bF

0 and bR
0 for a given nuclear EOS.

The colliding-system as well as scale-impact-parameter
dependence of a single experimental observable is further
investigated for any specific colliding system. From Eq. (3),
for any given bR

0 and bF
0 , the two correlative observables

are, respectively, calculated with two different scale impact

parameters, (bF1
0 , bF2

0 ) and (bR1
0 , bR2

0 ), so then we have

F̃
(
bF1

0

)
F̃

(
bF2

0

) = em(bF2
0 ,bR

0 )/L

em(bF1
0 ,bR

0 )/L
,

R
(
bR1

0

)
R

(
bR2

0

) = e−m(bF
0 ,bR2

0 )

e−m(bF
0 ,bR1

0 )
. (4)

The terms on the right side of the two equations in Eq. (4)
are colliding-system independent, and the two equations are
satisfied for any fixed bR

0 and bF
0 , respectively, which indicates

that the variables of the two observables F̃ (bF
0 ) and R(bR

0 )
can be separated into a colliding-system-dependent term
multiplied by a scale-impact-parameter-dependent term, that
is,

R
(
A,Elab, b

R
0

) = ξR(A,Elab) × ηR
(
bR

0

)
, (5)

F̃
(
A,Elab, b

F
0

) = ξF (A,Elab) × ηF
(
bF

0

)
. (6)

With the variable separable property, which is nontrivial
and not common for all the experimental observables, the
excitation properties of the correlative observables for any
scale impact parameter are the same. To better understand the
fitting parameters L and m, as well as the normalization factor
ρmb, Eqs. (5) and (6) are introduced into Eq. (2), then we obtain

ln

[
ξR(A,Elab)

ρmb

]
= L × ln

[
ξF (A,Elab)

ρmb

]
+ m

(
bF

0 , bR
0

)
+L × ln

[
ηF

(
bF

0

)] − ln
[
ηR

(
bR

0

)]
. (7)

As for various colliding systems (A,Elab) and scale impact
parameters (bF

0 , bR
0 ), for which Eq. (7) is always satisfied, we

have

ln

[
ξR(A,Elab)

ρmb

]
= L × ln

[
ξF (A,Elab)

ρmb

]
, (8)

m
(
bF

0 , bR
0

) = ln
[
ηR

(
bR

0

)] − L × ln
[
ηF

(
bF

0

)]
. (9)

Equation (8) demonstrates that the colliding-system-
dependent terms of the two correlative observables have been
connected by introducing a proper normalization factor ρmb,
which is also colliding-system dependent and may be not
unique for the present correlation or even not necessary for
other correlative analyses. In Eq. (8), the universal fitting
parameter L is uniquely determined by the colliding-system-
dependent properties of the two observables, that is the reason
the L is not related to the bF

0 and bR
0 for a given nuclear EOS

(see Fig. 4). Thus, it is supposed to be a constant characteristic
parameter for characterizing the nuclear intrinsic properties.
The variable separable properties of the two correlative
observables in Eqs. (5) and (6), and the analytic relation
between colliding-system-dependent terms in Eq. (8) are the
origin of the correlation presented by Eq. (2). As a consequence
of the correlation for various scale impact parameters, the
intercept parameter m can be expressed as Eq. (9), which
is the combination of the scale-impact-parameter-dependent
terms of the two correlative observables and without the cross
terms. Derived from Eqs. (5), (6), and (9), the differential of
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the parameter m(bF
0 , bR

0 ) can be written as

∂m

∂bR
0

= ∂ln
[
ηR

(
bR

0

)]
∂bR

0

= ∂ln
[
R

(
A,Elab, b

R
0

)]
∂bR

0

, (10)

− 1

L

∂m

∂bF
0

= ∂ln
[
ηF

(
bF

0

)]
∂bF

0

= ∂ln
[
F̃

(
A,Elab, b

F
0

)]
∂bF

0

. (11)

The differential of m(bF
0 , bR

0 ) in Eqs. (10) and (11) are only
related to bR

0 and bF
0 , respectively (see Fig. 4), and uniquely

determined by the corresponding experimental observable.
The colliding-system-dependent properties of the differential
of experimental observables in Eqs. (10) and (11) can be used
to validate whether the observables are variable separable or
not, which is a necessary and not sufficient condition for the
present correlation. Because Eq. (2) is the fitting equation only
for the two correlative observables, and not all the colliding
systems exactly satisfy Eq. (2), the differential of m may be
weakly dependent on the specific colliding system.

We have performed a correlative analysis between the
nuclear stopping and scale invariant nucleon sideward flow for
various colliding systems and scale impact parameters. The
complication of the colliding-system dependence of a single
observable can be separated from the scale-impact-parameter
dependence and has been reduced to two universal fitting
parameters L and m, which can be used to determine the
nuclear EOS or other intrinsic properties. The essential of
the universal correlation behavior between nuclear stopping
and scale invariant nucleon sideward flow from SIS to SPS
energies may result from the pressure of the matter in HICs,
which is dominated by the nuclear EOS, in-medium NN cross

section, etc., and intimately connected to the nuclear stopping
and nucleon sideward flow [15,18–22]. The strong correlation
may indicate that the pressure produced in HICs may be also
with the variable separable property as in Eqs. (8) and (9),
and it may be broken down by the sudden change of the
nuclear bulk properties, such as phase transition. The phase
transition mechanism is not explicitly involved in the UrQMD
model, and it is also found in Ref. [23] that the collapse of
the excitation function of the sideward flow and elliptic flow
can be used to probe the first-order QGP phase transition.
Thus, for qualitative analysis, it is predicted that the universal
correlation may be broken down at different sets of beam
energies for various colliding nuclei, which could serve as
signals for the first-order QGP phase transition. Furthermore,
if the universal correlation pattern is restored at much higher
energies, where the crossover from hadronic phase to partonic
phase would happen, the location of the critical point can be
unitedly restricted by the mapping of different colliding nuclei
with the corresponding lower limit of the restoration energies
on the QCD phase diagram. The real experimental data as well
as the theoretical calculation are expected to be compared with
the UrQMD simulation results, and the detailed correlation
mechanism of the two experimental observables should be
further studied.
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