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Effects of ground-state correlations on high energy scattering off nuclei:
The case of the total neutron-nucleus cross section
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With the aim at quantitatively investigating the longstanding problem concerning the effect of short-range
nucleon-nucleon correlations on scattering processes at high energies, the total neutron-nucleus cross section
is calculated within a parameter-free approach which, for the first time, takes into account, simultaneously,
central, spin, isospin, spin-isospin, and tensor nucleon-nucleon correlations, and Glauber elastic and Gribov
inelastic shadowing corrections. Nuclei ranging from 4He to 208Pb and incident neutron momenta in the range
3 GeV/c–300 GeV/c are considered; the commonly used approach which approximates the square of the nuclear
wave function by a product of one-body densities is carefully analyzed, showing that NN correlations can play
a non-negligible role in high energy scattering off nuclei
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Nowadays interpretation of high precision particle-nucleus
and nucleus-nucleus scattering experiments at medium and
high energies, aimed at investigating the state of matter at
short distances, should require in principle also a consideration
of possible effects from nucleon-nucleon (NN ) short-range
correlations (SRC), particularly in view of recent experimental
data on lepton and hadron scattering off nuclei which provided
quantitative evidence on SRC and their possible effects on
dense hadronic matter [1]. Thanks to recent progress in
the theoretical description of the many-body nuclear wave
function, we have therefore undertaken a systematic study of
the effects of SRC in medium and high energy scattering of
nuclei, starting with a novel calculation of the total neutron-
nucleus (nA) cross section σnA

tot at high energies. This quantity
has been experimentally measured with high precision in a
wide kinematical range and has been the object of many
theoretical analyzes since it appears to be very sensitive to
various relevant phenomena, such as Glauber elastic [2] and
Gribov inelastic [3] diffractive shadowing, which, in turn, have
a relevant impact on the interpretation of color transparency
phenomena and relativistic heavy ion processes (see, e.g.,
[4,5]).

It is well known that although the major mechanism which
explains the experimental evidence σnA

tot � AσN (σN ≡ σNN
tot )

is Glauber elastic shadowing, a quantitative explanation of
the experimental data requires also the introduction of Gribov
inelastic shadowing [4,6,7]. Most calculations of σnA

tot so far
performed were however based upon the so-called one-body-
density approximation, in which all terms but the first one
of the exact expansion of the square of the nuclear wave
function in terms of density matrices [2,8] are disregarded,
which amounts to neglect all kinds of NN correlations.
Although the necessity and interest to investigate the effects
of the latter have been stressed by several authors [4,7],
first of all by Glauber himself [2], only few qualitative
calculations have been performed in 4He [9] and in heavy

nuclei [10,11]. The aim of this work is to illustrate a novel,
parameter-free calculation of σnA

tot within a realistic treatment
of SRC [12,13]. In this sense, our work is similar in its
motivations to that of Ref. [14], where state-of-the-art quantum
Monte Carlo (QCM) wave functions, for A � 6 nuclei, have
been used to treat reaction cross sections of halo nuclei,
evaluating the Glauber phase shift exactly by Monte Carlo
integration.

In terms of Glauber elastic (G) and Gribov inelastic (IS)
scattering one has

σnA
tot = σG

A + σ IS
A = 4π

k
Im

[
FG

00(0) + F IS
00 (0)

]
, (1)

where F
G(IS)
00 (0) = ik

2π

∫
dbn�

G(IS)
00 (bn) is the forward elastic

scattering amplitude, and �
G(IS)
00 the nuclear elastic profile

function. The latter, in case of elastic Glauber scattering, has
the well-known form

�G
00(bn) = 1 −

A∏
j=1

〈ψ0|[1 − �N (bn − sj )]|ψ0〉, (2)

where ψ0 ≡ ψ0(r1, r2, r3, ...rA) (rj = (sj , zj )) is the ground
state wave function of the target nucleus, bn the impact
parameter of the neutron moving along the z-axis, and �N (bn)
the NN elastic profile function. As for the Gribov inelastic
profile, it describes, as depicted in Fig. 1, the diffractive
dissociation of the neutron via the process n + N → X + N ,
its deexcitation to the ground state by the process X + N →
n + N , and its elastic scattering off the target nucleons. In our
approach, as in Ref. [4], we will consider, besides the elastic
scattering of X, only two nondiagonal transitions (n + N →
X + N and X + N → n + N ).Within such an approximation
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FIG. 1. Typical diagrams describing elastic N -A scattering: a) Glauber elastic scattering; b) and c) Gribov inelastic scattering. Black dots
denote the particle-particle scattering amplitude.

one obtains [4]

�IS
00 (bn)

=
∑
X


〈ψo|

A∑
i<j

�NX(bn − bj )�XN (bn − bi)e
iqX(zi−zj )

�(zj − zi)

×
A∏

k �=i,j

[1 − �X(bn − bk)]�(zk − zi)�(zj − zk)

×
A∏

l �=i,j

[1 − �N (bn − bl)]�(zi − zl)�(zl − zj )|ψo〉

 ,

(3)

where qX = kn − kX is the longitudinal momentum transfer.
The basic nuclear ingredient appearing in Eqs. (2) and (3) is
|ψ0|2, which, in terms of density matrices, has the following
form [2,8] [the center-of-mass (c.m.) δ function is omitted for
ease of presentation but c.m. motion effects have been properly
taken care of in calculations]:

|ψo(r1, . . . , rA)|2 =
A∏

j=1

ρ1(rj ) +
∑
i<j

�(r i , rj )
∏
k �=i,j

ρ1(rk)

+
∑

(i<j )�=(k<l)

�(r i , rj )�(rk, r l)

×
∏

m�=i,j,k,l

ρ1(rm) + · · · , (4)

in which ρ1(r i) is the one-body density matrix (normalized to
one) and �(r i , rj ) = ρ2(r i , rj ) − ρ1(r i)ρ1(rj ) the two-body
contraction; the two-body density matrix ρ2(r i , rj ) must sat-
isfy the sequential condition

∫
d rj ρ2(r i , rj ) = ρ1(r i), leading

to
∫

d rj�(r i , rj ) = 0. Note that in Eq. (4) only unlinked
contractions have to be considered, and that the higher order
terms, not explicitly displayed, include unlinked products of 3,
4, etc., two-body contractions, unlinked products of three-body
contractions, describing three-nucleon correlations, and so on.
By taking into account two-body correlations only, i.e., all
terms of the expansion (4) containing all possible numbers
of unlinked two-body contractions, one obtains [10,11] (from
now on the optical limit, A � 1, will be used for ease of
presentation):

�G
00(bn) � 1 − exp

[
−A

∫
d r1ρ1(r1)�(bn − s1)

+ A2

2

∫
d r1d r2�(r1, r2)�(bn − s1)�(bn − s2)

]

(5)

which yields the usual Glauber profile when � = 0. Con-
cerning �IS

00 , it can be reduced to an expression depending
upon the total nucleon and diffractive cross sections σN

and σr , respectively [4], which, within the approximation
σN = σr and disregarding correlations, provides the well-
known Karmanov-Kondratyuk (KK) result [15]:

�IS
00 (bn) = −(2π )A2

∫
d2σ

d2qT dM2
X

∣∣∣∣
qT =0

dM2
Xe−σN

2
T (bn)

× |F (qL, bn)|2. (6)

Here T (bn) = A
∫ ∞
−∞ ρ(bn, z) dz is the thickness function,

F (qL, bn) = ∫ ∞
−∞ ρ(bn, z)exp(iqLz) dz is the nuclear form

factor, depending upon MX through the relation qL = (M2
X −

m2
N )mN/s (s � 2plab), and d2σ/(d2qT dM2

X) is the differential
cross section of the process N + N → NX + N (MX being the
mass of NX).

We have calculated σnA
tot using the two-body density ob-

tained from the fully-correlated wave function of Refs. [12,13],
ψ0 = F̂ φ0, where F̂ = ∏

i<j [
∑8

k=1 fk(rij )Ôk(ij )] is a cor-
relation operator generated by the realistic Argonne V 8′
interaction [16], and φ0 a mean field (MF) wave function.
The above wave function largely differs from the Jastrow
one, featuring only central correlations, since the operator F̂

generates central (Ô1 = 1), spin (Ô2(ij ) = σ i · σ j ), isospin
(Ô3(ij ) = τ i · τ j ), spin-isospin (Ô4(ij ) = (σ i · σ j )(τ i · τ j )),
tensor (Ô5(ij ) = Sij ), tensor-isospin (Ô6(ij ) = Sij (τ i · τ j )),
etc., correlations. In our approach the contraction �(r1, r2)
exactly satisfies the sum rule

∫
d r1�(r1, r2) = 0, since the

one-body density ρ1(r1) exactly results from the integration of
ρ2(r1, r2). Note, moreover, that our one-body point density
and radii are in agreement with electron scattering data
[17]. The Glauber profile has been chosen in the usual
form, �(bn) = σtot(4πb2

0)
−1

(1 − iα)exp(−b2
n/2b2

0), with the
energy-dependent parameters taken from [18]; the parameters
for the inelastic shadowing were taken from [6].

The results of calculations for 4He,12 C,16 O and 208Pb are
presented in Figs. 2 and 3. The left panel shows the results
obtained without correlations, i.e., taking into account only
the first term in Eq. (4), whereas the results presented in the
right panel include the effects of two-nucleon correlations (for
4He we have calculated the cross section to all orders finding
that three- and four-nucleon correlations produce negligible
effects). The results presented in Figs. 2 and 3 show that:
(i) if, as in the present paper, realistic one-body densities are
considered the disagreement with the experimental data is not
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FIG. 2. σnA
tot vs plab. Left panel: Glauber single density approx-

imation (σG; dots) and Glauber plus Gribov inelastic shadowing
(σG + �σIS ; dot-dash). Right panel: Glauber (σG; dots); Glauber plus
SRC (σG + σSRC ; dashes); Glauber plus SRC plus Gribov inelastic
shadowing (σG + σSRC + �σIS ; full). Experimental data from [6,19].

dramatic, which is at variance with Ref. [6] where, as first
stressed in [7], too large (by about 15%) nuclear radii have been
used; (ii) within the one-body density approximation, inelastic
shadowing corrections increase the nuclear transparency,
which is a well-known result; (iii) NN correlations decrease
the transparency (which is physically due to the reduction of
the role of Glauber shadowing) and increase the total cross sec-
tion (by an amount ranging from about 2% in 208Pb up to about
5–6% in 4He) spoiling the agreement with the experimental
data provided by the Glauber calculation; (iv) the simultaneous
inclusion of inelastic shadowing and two-nucleon correlations
brings back theoretical calculations in good agreement with
experimental data. Thus it appears that if the correct values of
nuclear radii are used, the interpretation of the experimental
data would require the consideration of both NN correlations
and inelastic shadowing. We have also investigated the validity
of the approximation in which the nuclear matter two-body
density ρ2(r1, r2) = ρ1(r1)ρ1(r2)g(|r1 − r2|) is used for finite
nuclei, leading to a strong violation of the sequential relation∫

dr2ρ2(r1, r2) = ρ1(r1) for nuclei with A < 208. Thus, when
such an approximation is used to introduce correlations in light
and medium-weight nuclei, a mismatch between the one-body

FIG. 3. (Color online) Ratio of the total cross section which
includes correlations to the cross section without correlations; the
figure shows our results obtained using the finite nuclei (dots) and
nuclear matter (squares) two-body densities. Triangles correspond to
the zero range approximation for the profile function.

density (usually taken from the experimental data) and the
two-body density is generated.

To sum up, we have analyzed the effects of SRC on σnA
tot

within a realistic and parameter-free approach to SRC using
the correct values of nuclear radii and, at the same time,
one-body densities which, unlike previous calculations, are
exactly linked to the two-body densities by the sequential
relation. The results we have obtained show that the effects
of SRC, though being small in absolute value, could be of the
same order as Gribov inelastic shadowing corrections. Such a
result points to the necessity of (i) a systematic investigation
of SRC effects on other high energy scattering processes (e.g.,
electroproduction of hadrons, large rapidity gap processes [5],
heavy-ion collisions [21], etc.); (ii) an improved treatment of
Gribov inelastic shadowing, going beyond the lowest order
intermediate diffractive excitations (see, e.g., Ref. [20]). To
conclude, we would like to point out that the smallness of
SRC effects on σnA

tot does not imply that SRC effects on other
quantities will also be small; as a matter of fact, preliminary
results [22] show that SRC reduce the quasielastic cross section
σ

pA

qel up to 15% in 12C and 208Pb. Calculations of elastic and
quasielastic cross sections at energies ranging from HERA to
LHC, are in progress and will be reported elsewhere.
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