Addendum to "Measurement of ${}^{23}Mg(p, \gamma){}^{24}Al$ resonance energies"

D. W. Visser,^{1,*} C. Wrede,^{2,3,†} J. A. Caggiano,^{3,‡} J. A. Clark,^{3,§} C. M. Deibel,^{3,§} R. Lewis,^{3,¶} A. Parikh,^{3,¶} and P. D. Parker³

¹Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

²Department of Physics, University of Washington, Seattle, Washington 98195, USA

³Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520, USA

(Received 30 May 2008; published 7 August 2008)

Using recent data we reduce the systematic uncertainty in our measurement [Phys. Rev. C **76**, 065803 (2007)] of the excitation energy of the second level above the proton threshold in ²⁴Al and find it to be 2523(3) keV, a factor of two improvement over our previously reported value of 2524(6) keV.

DOI: 10.1103/PhysRevC.78.028802

PACS number(s): 26.30.-k, 97.30.Qt, 25.55.Kr, 27.30.+t

In Ref. [1] we determined resonance energies for the astrophysically important ${}^{23}Mg(p, \gamma)^{24}Al$ reaction by measuring excitation energies in ${}^{24}Al$ via the ${}^{24}Mg({}^{3}He,t){}^{24}Al$ reaction using the ${}^{28}Si({}^{3}He,t){}^{28}P$ reaction as a calibration. For the two levels immediately above the proton-emission threshold of 1872(3) keV in ${}^{24}Al$ [2], and for those below, the uncertainty in the measurement (5.9 keV) was dominated by a 5.1 keV systematic uncertainty consisting of 3.0 keV from the relative target thickness, and 4.1 keV from the relative Q values [2] of the ${}^{24}Mg({}^{3}He,t){}^{24}Al$ and ${}^{28}Si({}^{3}He,t){}^{28}P$ reactions. In the present addendum we use recent high precision γ -ray measurements [3] to eliminate this systematic uncertainty and adjust our 2524(6)-keV measurement of the excitation energy of the second level above the proton threshold in ${}^{24}Al$.

The 2524(6)-keV level, corresponding to a $^{23}Mg + p$ resonance at a center of mass energy $E_r = 652(6)$ keV [1], is expected to contribute to the thermonuclear ${}^{23}Mg(p, \gamma){}^{24}Al$ reaction rate increasingly with stellar temperature; for example, it has been estimated to make a 40% contribution at T = 2 GK [1,4]. A measurement [5–7] of its strength with the DRAGON facility [8,9] at TRIUMF-ISAC is scheduled that will use a mixed ²³Na/²³Mg beam with an intensity ratio of $\approx 500/1$ [10]. A resonance in the ²³Na(p, γ)²⁴Mg reaction at $E_n^{\text{lab}} = 676.7(4) \text{ keV} [11] [E_r = 648.3(4) \text{ keV}]$ with a strength $\omega \gamma = 640 \text{ meV}$ [11] (to be compared with the predicted strength $\omega \gamma = 58 \text{ meV} [1,4]$ of the 652-keV 23 Mg $(p, \gamma)^{24}$ Al resonance) will present a challenge to that experiment. A more precise energy for the $E_r = 652(6)$ -keV resonance will therefore be useful to its planning and interpretation.

A recent precision measurement [3] using Gammasphere resulted in a complete ²⁴Al level scheme up to the $E_x = 2345.1(14)$ -keV level, which is the first level above the proton threshold and corresponds to the most important resonance for the thermonuclear ²³Mg(p, γ)²⁴Al reaction at nova temperatures (<0.4 GK). The Gammasphere work confirmed our measurement of $E_x = 2346(6)$ keV, which was not in good agreement with previous measurements [12,13], and improved upon its precision. Other levels measured in that work at $E_x = 1538.5(2)$, 1548.4(5), and 1617.0(8) keV are also of interest to the adjustment in the present addendum. These levels may potentially be identified with the peaks in our ²⁴Mg(³He,t)²⁴Al spectra measured at $E_x = 1543(6)$ and 1619(6) keV.

We use only the 1617.0(8)- and 2345.1(14)-keV levels from Ref. [3] to adjust our calibration since our 1543(6)-keV peak may consist of contributions from both the 1538.5(2)and 1548.4(5)-keV levels. Considering statistical uncertainties only, we had measured 1618.7(2) and 2345.6(7) keV for the excitation energies of the 1617.0(8)- and 2345.1(14)-keV²⁴Al levels [3], respectively, corresponding to shifts of $\Delta E_x =$ 1.7(8) and 0.5(16) keV, respectively. A weighted average of these yields an overall shift of $\Delta E_x =$ 1.5(7) keV, which is a measure of the systematic effects that previously carried a 5.1-keV uncertainty. This value may be subtracted from all of our excitation-energy numbers in Ref. [1] to adjust them.

In particular, we had measured $E_x = 2524.2(6)$ keV for the second level above the proton threshold where the statistical uncertainty only is quoted. Subtracting the 1.5(7)-keV correction yields $E_x = 2522.7(9)$ keV. Applying the global reproducibility uncertainty deduced in our previous evaluation yields $E_x = 2523(3)$ keV, a factor of two improvement over our previous value of 2524(6) keV and a factor of four improvement over the accepted value of 2534(13) keV [4,14] that was derived from two previous (³He,*t*) measurements of 2521(10) [13] and 2546(7) keV [12]. Our new value corresponds to a ²³Mg(p, γ)²⁴Al resonance energy of $E_r =$ 651(4) keV, in exact agreement with the deduction of Kubono *et al.* [13] and with substantially reduced uncertainty.

This work was supported by the U.S. Department of Energy under grants DE-FG02-91ER40609 and DE-FG02-97ER41020.

^{*}Present address: Microsoft Corporation, Redmond, WA 98052, USA.

[†]wrede@u.washington.edu

[‡]Present address: Pacific Northwest National Laboratory, Richland, WA 99352, USA.

[§]Present address: Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA.

^{II}Present address: Sauder School of Business, University of British Columbia, Vancouver, BC V6T 1Z2, Canada.

[¶]Present address: Physik Department E12, Technische Universität München, D-85748 Garching, Germany.

- D. W. Visser, C. Wrede, J. A. Caggiano, J. A. Clark, C. Deibel, R. Lewis, A. Parikh, and P. D. Parker, Phys. Rev. C 76, 065803 (2007).
- [2] G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A729, 337 (2003).
- [3] G. Lotay, P. J. Woods, D. Seweryniak, M. P. Carpenter, N. Hoteling, R. V. F. Janssens, D. G. Jenkins, T. Lauritsen, C. J. Lister, A. Robinson *et al.*, Phys. Rev. C 77, 042802(R) (2008).
- [4] H. Herndl, M. Fantini, C. Iliadis, P. M. Endt, and H. Oberhummer, Phys. Rev. C 58, 1798 (1998).
- [5] S. Bishop, R. E. Azuma, L. Buchmann, A. A. Chen, M. L. Chatterjee, J. M. D'Auria, S. Engel, D. Gigliotti, U. Greife, M. Hernanz *et al.*, Phys. Rev. Lett. **90**, 162501 (2003).
- [6] J. M. D'Auria, R. E. Azuma, S. Bishop, L. Buchmann, M. L. Chatterjee, A. A. Chen, S. Engel, D. Gigliotti, U. Greife, D. Hunter *et al.*, Phys. Rev. C **69**, 065803 (2004).
- [7] C. Ruiz, A. Parikh, J. José, L. Buchmann, J. A. Caggiano,

A. A. Chen, J. A. Clark, H. Crawford, B. Davids, J. M. D'Auria *et al.*, Phys. Rev. Lett. **96**, 252501 (2006).

- [8] D. A. Hutcheon, S. Bishop, L. Buchmann, M. L. Chatterjee, A. A. Chen, J. M. D'Auria, S. Engel, D. Gigliotti, U. Greife, D. Hunter *et al.*, Nucl. Instrum. Methods A **498**, 190 (2003).
- [9] S. Engel, D. Hutcheon, S. Bishop, L. Buchmann, J. Caggiano, M. L. Chatterjee, A. A. Chen, J. D'Auria, D. Gigliotti, U. Greife *et al.*, Nucl. Instrum. Methods A 553, 491 (2005).
- [10] C. Vockenhuber, U. Greife, *et al.*, TRIUMF EEC proposal S810 (unpublished).
- [11] P. M. Endt, Nucl. Phys. A521, 1 (1990).
- [12] M. B. Greenfield, S. Brandenburg, A. G. Drentje, P. Grasdijk, H. Riezebos, S. Y. van der Werf, A. van der Woude, M. N. Harakeh, W. A. Sterrenburg, and B. A. Brown, Nucl. Phys. A524, 228 (1991).
- [13] S. Kubono, T. Kajino, and S. Kato, Nucl. Phys. A588, 521 (1995).
- [14] P. M. Endt, Nucl. Phys. A633, 1 (1998).