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We know that different approaches [1–7] have been
employed to study higher-twist effect on nucleon structure
functions. There have also been several phenomenological
analyses of nucleon structure functions that studied quark-
hadron duality and extracted the higher-twist contributions
(like the ones of the twist-3 and twist-4 terms) from ex-
perimental measurements [8–11]. Those analyses are going
to become more and more accurate because more and more
precise measurements of the nucleon spin structure functions
g1 and g2 are becoming available [11,12]. High precision data
have been employed to study the validity of the quark-hadron
duality for the nucleon structure function F2 [13] and even
for spin asymmetry A1 by HERMES [14] recently. Several
experiments to test the higher-twist effect on nucleon spin
structure functions are being carried out in the Jefferson
Laboratory [9,15].

It has been pointed out in the literature that target mass
corrections (TMCs) should be considered in studies of nucleon
structure functions [16] in a moderate Q2 region and in
studies of the Bloom-Gilman quark-hadron duality [17,18].
Therefore, only after important target mass corrections are
removed from the experimental data can one reasonably extract
the higher-twist effect [18]. There have been several papers
about target mass corrections to F1,2(x,Q2) and g1,2(x,Q2)
in the past [19]. Recently, target mass corrections to nucleon
structure functions for polarized deep-inelastic scattering have
been systematically studied [20,21]. In our previous work [22],
TMCs to the twist-3 matrix element in nucleon structure
functions are addressed. In this brief report, TMCs to the
twist-4 terms f̃

p,n,d

2 as well as to the leading-twist ã2 are
discussed.

Consider the Cornwall-Norton (CN) moments g
(n)
1,2(Q2) =∫ 1

0 xn−1g1,2(x,Q2)dx, we know that the first CN moment of g1

can be generally expanded in inverse powers of Q2 in operator
production expansion (OPE) [1,2] as

g
(1)
1 =

∫ 1

0
dxg1(x,Q2) =

∞∑
τ=2,even

µτ (Q2)

Qτ−2
, (1)

with the coefficients µτ relating to the nucleon matrix elements
of operators of twist � τ . In Eq. (1), the leading-twist (twist-2)
component µ2 is determined by the matrix elements of the axial
vector operator ψ̄γµγ5ψ , summed over various quark flavors.
The coefficient of the 1/Q2 term, µ4 = 1

9M2(ã2 + 4d̃2 + 4f̃2),
contains the contributions from the twist-2 ã2, twist-3 d̃2, and
twist-4 f̃2, respectively. Usually, d̃2 is extracted from the third

moments of the measured g1(x,Q2) and g2(x,Q2) by using
d̃2(Q2) = ∫ 1

0 x2(2g1(x,Q2) + 3g2(x,Q2))dx. However, it is
pointed out that this method for d̃2 ignores the target mass
corrections to the third moments of g1,2, and the target mass
corrections play a sizable role in d̃2 [22] in a moderate Q2

region.
To further estimate TMCs to the twist-4 of nucleon spin

structure functions, one may assume that the contributions
from a higher-twist term with τ > 6 can be ignored [23] or
assume this term to be a constant (neglecting any possible Q2

dependence) [8]. Based on the first assumption, we have

4
9y2f̃2 + 1

2 ã0 = g
(1)
1 − 1

9y2(ã2 + 4d̃2). (2)

When no TMCs are considered, ã2 and d̃2 can be simply
expressed by the CN moments of nucleon spin structure
functions, and we get

4
9y2f̃

(0)
2 + 1

2 ã0 = g
(1)
1 − 2

9y2
(
5g

(3)
1 + 6g

(3)
2

)
. (3)

When TMCs are considered, we must employ the Nacht-
mann moments

M
(n)
1 (Q2) =

∫ 1

0
dx

ξn+1

x2

{[
x

ξ
− n2

(n + 2)2
y2xξ

]
g1(x,Q2)

− y2x2 4n

n + 2
g2(x,Q2)

}
,

M
(n)
2 (Q2) =

∫ 1

0
dx

ξn+1

x2

{
x

ξ
g1(x,Q2)

+
[

n

n − 1

x2

ξ 2
− n

n + 1
y2x2

]
g2(x,Q2)

}
, (4)

where the Nachtmann variable ξ = 2x
1+r

(with r =√
1 + 4y2x2), y2 = M2/Q2, and x is the Bjorken variable.

The two Nachtmann moments are simultaneously constructed
by the two spin structure functions g1,2. If g1,2(x,Q2) are
replaced by the ones with TMCs (see Refs. [20–22]), one can
easily expand the two Nachtmann moments with respect to y2.
The results are M

(n)
1 = 1

2 ãn−1 + O(y8) and M
(n)
2 = 1

2 d̃n−1 +
O(y8). The two expressions explicitly tell that, different from
the CN moments, one can get the contributions of a pure
twist-2 with spin-n and a pure twist-3 with spin-(n − 1)
operators from the Nachtmann moments. The advantage of the
Nachtmann moments means that they contain only dynamical

0556-2813/2008/78(2)/028201(3) 028201-1 ©2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.78.028201


BRIEF REPORTS PHYSICAL REVIEW C 78, 028201 (2008)

5 10 15 20

Q
2
(GeV

2
)

0

0.2

0.4

0.6

0.8
∆f

2(Q
2 )[

10
-3

]

Proton
Neutron
Deuteron

FIG. 1. Difference �f2. The solid, dashed, and dotted-dashed
curves are the results of the proton, neutron, and deuteron, respec-
tively.

higher-twists, which are the ones related to the correlations
among the partons. As a result, they are constructed to protect
the moments of nucleon spin structure functions from the target
mass corrections. Consequently, to extract the higher-twist
effect, say twist-3 or twist-4 contribution, one is required to
consider the Nachtmann moments instead of the CN moments.

We use the Nachtmann moments to express ãn and d̃n and
obtain

4

9
y2f̃2 + 1

2
ã0

= g
(1)
1 − 2

9
y2

∫ 1

0

ξ 4

x2
dx

[(
5x

ξ
− 9

25
y2xξ

)
g1(x,Q2)

+
(

6
x2

ξ 2
− 27

5
y2x2

)
g2(x,Q2)

]
. (5)

Thus, the TMC to the twist-4 contribution, due to the two
different moments, is �f2 = f̃2 − f̃ 0

2 . Here, we employ the
parametrization forms of the spin structure functions of the
proton, neutron, and deuteron [11,12] to estimate �f2. Note
that the well-known Wandzura and Wilczek (WW) relation
[24] g2(x,Q2) = gWW

2 (x,Q2) = −g1(x,Q2) + ∫ 1
x

g1(y,Q2)
y

dy

is valid if only the leading-twist is considered, and TMCs to the
twist-2 contribution do not break the WW relation. However,
if the higher-twist operators, like twist-3 and twist-4, are con-
sidered, the WW relation g2(x,Q2) = gWW

2 (x,Q2) no longer
preserves. Thus, one may write g2(x,Q2) = gWW

2 (x,Q2) +
ḡ2(x,Q2) [8,9], where ḡ2 represents the violation of the WW
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FIG. 2. Ratio Ra3 . The solid, dashed, and dotted-dashed curves
are the results of the proton, neutron, and deuteron, respectively.

relation. The nonvanishing value of ḡ2 just results from the
higher-twist effect.

One can calculate �f2 with the parametrizations of g1,2.
The results are plotted in Fig. 1. We see that the typical values
of the differences are in the order of 10−3 ∼ 10−4. There are
several theoretical estimated values for the twist-4 term f̃2 in
the literature (see Table I), like the ones of the bag model [4],
of the QCD sum rule [5,6], of the empirical analyses of the
experimental measurements [8,23], and of the instanton model
[25]. Comparing the estimated differences in Fig. 1 to those
estimated values displayed in Table I, we conclude that TMCs
to the twist-4 term f̃2 are negligible (less than 2%). We also
find that �f2 of the proton and deuteron are always larger than
that of the neutron.

In addition, we check TMCs to the leading twist term (with
spin-3) ã2. If no TMCs are considered, ã

(0)
2 = 2g

(3)
1 . When

TMCs are taken into account, we get, from the Nachtmann
moments,

ã2 =
∫ 1

0
2
ξ 4

x2
dx

{[
x

ξ
− 9

25
y2xξ

]
g1(x,Q2)

− 12

5
y2x2g2(x,Q2)

}
. (6)

Figure 2 displays the Q2 dependence of the ratio R = ã2/ã
(0)
2

for the proton, neutron, and deuteron targets. The sizable effect
of TMCs is clearly seen, because the ratios all diverge from
unity obviously. When Q2 ∼ 5 GeV2, the effect of TMCs is
still about 10% for the proton and deuteron targets. In addition,
the effect on the proton and deuteron targets is much larger
than that on the neutron. Here the Q2 dependences of the
three ratios are similar to those of the twist-3 terms [22]. The

TABLE I. The estimated values for f̃2 in different approaches in the literature.

Reference f̃
p

2 f̃ n
2 Reference f̃

p

2 f̃ n
2

Ref. [4] 0.050 ± 0.034 −0.018 ± 0.017 Ref. [5] -0.028 0
Ref. [6] 0.037 ± 0.006 0.013 ± 0.006 Ref. [8] – 0.034 ± 0.043
Ref. [23] −0.10 ± 0.05 −0.07 ± 0.08 Ref. [25] −0.046 0.038
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sizable effect tells us that TMCs should be taken into account.
Therefore, to estimate the matrix element of ã2, the Nachtmann
moments must be employed.

In summary, we have explicitly shown the target mass
corrections to the twist-4 f̃2 term and to the leading-twist one
(spin-3) ã2. It is reiterated that to precisely and consistently
extract the contributions of the leading-twist ã2, of the twist-3
d̃2, and of the twist-4 f̃2 with a definite spin and with a
moderate Q2 value, one is required to employ the Nachtmann
moments M1,2 instead of the CN moments. Our results
show that TMCs evidently play a role in ã2 when Q2 is
small. The above conclusion does not change if different
parametrizations of the structure functions are employed.
We also show that TMCs to the twist-4 term are much
smaller than those to the twist-3 term and to the leading-twist
term.

Finally, the expressions of the differences �f2 and �a2

between the CN and Nachtmann moments are

�f2 = f̃2 − f̃
(0)
2 = y2

10

{[
384

5
g

(5)
1 − 234y2g

(7)
1 + 736y4g

(9)
1

]

+ [
87g

(5)
2 − 258y2g

(7)
2 + 798y4g

(9)
2

]} + O(y8),

�a2 = ã2 − ã0
2 = 2M

(3)
1 − 2g

(3)
1

= y2

{[
−168

25
g

(5)
1 + 108

5
y2g

(7)
1 − 352

5
y4g

(9)
1

]

+
[
−24

5
g

(5)
2 + 96

5
y2g

(7)
2 − 336

5
y4g

(9)
2

]}
+ O(y8).

(7)

One sees that the two expressions mainly depend on the
higher-moment of the nucleon spin structure function and,
therefore, on the spin structure function in the large-x region.
In most of the empirical analyses of the Ellis-Jaffe sum
rule (the first moment of g1), the contribution from the spin
structure function in the large-x region is assumed to be trivial,
because it behaves like (1 − x)3. When the higher-moment
of the spin structure function is considered, the effect of
the spin structure function in the large-x region becomes
important. Consequently, the measurement of the nucleon spin
structure function in the large-x region with high precision is
required.
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J. Blümlein and N. Kochelev, Phys. Lett. B381, 296 (1996);
Nucl. Phys. B498, 285 (1997).

[22] Y. B. Dong, Phys. Lett. B653, 18 (2007); Y. B. Dong, Phys. Rev.
C 77, 015201 (2008).

[23] X. Ji and W. Melnitchouk, Phys. Rev. D 56, R1 (1997).
[24] S. Wandzura and F. Wilczek, Phys. Lett. B72, 195 (1977).
[25] N. Y. Lee, K. Goeke, and C. Weiss, Phys. Rev. D 65, 054008

(2002).

028201-3


