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Impact of the symmetry energy on the outer crust of nonaccreting neutron stars
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1Departament d’Estructura i Constituents de la Matèria, Facultat de Fı́sica, Universitat de Barcelona,
Diagonal 647, E-08028 Barcelona, Spain

2Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
(Received 16 May 2008; published 21 August 2008)

The composition and equation of state of the outer crust of nonaccreting neutron stars is computed by using
accurate nuclear mass tables. The main goal of the present study is to understand the impact of the symmetry
energy on the structure of the outer crust. First, a simple “toy model” is developed to illustrate the competition
between the electronic density and the symmetry energy. Then, realistic mass tables are used to show that models
with a stiff symmetry energy—those that generate large neutron skins for heavy nuclei—predict a sequence of
nuclei in the stellar environment that is more neutron rich than their softer counterparts. This result may be
phrased in the form of a correlation: The larger the neutron skin of 208Pb, the more exotic the composition of the
outer crust.
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I. INTRODUCTION

Neutron stars are gold mines for the study of nuclear
systems under extreme conditions of density and isospin
asymmetry [1,2]. Spanning many orders of magnitude in
density, neutron stars display exotic phases that cannot be
realized under normal laboratory conditions. Whereas the most
common perception of a neutron star is that of a uniform
mantle of neutrons packed to densities that may exceed that of
normal nuclei by up to an order of magnitude, the reality
is far different and much more interesting. First, although
the uniform liquid mantle (also known as the outer core)
is indeed composed mostly of neutrons, a small fraction of
protons and an equal number of charged leptons (i.e., electrons
and perhaps even muons) must be present to maintain beta
equilibrium. The precise proton fraction in the neutron star is
controlled by the symmetry energy, a quantity that imposes a
penalty on the system as it departs from the isospin symmetric
limit of equal number of neutrons and protons. Second, at
densities that are below nuclear matter saturation density the
uniform phase becomes unstable against density fluctuations.
This nonuniform region of the neutron star constitutes the
crust, which itself is divided into an inner and an outer region
(see Fig. 1). In the outer crust—the main focus of the present
study—the system is organized into a Coulomb lattice of
neutron-rich nuclei embedded in a uniform electron gas [3].
As the density increases, nuclei become progressively more
neutron rich until the neutron drip region is reached; this region
defines the boundary between the outer and the inner crust. As
in the case of the outer crust, the inner crust also consists
of a Coulomb lattice of neutron-rich nuclei embedded in a
uniform electron gas. Now, however, a uniform neutron vapor
permeates the system. As the density continues to increase in
the inner crust, the system is speculated to morph into a variety
of complex and exotic structures, such as spheres, cylinders,
rods, and plates—collectively known as nuclear pasta [4–6].
As the density increases even further, uniformity is eventually
restored at about one-third of normal nuclear matter saturation
density. Finally, at ultra high densities it has been established

that the ground state of hadronic matter becomes a color
superconductor in a color-flavor-locked (CFL) phase [7,8].
It is unknown, however, whether the density at the core of a
neutron star may reach the extreme values required for the CFL
phase to develop. Thus, other exotic phases—such as meson
condensates, hyperonic matter, and/or quark matter—may be
more likely to harbor the core of neutron stars. Figure 1 is
believed to represent a plausible rendition of the structure of a
neutron star.

As stated earlier, the main focus of our present study
is the outer crust of the neutron star. In particular, we are
interested in studying the sensitivity of the composition of
the outer crust to the model dependence of the symmetry
energy. The outer crust comprises a region spanning about
seven orders of magnitude in density: from about 104 g/cm3 to
a neutron drip density of about 4 × 1011 g/cm3 [3]. Although
these densities are small relative to nuclear matter saturation
density (2.5 × 1014 g/cm3), the electrons (present to maintain
charge neutrality) at such densities are no longer bound to
nuclei and move freely throughout the crust. Moreover, at
these low nuclear densities it is energetically favorable for the
nuclei to arrange themselves in a crystalline lattice. At the
lowest densities, the electronic contribution is negligible, so
the Coulomb lattice is populated by 56Fe nuclei. However, as
the density increases and the electronic contribution becomes
important, 56Fe ceases to be the most energetically favorable
nucleus. Instead, it becomes energetically advantageous for the
system to lower its electron fraction by having the energetic
electrons capture onto protons, with the excess energy carried
away by neutrinos. The resulting nuclear lattice is now formed
by nuclei having a slightly lower proton fraction than 56Fe
(e.g.,62Ni). As the density continues to increase, the nuclear
system evolves into a Coulomb lattice of progressively more
neutron rich nuclei until the critical neutron drip density is
reached. The essential physics of the outer crust is then nicely
captured by a “tug-of-war” between an electronic contribution
and the nuclear symmetry energy, with the former favoring
neutron-rich nuclei and the latter favoring fairly symmetric
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FIG. 1. (Color online) Rendition of the assumed structure and
phases of a neutron star. (Figure courtesy of Dany Page.)

ones. The neutron-rich nuclei that populate the Coulomb
lattice in the outer crust are on average more dilute than their
more symmetric counterparts because of the development of
a neutron skin. As a result, these nuclei may become sensitive
to the symmetry energy below nuclear matter saturation
density. However, whereas the symmetry energy is relatively
well known around saturation density, its density dependence
(e.g., its slope) is poorly constrained. This may affect the
composition of the crust.

Although some theoretical constraints are starting to
emerge [9,10], the density dependence of the symmetry
energy remains largely unknown. Indicative of this fact is
that accurately calibrated models of nuclear structure (both
relativistic and nonrelativistic) that reproduce a variety of
ground-state properties across the periodic table differ sig-
nificantly in their predictions for the density dependence of
the symmetry energy. Yet these same models have been used
to uncover a strong correlation between the pressure of pure
neutron matter at saturation density and the neutron skin of
heavy nuclei: the larger the pressure the larger the neutron
skin [11,12]. (Note that the pressure of pure neutron matter
equals that of the symmetry energy at saturation density.) This
fact may be illustrated by using the two accurately calibrated
models that will be employed throughout this manuscript,
namely, NL3 [13,14] and FSUGold [15]. Whereas NL3
predicts a pressure at saturation density of P0 ≈ 6 MeV/fm3

and a corresponding neutron skin in 208Pb of Rn − Rp ≈
0.28 fm, FSUGold predicts the significantly lower values of
P0 ≈ 3 MeV/fm3 and Rn − Rp ≈ 0.21 fm, respectively. The
upcoming Parity Radius Experiment (PREx) at the Jefferson
Laboratory will provide a unique experimental constraint on
the density dependence of the symmetry by measuring the
skin thickness of 208Pb accurately and model independently

via parity-violating electron scattering [16,17]. The correlation
between the density dependence of the symmetry energy and
the neutron skin of heavy nuclei opened new horizons in
nuclear astrophysics. Novel correlations between the neutron
skin of 208Pb and a myriad of neutron-star observables were
developed as a result of the similar composition of the neutron
skin of a heavy nucleus and the inner crust/outer core of a
neutron star [18–23]. One particularly interesting correlation
of direct relevance to the crustal region is a “data-to-data”
relation between the neutron skin of 208Pb and the crust-to-core
transition density [18].

The recent observations of intense pulses of energetic
γ rays followed by fainter periodic signals emitted from highly
magnetized neutron stars (or “magnetars”) are sure to provide
an additional new tool in the study of neutron-star structure
[24–27]. The discovery of high-frequency oscillations in
the tails of giant flares from soft gamma repeaters (i.e.,
magnetars with magnetic fields in excess of 1014 gauss
[28–30]) are believed to be associated with seismic vibrations
of the neutron star crust. Early theoretical models that
assume a liquid-core/solid-crust interface suggest torsional
shear oscillations of the crust as the most likely modes of
excitation in a magnetar. The shear modulus of the crust acts
as a restoring force for these modes and such a structural
property is highly sensitive to the composition of the crust
and, thereby, to the nuclear matter equation of state. Indeed,
the shear-mode oscillations depend strongly on the neutron star
mass, radius, and crustal composition—all properties sensitive
to the equation of state [24]. Moreover, ratios of frequencies
with different nodal structures may be used to determine the
thickness of the crust, an observable highly sensitive to the
equation of state and particularly to the density dependence of
the symmetry energy [25,26]. Hence, as techniques continue to
improve, we expect that neutron-star seismology will provide
stringent limits on the equation of state of neutron-rich matter.

The manuscript has been organized as follows. The formal-
ism required to compute the composition and equation of state
of the outer crust is developed in Sec. II. In Sec. III we employ
several realistic nuclear-mass models to compute the structure
of the outer crust. Although not nearly as comprehensive as
the recent study performed by Rüster, Hempel, and Schaffner-
Bielich [31], ours includes a simple “toy model” that provides
critical insights into the role played by the symmetry energy.
Moreover, in the same section we illustrate the impact of the
density dependence of the symmetry energy on the sequence
of neutron-rich nuclei present in the outer crust. Our results
and conclusions are summarized in Sec. IV.

II. FORMALISM

In this section we develop the formalism necessary to
understand the composition and equation of state of the outer
crust of a neutron star. The formalism follows closely the
seminal ideas introduced by Baym, Pethick, and Sutherland
back in 1971 [3]. For more recent references that employ
modern nuclear mass tables see Refs. [31–33]. The central
question that one aims to answer is the following: What is
the ground state of cold, fully catalyzed matter for densities
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between complete ionization (ρ ≈ 104 g/cm3) and “neutron
drip” (ρ ≈ 1011 g/cm3)? Since at these densities uniform
matter is unstable against cluster formation, a Coulomb lattice
of nuclei embedded in a uniform free Fermi gas of electrons is
formed. Thus, the composition of the outer crust is determined
by that nucleus (with neutron number N , proton number Z,
and baryon number A = N + Z) that minimizes—for each
density—the total energy per nucleon of the system. In the
outer crust (i.e., before neutron drip) the energy per nucleon
consists of three different contributions: nuclear, electronic,
and lattice. That is,

ε(A,Z; n) = εn + εe + ε�, (1)

where the baryon density is denoted by n ≡ Atotal/V . The
nuclear contribution to the total energy per nucleon is simple
and independent of the density. It is given by

εn(N,Z) ≡ M(N,Z)

A
,

with

M(N,Z) = Nmn + Zmp − B(N,Z). (2)

Here M(N,Z) is the nuclear mass, B(N,Z) is the correspond-
ing binding energy, and mn and mp are neutron and proton
masses, respectively.

The electronic contribution—at least at the densities of
interest (ρ >∼ 104 g/cm3)—is modeled as a degenerate free
Fermi gas [3]. That is,

εe(A,Z; n) = Ee

n
= 1

nπ2

∫ pFe

0
p2

√
p2 + m2

e dp, (3)

where Ee, me, and pFe are the electronic energy density, mass,
and Fermi momentum, respectively. Note that the electronic
Fermi momentum and baryon density are related as follows:

pFe = (3π2ne)1/3 = (3π2yn)1/3 ≡ y1/3pF , (4)

where the electron fraction y ≡ Z/A has been defined.
Moreover, for future convenience the following definition of
the overall Fermi momentum has been introduced:

pF = (3π2n)1/3. (5)

As the integral in Eq. (3) may be evaluated analytically, the
electronic contribution may be computed in closed form. That
is,

εe(A,Z; n) = m4
e

8π2n

[
xF yF

(
x2

F + y2
F

) − ln(xF + yF )
]
, (6)

where dimensionless Fermi momentum and energy have been
defined as follows:

xF ≡ pFe

me

and yF ≡ εFe

me

=
√

1 + x2
F . (7)

We now discuss the last term in Eq. (1). Whereas the
Coulomb repulsion within the individual nuclei has been
properly included in Eq. (2), the Coulomb repulsion among
nuclei as well as their interactions with the uniform electron
background has not. At the densities and temperatures of
relevance to the outer crust, namely, large enough for full
ionization but small enough for the Coulomb repulsion among

nuclei to dominate over their kinetic energy, Wigner has
shown (in the context of the electron gas) that the system
will crystallize into a body-centered-cubic lattice [34–36].
The last term in Eq. (1) represents the lattice contribution
to the energy per particle. The calculation of the potential
energy of the Coulomb lattice is complicated. It consists of
divergent contributions that must be canceled as required
by the overall charge neutrality of the system. Fortunately,
accurate numerical calculations for the electron gas have been
available for a long time [37,38] and these results can be readily
generalized to the present case [3]. Indeed, the lattice energy
per nucleus may be written as

E�

Nc

= −(1.81962)
(Ze)2

a
= −(1.79186)

(Ze)2

2r0
, (8)

where Nc is the number of nuclei (i.e., A-body clusters), a is the
lattice constant, and r0 is a length scale related to the volume
per nuclei. For the particular case of a body-centered-cubic
lattice, these quantities are related in the following way:

nca
3 = Nc

V
a3 = 2 or

(
a

2r0

)
=

(π

3

)1/3
. (9)

Using the fact that the number of nuclei is related to the total
baryon number of the system as

Nc = Atotal

A
= Ntotal

N
= Ztotal

Z
, (10)

we can write the lattice contribution to the energy per baryon
in closed form as follows:

ε�(A,Z; n) = − (1.79186)

A4/3

(Ze)2

2R0
. (11)

Note that here R0 refers to the length scale associated with the
volume per baryon (r0 = A1/3R0). That is,

R0 =
(

3

4πn

)1/3

=
(

9π

4

)1/3

pF
−1. (12)

By using these definitions, the lattice contribution becomes
equal to

ε�(A,Z; n) = −C�

Z2

A4/3
pF (with C� = 3.40665 × 10−3).

(13)

For completeness, the full expression for the energy per baryon
is now displayed in terms of the individual nuclear, electronic,
plus lattice contributions:

ε(A,Z; n)

= M(N,Z)

A
+ m4

e

8π2n

[
xF yF

(
x2

F + y2
F

) − ln(xF + yF )
]

−C�

Z2

A4/3
pF . (14)

Note that given A,Z, and n = Atotal/V , the only unknown
quantity in this expression is the nuclear mass M(N,Z).
Although experimentally available for a large number of nuclei
around the line of stability, nuclear masses near the drip
line are unknown, thereby making the need for theoretical
extrapolations unavoidable. As crustal properties become
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better determined, nuclear masses at the drip line will be
strongly constrained. Alternatively, the advent of facilities
capable of producing beams of rare isotopes to explore the
limits of nuclear existence will place strong constraints on
crustal properties.

Having computed the energy per baryon of the system,
we are now in a position to compute two additional thermo-
dynamic properties that are essential for the understanding
of both the structure and composition of the outer crust.
These are the equation of state, namely, the relation between
pressure and density, and the chemical potential. Recall that
in modeling the outer crust the central assumption is that
of thermal, hydrostatic, and chemical equilibrium. Thus,
complete equilibrium demands the equality of temperature,
pressure, and chemical potential at each layer of the outer
crust.

At zero temperature and for a constant number of particles,
the pressure of the system may be computed from the total
energy of the system. As the individual nuclei do not contribute
to the pressure, one must only compute the electronic and
lattice contributions. In particular, the electronic contribution
at zero temperature is given by

Pe =
T =0

−
(

∂Ee

∂V

)
Z

= xF

3

(
∂Ee

∂xF

)
− Ee

= m4
e

3π2

(
x3

F yF − 3

8

[
xF yF

(
x2

F + y2
F

) − ln(xF + yF )
])

.

(15)

Similarly, the lattice contribution to the pressure is given by
the following simple expression:

P� =
T =0

−
(

∂E�

∂V

)
A,Z

= −n

3
C�

Z2

A4/3
pF . (16)

In this manner the full (electronic plus lattice) contribution to
the pressure may be written as

P (A,Z; n)

= m4
e

3π2

(
x3

F yF − 3

8

[
xF yF

(
x2

F + y2
F

) − ln(xF + yF )
])

− n

3
C�

Z2

A4/3
pF . (17)

As alluded to earlier, full equilibrium in the system is
established by demanding that the temperature, pressure, and
chemical potential—but not necessarily the baryon density—
be continuous throughout the outer crust. As the temperature
of the system is assumed to be equal to zero, the only
remaining thermodynamic observable to calculate is the
chemical potential. At zero temperature, the Gibbs free energy
and the total energy of the system are related by a Legendre
transform (G = E + PV ). That is,

µ(A,Z; P ) = G(A,Z; P )

Atotal
= ε(A,Z; n) + P

n

= M(N,Z)

A
+ Z

A
µe − 4

3
C�

Z2

A4/3
pF , (18)

where µe =
√
p2

Fe + m2
e is the electronic chemical potential.

Note that the chemical potential is a function of the pressure
whereas the energy per baryon is a function of the baryon
density. The transformation from one into the other is accom-
plished through Eq. (17). Also note that as hydrostatic and
chemical equilibrium must be maintained throughout the star,
it is convenient to compute the composition of the outer crust
by minimizing the Gibbs free energy per particle (i.e., µ) at
constant pressure rather than by minimizing the energy per
particle at constant baryon density. This procedure will be
carried out in the next section.

III. RESULTS

In this section results will be presented for the structure
and composition of the outer crust. The implementation of the
ideas developed in the previous section will be carried out by
using various models for nuclear masses. Two of these models
are based on sophisticated microscopic/macroscopic models
that yield root-mean-square (rms) errors of only a fraction
of an MeV when compared to large databases of available
experimental nuclear masses [39,40]. These two models are the
ones by Duflo and Zuker [41–43] and the finite range droplet
model of Möller, Nix, and collaborators [44,45]. The other
two models are based on accurately calibrated microscopic
approaches that employ a handful of empirical parameters to
reproduce the ground-state properties of finite nuclei and some
collective excitations [13–15]. Although these microscopic
approaches are successful, their rms errors are significantly
larger than those obtained with the microscopic/macroscopic
models. Yet one of the great advantages of the microscopic
models is the ability to systematically study the impact of
unknown physics on crustal properties. First and foremost, we
are interested in understanding how models that are equally
successful in describing available ground-state properties of
finite nuclei differ in their predictions of exotic (neutron-rich)
nuclei.

A. Toy model of the outer crust

Although the structure and composition of the crust will be
ultimately computed using sophisticated mass formulas, we
start by introducing a “toy model” that despite its simplicity
captures the essential physics of the outer crust, namely,
a competition between an electronic density that drives
the system toward more neutron rich nuclei and a nuclear
symmetry energy that opposes such a change.

The toy model consists of the following two approxi-
mations. First, a simple liquid-drop model will be used to
compute nuclear masses [see Eq. (2)]. Second, the electronic
contribution will be assumed to be that of an extremely
relativistic (i.e., me/pFe → 0) Fermi gas. Although both of
these approximations will be relaxed in the next section, we
believe that the physical insights that one develops from this
analytic treatment are valuable.

The liquid-drop mass formula may be written in the absence
of pairing correlations [and by assuming Z(Z − 1) ≈ Z2] as
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follows:

εn(x, y) = mpy + mn(1 − y) − av + as

x
+ acx

2y2

+ aa(1 − 2y)2, (19)

where x ≡ A1/3 and y ≡ Z/A is the proton (or electron)
fraction. The various empirical constants (av, as, ac, and
aa) represent volume, surface, Coulomb, and asymmetry
contribution, respectively. Using a least-square fit to 2049
nuclei (available online at the UNEDF collaboration Web site
http : //www.unedf.org/) one obtains the following values
for the four empirical constants:

av = 15.71511 MeV, as = 17.53638 MeV,
(20)

ac = 0.71363 MeV, aa = 23.37837 MeV.

To understand the competition among the various terms—
and to anticipate how this competition will be modified in the
presence of a Fermi gas of electrons—we compute the optimal
values of x and y using the simple liquid-drop formula by
setting both derivatives equal to zero. That is,(

∂εn

∂x

)
y

= − as

x2
+ 2acxy2 = 0, (21a)

(
∂εn

∂y

)
x

= −�m + 2acx
2y − 4aa(1 − 2y) = 0, (21b)

where we have defined �m ≡ mn − mp. This set of equations
has the following simple analytic solution:

A = x3 =
(

as

2ac

)
1

y2
, (22a)

y =
1 +

(
�m

4aa

)

2 +
(

ac

2aa

)
x2

≈ 1/2

1 +
(

ac

4aa

)
x2

. (22b)

These solutions suggest the following physical interpretation.
For a fixed proton fraction y = Z/A, the optimal value of x

emerges from a competition between the surface contribution
(which favors large x) and the Coulomb contribution (which
favors small x). For the set of empirical constants given
in Eq. (20), the relevant ratio is given by as/2ac ≈ 12.287.
Conversely, if A = x3 is held fixed, then the optimal proton
fraction y results from the competition between Coulomb and
asymmetry contributions, with the former favoring y = 0 and
the latter y = 1/2. If both equation are solved simultaneously,
then one finds the most stable nucleus for this parameter set.
One obtains x0 = 3.906 and y0 = 0.454, or, equivalently,

A0 = 59.598, Z0 = 27.060, N0 = 32.538,
(23)

(B/A)0 = 8.784 MeV, m0 = 930.195 MeV,

with m0 ≡ (M/A)0 being the nuclear mass per nucleon.
The second assumption defining the toy model is that of an

extremely relativistic Fermi gas of electrons (i.e., pFe � me).
In this limit one obtains simple expressions for the total energy
per baryon, chemical potential, and pressure in terms of the

adopted set of variables. That is,

ε(x, y, pF ) = εn(x, y) + 3

4
y4/3pF − C� x2y2pF , (24a)

µ(x, y, pF ) = εn(x, y) + y4/3pF − 4

3
C� x2y2pF , (24b)

P (x, y, pF ) = n

4
y4/3pF − n

3
C� x2y2pF . (24c)

Before assessing the quantitative impact of the density-
dependent (i.e., electronic and lattice) contributions on the
semiempirical mass formula, a few comments are in order.
First, at the predicted neutron drip density of about 4 ×
1011 g/cm3, the Fermi momentum is approximately equal to
pmax

F ≈ 40 MeV. This suggests a large electronic contribution
at those densities of about εmax

e ≈ 30 y4/3 MeV. As the
nuclear contribution is independent of density, the electrons
will drive the system to small values of y. Second, the
lattice contribution (perhaps not surprisingly) has the same
dependence on x and y as the Coulomb contribution to
the semiempirical mass formula. Indeed, the full impact of
the lattice contribution can be included through a redefinition,
albeit a density-dependent one, of the Coulomb coefficient.
That is, ac → ãc(pF ) ≡ (ac − C�pF ). As the optimal value of
the proton fraction y (for fixed x) emerges from a competition
between Coulomb and asymmetry terms [see Eq. (22b)], the
lattice contribution drives the system toward the symmetric
y = 1/2 limit. Yet the lattice contribution is marginal. Indeed,
even at neutron drip densities its contribution provides a
meager, although by no means negligible, correction to
the dominant Coulomb term. These two facts summarize the
main structure of the outer crust, namely, a nuclear lattice
embedded in an electron gas that is responsible for driving
the system toward progressively more neutron rich nuclei.
Thus the outer crust represents a unique laboratory for the
study of neutron-rich nuclei in the Z ≈ 20–50 region. As such,
it nicely complements rare-isotope facilities worldwide that
aim to provide a detailed map of the nuclear landscape.

Incorporating electronic and lattice contributions to the
semiempirical mass formula yields the following expression
for the total energy per nucleon of the system:

ε(x, y, pF ) = mpy + mn(1 − y) − av + as

x
+ acx

2y2

+ aa(1 − 2y)2 + 3

4
y4/3pF − C� x2y2pF . (25)

As done before for the pure nuclear contribution, the optimal
values of x and y—at fixed density—may be obtained by
setting both derivatives equal to zero. That is,(

∂ε

∂x

)
y,pF

= − as

x2
+ 2̃acxy2 = 0, (26a)

(
∂εn

∂y

)
x,pF

= −�m + 2̃acx
2y − 4aa(1 − 2y) + y1/3pF = 0,

(26b)

where a “renormalized” Coulomb coefficient has been defined
as

ãc(pF ) ≡ (ac − C�pF ). (27)
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1. First-order solution

Before providing exact solutions to Eqs. (26), we compute
approximate solutions that are accurate to first order in pF .
In addition of being analytic, these closed-form expressions
provide valuable insights into the composition of the outer
crust. The first-order solutions are obtained by incorporating
the density dependence in the following form:

x(pF ) = x0(1 + ξ ) and y(pF ) = y0(1 + η), (28)

where both ξ and η represent small (i.e., first-order in pF )
deviations from the zero-density results. Substituting these
equations into Eqs. (26) yields the first-order solutions. One
obtains

x(pF ) = x0

[
1 +

(
(C1 − 1)C� + 2C2

3C1 − 1

)
pF

ac

]
= (3.90610 + 0.03023pF ), (29a)

y(pF ) = y0

[
1 −

(
3C2 − C�

3C1 − 1

)
pF

ac

]
= (0.45405 − 0.00419pF ). (29b)

Note that in these expressions the Fermi momentum should
be given in MeV. Moreover, for simplicity the following two
dimensionless quantities were introduced:

C1 ≡ 4aa

x2
0ac

≈ 8.58843 and C2 ≡ 1

2x2
0y

2/3
0

≈ 0.05547.

(30)

The first-order equations [Eqs. (29)]—while not necessarily
quantitatively accurate—provide useful insights into how the
composition of the outer crust evolves with density. As
previously suggested, the proton fraction y decreases with
density in an effort to minimize the “repulsive” electronic
contribution. Indeed, to an excellent approximation Eq. (29b)
may be written in the following simple form:

y(pF ) = y0 − pFe

8aa

= (0.45405 − 0.00411pF ). (31)

As indicated in Eq. (22b), the optimal value of y0 emerges from
a competition between Coulomb and asymmetry terms, with
the former driving y0 toward zero and the latter toward one half.
This equation indicates that the evolution of y with density is
controlled by the dimensionless ratio of pFe/aa , suggesting
that the larger the value of the asymmetry energy, the slower
the evolution away from y0, that is, the more symmetric the
nucleus will remain. Moreover, as the denominator in Eq. (31)
[8aa ≈ 100 MeV] is significantly larger than the electronic
Fermi momentum over the entire region of interest, the first-
order approximation is expected to be fairly accurate over the
entire outer crust. Indeed, assuming a realistic value for the drip
density of ρdrip = 4 × 1011g/cm3 yields a proton fraction of
ydrip = 0.298. This represents a 2% deviation from the value of
y(118Kr) = 0.305 for the conventionally accepted drip nucleus
118Kr.

2. Exact solution

The exact solution to the toy-model problem requires
(for a fixed value of pF ) finding the simultaneous roots of
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FIG. 2. (Color online) Proton fraction y = Z/A (a) and baryon
number x = A1/3 (b) displayed as a function of the Fermi momentum
pF ≡ (3π 2n)1/3. The black solid lines represent the exact solution
to the toy-model problem given in Eqs. (26), the red dashed lines
display the corresponding solution in the C� ≡ 0 (no lattice) limit [see
Eqs. (32)], and the low-density solution [Eqs. (29)] is displayed by
the blue dot-dashed lines.

Eqs. (26a) and (26b). Although the exact solution is nu-
merically simple, it cannot be displayed in closed form.
Yet the exact solution differs only slightly from the C� ≡ 0
solution—which has an analytic, albeit a bit unorthodox,
solution. The closed-form solution for the C� ≡ 0 case may be
obtained by simply rewriting Eqs. (26) as

x(y) =
(

as

2acy2

)1/3

, (32a)

pF (y) = �m − 2acx
2y + 4aa(1 − 2y)

y1/3
. (32b)

This set of equations suggests that rather than looking for a
solution of x and y as a function of pF , one should “solve”
for x and pF as a function of y, with the maximum value of
y given by ymax = y0 = 0.45405 and the minimum value of y

given by the condition µ(ymin) = mn.
In Fig. 2 the baryon number x = A1/3 and proton fraction

y = Z/A are displayed as a function of the Fermi momentum
pF ≡ (3π2n)1/3. The black solid line displays the exact
numerical solution to the toy-model problem [see Eqs. (26)].
In this simple model, the drip line density is predicted to
be at ρdrip = 4 × 1011g/cm3 with the drip line nucleus being
154Cd (i.e., Z = 48 and N = 106). The solution obtained by
ignoring the lattice contribution is displayed by the red dashed
line. Because the lattice contribution to the chemical potential
is negative, the C� ≡ 0 solution reaches the drip line faster
(i.e., at a lower density). Moreover, as the lattice contribution
“renormalizes” the Coulomb term in the semiempirical mass
formula (or, equivalently, enhances the role of the symmetry
energy) the C� ≡ 0 solution predicts a lower proton fraction
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FIG. 3. (Color online) Pressure as a function of the Fermi
momentum pF ≡ (3π 2n)1/3. The black solid line represent the exact
solution to the toy-model problem, the red dashed line displays
the corresponding C� ≡ 0 (no lattice) solution, and the low-density
solution is displayed by the blue dot-dashed line.

than the exact solution. Finally, the dot-dashed blue line
displays the solution correct to first order in pF . In the
particular case of the proton fraction y, the approximate
linear solution y = y0 − pFe/8aa [Eq. (31)] reproduces fairly
accurately the behavior of the exact solution.

The equation of state (i.e., pressure versus density) pre-
dicted by the toy model is displayed in Fig. 3. Because
the lattice provides a negative contribution to the pressure
[Eq. (24c)], the equation of state for the C� ≡ 0 case is
slightly stiffer than the exact one. The first-order solution in pF

provides a quantitatively accurate description of the equation
of state up to fairly large values of the density. Note that the
first-order approximation to the pressure is defined as follows:

P

npF

= 1

4
y4/3 − 1

3
C� x2y2 ≈ (0.08367 − 0.00106pF ). (33)

B. Realistic models of the outer crust

In this section we employ realistic nuclear mass models
to compute the structure and composition of the outer crust.
Two of the models [41–45] are based on sophisticated mass
formulas that have been calibrated to thousands of available
experimental masses throughout the periodic table [39,40].
The other two models are based on accurately calibrated
microscopic approaches that employ a handful of empirical
parameters to reproduce the ground-state properties of finite
nuclei and some nuclear collective excitations [13–15].

Whereas the microscopic models have yet to attain the
level of precision displayed by the microscopic/macroscopic
ones, they are valuable in elucidating various details of the
underlying physics. For example, in the previous section we
established the critical role played by the symmetry energy
in the evolution of the proton fraction with density [see
Eq. (31)]. However, it is unknown how the symmetry energy
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FIG. 4. (Color online) Energy per particle for pure neutron matter
as a function of the neutron Fermi momentum. Shown are the
microscopic model of Friedman and Pandharipande [46] (purple
triangles) and the model-independent result based on the physics of
resonant Fermi gases by Schwenk and Pethick [9] (red region). Also
shown are the predictions from the accurately calibrated NL3 [13,14]
(green dashed line) and FSUGold [15] (blue line) parameter sets.

coefficient aa changes as nuclei move toward the drip line.
Presumably, the development of a significant neutron skin
makes these nuclei (on average) more dilute than their stable
counterparts. If so, one needs to extrapolate the symmetry
energy to lower densities, a procedure that is highly uncertain
because of our poor knowledge of the slope of the symmetry
energy. To illustrate this uncertainty, the equations of state
of pure neutron matter predicted by NL3 (green dashed
line) and FSUGold (blue solid line) are displayed in Fig. 4.
For comparison, we also show the predictions from the
microscopic model of Friedman and Pandharipande based
on realistic two-body interactions [46] (purple upside-down
triangles) and the model-independent result based on the
physics of resonant Fermi gases by Schwenk and Pethick [9]
(red hatched region). Note that, to a very good approximation,
the equation of state of pure neutron matter equals that of
symmetric nuclear matter plus the symmetry energy. The
differences between NL3 and FSUGold displayed in Fig. 4
are all due to the large uncertainties in the symmetry energy.
In particular, as NL3 predicts a stiffer equation of state than
FSUGold, namely, one whose energy increases faster with
density at high densities, the symmetry energy of NL3 is
lower than that of FSUGold at subsaturation densities. Thus,
FSUGold has been shown to reach the neutron drip lines earlier
than NL3 [47]. By the same token, NL3 should predict a
sequence of more neutron rich nuclei (lower y) in the outer
crust than FSUGold.

Shown in the left-hand panel of Fig. 5 is the proton fraction
predicted by the two microscopic models, FSUGold (blue solid
line) and NL3 (green dashed line). Also shown is the simple
prediction obtained from the liquid-drop formula [Eq. (31)].
The proton fraction predicted with the FSUGold parameter
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FIG. 5. (Color online) (a) The proton fraction predicted by the
accurately calibrated FSUGold (blue solid line) and NL3 (green
dashed line) parameter sets along with the simple liquid-drop formula
given in Eq. (31). (b) The corresponding proton fraction as predicted
by the mass formulas from Moller-Nix (red solid line) and Duflo-
Zuker (purple dashed line).

set is consistently higher than for the NL3 set. This is a
reflection of the stiffer penalty imposed on the FSUGold set for
departing from the symmetric (N = Z) limit. The right-hand
panel shows the corresponding behavior for the case of the
microscopic/macroscopic models of Moller-Nix (red solid
line) and Duflo-Zuker (purple dashed line). Differences among
these two models are small.

Similar trends may be observed in Figs. 6 and 7, where
the composition of the outer crust is displayed as a function
of density. As the system makes a rapid jump in neutron
number (say to magic number N = 50) the proton number
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FIG. 6. (Color online) Composition of the outer crust of a neutron
star as predicted by the accurately calibrated FSUGold (a) and NL3
(b) parameter sets. Protons are displayed with the (lower) blue line
and neutrons with the (upper) green line.
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jumps with it. Along this neutron plateau, the proton fraction
decreases systematically with increasing density in an effort
to reduce the electronic contribution to the chemical potential.
Eventually, the neutron-proton mismatch is too large and the
jump to the next neutron plateau ensues—a jump that is driven
by the symmetry energy. Clearly, the larger the symmetry
energy is at low densities, the smaller is the neutron-proton
mismatch and the earlier is the jump to the next neutron
plateau. These features are clearly displayed in Fig. 6 as one
contrasts the behavior of FSUGold to that of NL3. In contrast,
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FIG. 8. (Color online) (a) The zero-temperature equation of state
(pressure versus density) predicted by the accurately calibrated
FSUGold (blue solid line) and NL3 (green dashed line) parameter
sets along with the prediction from the simple liquid-drop formula.
(b) The corresponding expression as predicted by the mass formulas
from Moller-Nix (red solid line) and Duflo-Zuker (purple dashed
line).
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TABLE I. Equation-of-state observables (mass density, baryon density, pressure, and electronic chemical potential)
and composition (nucleus and binding energy per nucleon) at the base of the outer crust.

Model ρ (1011 g/cm3) n (10−4 fm−3) P (10−4 MeV/fm3) µe (MeV) Element B/A (MeV)

Moller-Nix 4.34 2.60 4.93 26.22 118Kr 7.21
Duflo-Zuker 4.32 2.58 4.89 26.17 118Kr 7.19
FSUGold 4.17 2.50 4.68 25.88 118Kr 7.11
NL3 4.49 2.69 5.06 26.39 120Kr 7.13

few differences are noticeable in Fig. 7 when comparing the
model of Moller-Nix to that of Duflo-Zuker.

We conclude this section by displaying in Fig. 8 equation-
of-state (pressure-versus-density) predictions for the outer
crust of a neutron star. The left-hand panel shows results
from calculations using the FSUGold (blue solid line) and
NL3 (green dashed line) parameter sets. Although barely
visible, the density shows discontinuities at those places where
the composition changes abruptly. It is also noted that the
FSUGold parametrization predicts a pressure that rises slightly
faster with density than that of NL3. For the NL3 set, the
symmetry energy admits lower values of the proton/electron
fraction y, which, in turn, lowers the pressure of the system.
Lower values of y also yield lower values of the chemical
potential, thereby delaying the arrival to the neutron drip
line. Indeed, whereas FSUGold predicts a drip line density of
ρdrip = 4.17 × 1011 g/cm3, with NL3 the transition is delayed
by about 8%, or until ρdrip = 4.49 × 1011 g/cm3. A similar
plot is shown for the microscopic/macroscopic models of
Moller-Nix (red solid line) and Duflo-Zuker (purple dashed
line). Differences between these two models are barely notice-
able. Indeed, drip line densities in both models are predicted at
about ρdrip = 4.3 × 1011 g/cm3. Model predictions for various
observables at the base of the outer crust (i.e., in the drip line
region) are listed in Table I.

We remark in closing that all nuclei generated with the
FSUGold parameter set included pairing correlations but
neglected deformation. In regard to pairing correlations, these
were included by means of a constant matrix element fitted
to reproduce the experimental binding energies of some
selected isotopic and isotonic chains, as described in Ref.
[48]. However, deformation was ignored, so a spherical
approximation was assumed in which all orbitals in the open
shell share the same occupation number.

IV. CONCLUSIONS

Following the seminal work by Baym, Pethick, and
Sutherland, as well as the more recent comprehensive work
by Rüster, Hempel, and Schaffner-Bielich, we studied the
composition and equation of state of the outer crust of
nonaccreting neutron stars. The central focus of our study was
the sensitivity of crustal properties to the density dependence
of the symmetry energy. Four different models were adopted.
Two of these models, Moller-Nix and Duflo-Zuker, are based
on a combined microscopic/macroscopic approach and yield
the most accurate nuclear masses available in the literature.
The other two models, NL3 and FSUGold, are of a purely

microscopic nature and are based on a relativistic mean-field
approach. Although the former are significantly more accurate
than the latter, microscopic models have the advantage of
making definite predictions on how the symmetry energy
changes with density (see Fig. 4). One can then study the
impact of various features of the symmetry energy—such as
its slope—on crustal properties.

The composition and equation of state of the outer crust
emerge from a competition among three relatively simple
contributions to the total energy (or chemical potential)
of the system: nuclear, electronic, and lattice. The nuclear
contribution appears exclusively in the form of nuclear masses
and is independent of the baryon density. The electronic
contribution is modeled after a zero-temperature free Fermi
gas and dominates the behavior of the system with baryon
density. Finally, the (body-centered-cubic) lattice contribution
is also density dependent and provides a relatively modest
correction (of no more than 10%) to the energy of the system.
This competition is then primarily driven by an electronic term
that favors a small electron fraction (to reduce the electronic
Fermi energy) and a nuclear symmetry energy that opposes
such a shift toward progressively more neutron rich nuclei.
To motivate the discussion and to highlight this competition,
we implemented a “toy model” of the outer crust by using
a simple semiempirical (“Bethe-Weizsäcker”) nuclear mass
formula. Volume, surface, Coulomb, and asymmetry terms
were extracted from a least-square fit to 2049 nuclei (see
http : //www.unedf.org/). The advantage of such a simple
model is that useful insights emerge from the analytic structure
of our results. Indeed, a particularly transparent result that
illustrates nicely the competition between the electronic
contribution and the nuclear symmetry energy was obtained,
namely,

y(pF ) = y0 − pFe

8aa

+ O
(
p2

Fe

)
, (34)

where y0 is the zero-density proton fraction, pFe is the
electronic Fermi momentum, and aa is the symmetry energy
coefficient. Although illuminating, this (first-order) result is
also surprisingly accurate, as the electronic Fermi momentum
at the base of the outer crust is very close in value to the
symmetry energy coefficient (pFe ≈ 26 MeV versus aa ≈
23 MeV). In particular, the toy model predicts a value for
the electron fraction at the base of the crust that differs by only
a few percent from that of the drip line nucleus 118Kr.

What is unknown, however, is how the symmetry energy
coefficient aa is modified as nuclei move away from the line
of stability. Presumably, the symmetry energy is reduced in
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neutron drip nuclei by the development of a dilute neutron
skin. To investigate the sensitivity of the outer crust to the
density dependence of the symmetry energy we employed
two relativistic mean-field models (NL3 and FSUGold) that,
although accurately calibrated, predict a significantly different
density dependence for the symmetry energy. In particular,
NL3 predicts a smaller symmetry energy than FSUGold at
the (small) densities of relevance to the outer crust (see
Fig. 4). One of the main goals of the present manuscript was
to document how such differences impact the composition of
the outer crust. One noticed, quite generally, that as the density
increases along a fixed neutron-number plateau (say at magic
number N = 50) the proton fraction decreased systematically
in an effort to reduce the electronic contribution to the chemical
potential. Eventually, however, the proton fraction becomes
too low and the symmetry energy drives the system into the
next plateau (say at magic number N = 82). How low can the
proton fraction get is then a question that must be answered
by the symmetry energy. Indeed, whereas NL3 predicts the
formation of 78

28Ni50, FSUGold (having a larger symmetry
energy) leaves the N = 50 plateau with the formation of 82

32Ge50
(or four protons earlier). This result may be stated in the form
of a correlation between the neutron radius of 208Pb and the
composition of the outer crust: The larger the neutron skin of
208Pb, the more exotic the composition of the outer crust. Note
that by “exotic” we mean nuclei that are unstable under normal
laboratory conditions. Finally, and as was done in Ref. [31],
we have computed crustal properties using two of the most

accurate tables of nuclear masses available today, namely,
those of Moller-Nix and Duflo-Zuker. Our results using the
model of Moller and Nix agree well with those published in
Ref. [31]. These results are practically indistinguishable from
the ones obtained using the Duflo-Zuker nuclear mass table, a
table that includes 9210 nuclei!

In summary, we have used realistic nuclear mass tables to
elucidate the role of the symmetry energy on the structure
and composition of the outer crust of neutron stars. Recent
observations of crustal modes in magnetars are likely to
provide stringent limits on the equation of state of neutron-
rich matter. As the field of nuclear astrophysics continues
to advance—with the commission of both radioactive beam
facilities as well as ground- and space-based telescopes—we
enter a new era that promises great hope in the determination
of the nuclear matter equation of state.
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[31] S. B. Rüster, M. Hempel, and J. Schaffner-Bielich, Phys. Rev.

C 73, 035804 (2006).
[32] P. Haensel, J. L. Zdunik, and J. Dobaczewski, Astron. Astrophys.

222, 353 (1989).

025807-10



IMPACT OF THE SYMMETRY ENERGY ON THE OUTER . . . PHYSICAL REVIEW C 78, 025807 (2008)

[33] P. Haensel and B. Pichon, Astron. Astrophys. 283, 313 (1994).
[34] E. Wigner, Phys. Rev. 46, 1002 (1934).
[35] E. Wigner, Trans. Faraday Soc. 34, 678 (1938).
[36] A. L. Fetter and J. D. Walecka, Quantum Theory of Many Particle

Systems (McGraw-Hill, New York, 1971).
[37] R. A. Coldwell-Horsfall and A. A. Maradudin, J. Math. Phys. 1,

395 (1960).
[38] C. A. Sholl, Proc. Phys. Soc. 92, 434 (1967).
[39] G. Audi and A. H. Wapstra, Nucl. Phys. A565, 1 (1993).
[40] G. Audi and A. H. Wapstra, Nucl. Phys. A595, 409 (1995).
[41] J. Duflo, Nucl. Phys. A576, 29 (1994).

[42] A. Zuker, Nucl. Phys. A576, 65 (1994).
[43] J. Duflo and A. P. Zuker, Phys. Rev. C 52, R23 (1995).
[44] P. Moller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data

Nucl. Data Tables 59, 185 (1995).
[45] P. Moller, J. R. Nix, and K. L. Kratz, At. Data Nucl. Data Tables

66, 131 (1996).
[46] B. Friedman and V. R. Pandharipande, Nucl. Phys. A361, 502

(1981).
[47] B. G. Todd and J. Piekarewicz, Phys. Rev. C 67, 044317 (2003).
[48] M. Del Estal, M. Centelles, X. Viñas, and S. K. Patra, Phys. Rev.
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