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and the influence of mass uncertainties
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A new mass table calculated by the relativistic mean-field approach with the state-dependent BCS method
for the pairing correlation is applied for the first time to study r-process nucleosynthesis. The solar r-process
abundance is well reproduced within a waiting-point approximation approach. Using an exponential fitting
procedure to find the required astrophysical conditions, the influence of mass uncertainty is investigated. The
r-process calculations using the FRDM, ETFSI-Q, and HFB-13 mass tables have been used for that purpose. It
is found that the nuclear physical uncertainty can significantly influence the deduced astrophysical conditions
for the r-process site. In addition, the influence of the shell closure and shape transition have been examined in
detail in the r-process simulations.

DOI: 10.1103/PhysRevC.78.025806 PACS number(s): 21.10.Dr, 21.60.Jz, 23.40.Hc, 26.30.Hj

I. INTRODUCTION

It is of the utmost interest to explore the “terra incognita”
of exotic nuclei, as evidenced by the fact that several
radioactive ion beam (RIB) facilities are being upgraded,
under construction, or planned to be constructed worldwide.
Such investigations of the properties of these exotic nuclei,
which may behave very differently from the nuclei around
the β-stability line, result in new discoveries such as the halo
phenomenon [1,2]—nucleons spread like a thin mist around
the nucleus, which can significantly increase the nuclear
reaction ratio. Stellar nucleosynthesis processes such as the
r-process [3,4], which is responsible for roughly half of the
enrichment of elements heavier than iron in the universe, also
require a thorough understanding of the properties of exotic
nuclei. Key properties such as masses, for example, determine
the path that the nucleosynthesis process follows in the nuclei
chart. Nevertheless, despite many experimental efforts, present
knowledge of exotic nuclei still does not include much of
what is required for a complete understanding of r-process
nucleosynthesis. After the first systematic introduction to
the r-process [5] half a century ago, r-process calculations
for a long time could only rely on the phenomenological
nuclear droplet mass formula [6] because of the lag in both
experimental and theoretical development. Fortunately, in the
past 15 years the theoretical study of nuclear properties has
made tremendous progress and r-process calculations [7–9]
have been carried out based on the refined droplet model
FRDM [10], Hartree-Fock approaches such as ETFSI-Q [11],
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and the very recent microscopically rooted Hartree-Fock
Bogliubov (HFB) approach [12–14].

Despite progress in theoretical nuclear structure physics,
mass model predictions (which by design concentrate on
different nuclear structure aspects) still show a large deviation
when going to very neutron rich nuclides, even though they
have achieved similar quality to describe known nuclides. This
is especially troublesome since the astrophysical scenario in
which an r-process may occur is a matter of debate and all
astrophysical simulations dedicated to the nature of the stellar
environment depend on the input from nuclear physics. Mass
model predictions, even in models that give similar global rms
error still show local deviations differently.

In principle, microscopically rooted mass models should
have a more reliable extrapolation to the unknown regions;
therefore these studies have received more and more interest
as evidenced by the increasing number of nonrelativistic HFB
investigations [12–15]. Based on a mass-driven fitted method,
the latest HFB models have achieved a quality (with rms
∼ 0.7 MeV) similar to the phenomenological FRDM mass
model for known masses. More recently, another microscopi-
cally rooted approach, relativistic mean-field (RMF) theory
[16], has received broad attention owing to its successful
description of several nuclear phenomena during the past
few years (for recent reviews, refer to Refs. [17,18]). In
the framework of RMF theory, the nucleons interact via the
exchanges of mesons and photons. The corresponding large
scalar and vector fields, of the order of a few hundred MeV,
provide simple and efficient descriptions of several important
phenomena such as the large spin-orbit splitting, the density
dependence of the optical potential, and the observation of
approximate pseudo-spin symmetry. Moreover, RMF theory
can reproduce well the isotopic shifts in the Pb region [19]
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and explain naturally the origin of the pseudo-spin symmetry
[20,21] as a relativistic symmetry [22–25] and spin symmetry
in the anti-nucleon spectrum [26].

The first RMF mass table was reported in Ref. [27] for
2174 even-even nuclei with 8 � Z � 120 but without including
pairing correlations. Later on, the calculation was improved
by adopting a constant-gap BCS method and 1200 even-even
nuclei with 10 � Z � 98 were calculated [28], most of which
are close to the β-stability line. More recently, by using
the state-dependent BCS method with a δ force [29,30], the
first systematic study of the ground-state properties of over
7000 nuclei ranging from the proton dripline to the neutron
dripline was performed [31]. Comparison of this calculation
with experimental data and to the predictions of other mass
models will be presented in more detail in Sec. II.

Considering the recent development of the microscopic
mass models in both the HFB and RMF approach, we thought
it would be very interesting to examine their applicability
to an r-process calculation. The main goals of this paper
are to explore to what extent the solar r-process abundance
can be reproduced by using the new RMF mass table [31]
and, by comparing with other theoretical mass models,
to determine the influence of nuclear mass uncertainty in
r-process calculations. The paper is organized as follows.
In Sec. II the global agreement of the new RMF mass table
with the experimental data is discussed and the RMF prediction
in the very neutron rich range is compared with the FRDM
[10], the ETFSI-Q [11], and the latest HFB-13 [15] mass tables.
In Sec. III, a short introduction to a site-independent r-process
approach is given. In Sec. IV, the new mass table is applied
to reproduce the solar r-process abundances. In addition, the
result is compared to the r-process abundances obtained with
the predictions of the FRDM, ETFSI-Q, and HFB-13 mass
models. Finally, a summary and conclusions are given in
Sec. V.

II. GLOBAL BEHAVIOR OF THE NEW RMF MASS TABLE

With about 10 parameters fitted to the ground-state proper-
ties of around 10 spherical nuclei, the RMF approach with the
TMA parameter set is found to give a satisfactory description
for all nuclei on the nuclear chart. The model deviation of
one-neutron separation energy Sn with respect to the known
experimental data can be characterized by the rms deviation

σrms =
√√√√1

n

n∑
i=1

(
S th

n − S
exp
n

)2
i
. (1)

Although a relatively large rms deviation for the absolute
mass value is found for the RMF calculation in comparison
with the FRDM and HFB-13 models, the finite differences in
binding energies, such as the practical one-neutron separation
energies Sn used, are well predicted owing to the cancellation
of systematic error [31,32]. The rms deviation of Sn for the
FRDM, ETFSI-Q, HFB-13, and RMF models with respect to
experimentally determined values [33] are 399, 528, 546, and
654 keV, respectively. Here the comparisons include nuclei
with Z,N � 8. Comparing the predictions of the RMF model

FIG. 1. (Color online) The rms deviation σrms of one-neutron
separation energy Sn with respect to experimental data [33] as a
function of the distance from the β-stability line ε = Z0 − Z for
different mass models, where Z0 stands for the proton number of the
most stable isotope in the isobaric chain with mass number A.

to the known values [33] results in discrepancies between
−1.4 to 1 MeV, and the difference between either the FRDM
or the HFB-13 and the experimental data is in the range of
−1.3 to 0.5 MeV. This shows that the microscopic model such
as the RMF approach can achieve almost the same level of
accuracy for known one-neutron separation energy Sn as the
phenomenological FRDM. For each isobaric chain with mass
A, the distance between the nuclide (Z,A) and the nuclide
(Z0, A) in the β-stability line [34] is defined by ε = Z0 − Z

with

Z0 = A

1.98 + 0.0155A2/3
; (2)

that is, ε = 0 stands for the most stable nuclei and ε > 0 for
the neutron-rich nuclei. The rms deviation σrms of Sn as a
function of ε = Z0 − Z for different mass models is shown in
Fig. 1. It is remarkable that almost the same order of prediction
power of Sn from the neutron-deficient side to the neutron-rich
side is achieved for all the models, even though models such
as FRDM and HFB-13 have about 10 more free parameters
than the RMF model and were optimized for all the known
masses. Although the macroscopic-microscopic mass model
FRDM shows the best agreement with experimental values in
the neutron-deficient mass region, it gets progressively worse
when moving away from the stability line toward the neutron-
rich side.

All theoretical models addressing nuclei far from the
β-stability line involve a dramatic extrapolation to unknown
nuclei. Thus it is interesting to examine the difference of
Sn predicted in the different models when going toward the
neutron-rich side. In Fig. 2, the differences between Sn in the
RMF model and those in the HFB-13 mass models are shown
as an example. In general, most of the discrepancies between
the two microscopic models range from −1 to 1 MeV across
the entire nuclear chart. Furthermore, the Sn value is consistent
with that in the HFB-13 model in the range of −0.5 to
0.5 MeV when going to the unknown region of the nuclear
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FIG. 2. (Color online) The differences between one-neutron separation energies Sn predicted in the RMF model and those in the HFB-13
model. The magic proton and neutron numbers are indicated by pairs of parallel lines, and also the present borders of the data with known
masses are shown by solid lines.

chart. These differences indicate that the extrapolation can
be quite different depending on the underlying physics of
the model. A similar conclusion can be drawn also for the
comparison of the RMF and FRDM models. Around the
N = 82 shell, the RMF model predicts a systematically lower
Sn. These different Sn predictions toward the neutron dripline
affect r-process calculations and thus the corresponding
determined astrophysical conditions.

The evolution of the nuclear structure around the shell
closures N = 82 and 126 is critical in understanding the
r-process abundance distribution around the A = 130 and
A = 195 abundance peaks. At the shell closures, the one-
neutron separation energy drops, and thus the corresponding
nucleus in the r-process path cannot absorb another neutron
without photodisintegration. Therefore it has to “wait” for the
β decay to proceed, and the path moves closer to the valley
of stability where the half-lives are longer. These isotopes
with long half-lives serve as bottlenecks of the process where
abundances accumulate and the abundance peaks are formed.
In Fig. 3, the predicated average one-neutron separation energy
S2n/2 around N = 82 in the RMF model is displayed as
a function of mass number for isotopes from Kr to Ba
together with the experimental values and the predictions of
the FRDM, ETFSI-Q, and HFB-13 models. The dominating
isotopes in the r-process path (defined as waiting points and
discussed in Sec. IV) are also indicated for the corresponding
mass model. Similarly, Fig. 4 presents the S2n/2 distribution
around the N = 126 shell for isotopes from Ce to Pt. In
general, the RMF model reproduces well the experimental
data and predicts a much more subtle variance relative to other
mass models. The neutron shell gaps, defined as �n(Z,A) =
S2n(Z,A) − S2n(Z,A + 2), can be more clearly seen from
Fig. 5, which shows the shell gaps for N = 82 and 126 in the

RMF approach in comparison with the data available and those
in the FRDM, ETFSI-Q, and HFB-13 models. The nuclei in
the shadowed area are in the r-process path. At the N = 82
shell, all the mass models except the FRDM model show
a strong quenching effect (i.e., the shell gap drops) toward
the neutron-rich side. The RMF shell gap is overestimated
compared with the data available and it is around 2 MeV
larger than that for other models for 45 � Z � 60. Nonetheless,
the RMF model succeeds in predicting the enhanced double-
magic effect at Z = 50 together with the HFB-13 model.
For N = 126, there is no sign of shell quenching observed
in the r-process region for any of the models. A unique
feature of the RMF model is that it fully coincides with the
available data and it is also the only model to reproduce the
enhanced double-magic effect at Z = 82. In comparison, the
other models fail to reproduce the trend of the known N = 126
shell. Toward the neutron dripline, the RMF prediction tends
to enhance the shell until the maximum is reached around
Z = 60 whereas the other models have a roughly constant shell
gap.

III. SITE-INDEPENDENT r-PROCESS APPROACH

Since the r-process is responsible for the synthesis of
half the heavier nuclei beyond the iron group [3,4], the
basis of the nucleosynthesis mechanism has been extensively
studied. Nevertheless, the location where it occurs has not been
unambiguously identified. Current location candidates include
the neutrino-driven wind off a proton-neutron star in core
collapse supernovae [35–38], neutron star mergers [39–41],
jets in core collapse supernovae [42], shocked surface layers
of O-Ne cores [43], and γ -ray bursts [44]. Because the specific
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FIG. 3. (Color online) The average one-neutron separation energies around the N = 82 shell in the RMF model, in comparison with those
in the FRDM, ETFSI-Q, and HFB-13 models as a function of mass number A. For simplicity only nuclei with even N are plotted. The
corresponding r-process paths calculated by using different mass inputs are also indicated by dots, and labeled here are those isotopes with
more than 10% population of each isotopic chain.

astrophysical conditions among the different scenarios may
change, solar r-process abundances [45] have been used in
the past to constrain the astrophysical conditions by using a
site-independent approach [7,46]. In this approach seed nuclei
(usually the iron group) are irradiated by neutron sources
of high and continuous neutron densities nn ranging from
1020 to 1028 cm−3 over a time scale τ in a high-temperature
environment (T ∼ 1 GK). This superposition of r-process
components (nn, τ ) is needed to reproduce the overall shapes
and positions of the solar r-process abundances [7,8,47]
and it is equivalent to the exponential neutron exposures
in the s-process [48]. The configuration of many r-process
components seems to be also a reasonable approximation to
the real r-process event. For instance, one can think of it as the
“onion” structure of neutron sources with different densities,
where the seed nuclei capture neutrons while moving through
different zones with different thicknesses. In this paper we
explore for the first time the application of the new RMF
mass model to an r-process calculation and at the same time
investigate the effect of nuclear physics uncertainty in the
r-process.

Owing to the high neutron densities, neutron captures are
much faster than the competing β decays and an (n, γ ) ⇔

(γ, n) equilibrium is nicely established for every element. The
abundance ratio of two isotopes on a time scale τ can be
expressed simply as

Y (Z,A + 1)

Y (Z,A)
= nn

(
h2

2πmµκT

)3/2
G(Z,A + 1)

2G(Z,A)

(
A + 1

A

)3/2

× exp

[
Sn(Z,A + 1)

κT

]
, (3)

where Y (Z,A) denotes the abundance of the nuclide (Z,A), Sn

is the one-neutron separation energy, G(Z,A) is the partition
function of nuclide (Z,A), and h, κ, and mµ are the Planck
constant, Boltzmann constant, and atomic mass unit, respec-
tively. Neglecting the difference in the ratios of the partition
functions and the atomic mass, one can easily see that the
isotopic abundance distribution P (Z,A) and the abundance
maxima in each isotopic chain are determined by nn, T ,

and Sn. By approximating Y (Z,A + 1)/Y (Z,A) � 1 at the
highest isotopic abundance for each element, and with all
other quantities being constant, the average neutron-separation
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FIG. 4. (Color online) Same to Fig. 3 but around the N = 126 shell.

energy S̄n, calculated by

S̄n ≈ κT log

[
2

nn

(
2πmµκT

h2

)3/2
]

= T9

{
2.79 + 0.198

[
log

(
1020

nn

)
+ 3

2
log T9

]}
, (4)

where T9 denotes the temperature in 109 K, is the same for
all the nuclides with the highest abundance in each isotopic
chain. Higher temperature or lower neutron density will drive
the r-process path toward the valley of stability. Owing to the
pairing correlation the most abundant isotope always has an
even neutron number N .

If fission is neglected, the abundance flow from one isotopic
chain to the next is governed by β decays and can be expressed
by a set of differential equations:

dY (Z,A)

dt
= Y (Z − 1)

∑
A

P (Z − 1, A)λZ−1,A
β

−Y (Z)
∑
A

P (Z,A)λZ,A
β , (5)

where λ
Z,A
β is the total decay rate of the nuclide (Z,A) via

the β decay and the delayed neutron emission, and Y (Z) =∑
A Y (Z,A) = ∑

A P (Z,A)Y (Z) is the total abundance in
each isotopic chain. By using Eqs. (3) and (5), the abundance

for each isotope can be calculated. After the neutrons freeze
out all the isotopes will proceed to the corresponding stable
isotopes via β decays.

IV. CALCULATIONS

In the present calculation, unknown one-neutron separation
energies Sn were calculated from the RMF approach [31] and
β-decay properties were taken from Ref. [49]. Experimental
data [33,50] were used when available. Similar to the method
used in Refs. [8,46,47], we applied 16 components with
neutron densities in the range of 1020 to 3 × 1027 cm−3 in
our calculation. We chose a temperature T = 1.5 GK. We
assumed that for this temperature the irradiation time τ and
the corresponding weight w follow an exponential dependence
on neutron density nn, that is,

w(nn) = na
n, τ (nn) = b × nc

n, (6)

where a, b, and c are parameters to be fixed. These parameters
can be obtained from a least-square fit to the solar r-process
abundances. We further assume that the longest neutron
irradiation time has to be longer than 0.5 s but shorter than
20 s. The exponential relations in Eq. (6) have been observed
when fitting the three r-process peaks [51] and used for stellar
and chronometer studies [8,47,52].

025806-5



SUN, MONTES, GENG, GEISSEL, LITVINOV, AND MENG PHYSICAL REVIEW C 78, 025806 (2008)

FIG. 5. The neutron shell gaps �n(Z, A) = S2n(Z, A) − S2n(Z, A + 2) for N = 82 and 126 in the RMF approach compared with those in
the FRDM, ETFSI-Q, and HFB-13 models together with the data available. The nuclei in the shadowed areas are involved in the r-process
paths based on our calculations.

It was found that r-process components with τ (nn) =
0.454n0.040

n s and w(nn) = 2.1n0.02
n best reproduce the solar

r-process abundance. Figure 6 shows the contribution of the
four group-weighted r-process components after β decays
to the resulting best fit. The black solid curve with isotopic
abundances normalized to A = 130 corresponds to the fit using
all 16 components. The green, red, blue, and gray dashed
curves are the sum of the abundances calculated with log(nn)
ranging from 20 to 22.5, 13 to 24.5, 25 to 26.5, and 27 to 27.5,
respectively. The first six components with log(nn) between
20 and 22.5 seem to account for the A = 80 abundance peak.
The four components with log(nn) between 23 and 24.5 are
responsible for the overall structure of the r-abundance curve
beyond A = 120 and the remaining components only improve
the description of the theoretical calculation for A > 150. In
general, the fit is found to reproduce well the solar r-process
abundances and also the position of the abundance peaks.

The r-process runs relatively close to the β-stability line
around the shell closure; thus the experimentally known

FIG. 6. (Color online) The effect of various weighted r-process
components on the resulting fit after β decays in the best superposition
using the RMF masses. The calculated total isotopic abundances (on
a logarithmic scale) are normalized to A = 130.

mass values around N = 82 shell significantly influence the
abundance distribution after the second abundance peak.
Taking our best simulation using the RMF masses as an
example, we find that the ratio between the abundance at
A = 130 and the abundance at A = 195 is 2.8 when taking the
experimental data into account, and it increases to 24.6 if the
experimental data are not used. The same ratio decreases from
4.0 to 1.3 for the best simulation using the FRDM masses (to be
discussed in the following). To minimize the contribution from
the theoretical uncertainty of known masses, experimental
information was included in the calculations.

To investigate the impact of theoretical uncertainty of un-
known masses in an r-process calculation, we also performed
the same procedure using instead the FRDM, ETFSI-Q,
and HFB-13 mass predictions while keeping the same β-
decay properties. The astrophysical conditions determined
by using various mass inputs are shown in Fig. 7. The
obtained superpositions of 16 r-process components for all
the mass tables are collected in Table I. Similar to the
astrophysical conditions obtained from ETFSI-Q simulations,
the astrophysical condition found using the RMF mass input
requires a relatively constant weighting factor for different
neutron densities. However, the FRDM and HFB-13 cases
favor a large weighting factor for low neutron density. For the
neutron irradiation time, the best RMF fit requires component
durations of as long as 6 s whereas the FRDM and HFB-13
simulations require only up to 1.5 s. The ETFSI-Q component

TABLE I. Our best fits to the solar r-process abundances for
different sets of nuclear mass models. The first column is the mass
model employed. The last two columns are the weight ω and the
relevant neutron irradiation time τ (in units of seconds), respectively.

Mass model ω τ (s)

RMF 2.1 × n0.020
n 0.454 × n0.040

n

FRDM 3.0 × 104 × n−0.161
n 0.013 × n0.075

n

ETFSI-Q 54.4 × n−0.040
n 0.499 × n0.025

n

HFB13 2.8 × 104 × n−0.160
n 0.007 × n0.085

n

025806-6



APPLICATION OF THE RELATIVISTIC MEAN-FIELD . . . PHYSICAL REVIEW C 78, 025806 (2008)

FIG. 7. The best configuration of sixteen r-process components
that reproduce the solar system r-process abundances with different
mass inputs at temperature T = 1.5 GK. The neutron density nn is in
units of cm−3. The weighting factor ω(nn) and the neutron irradiation
time τ (nn) are shown in the upper and lower panels as a function of
neutron density nn. In the upper panel, the weighting factors for the
FRDM are completely overlaid by those for the HFB-13 models. The
fit from Ref. [47] is also plotted for comparison. The total weighting
factor has been normalized to 100.

durations are somewhat in between. Moreover, it may be worth
mentioning that the simulations using the FRDM and HFB-13
masses demand almost identical astrophysical conditions.
A similar calculation based on the ETFSI-Q mass model
was carried out in Ref. [47] with a lower temperature T =
1.35 GK. As shown in Fig. 7, their obtained neutron irradiation
times are in good agreement with our calculation using the
ETFSI-Q masses and FRDM half-live inputs, but the weighting
factors differ. The superposition obtained in Ref. [47] demands
a sharper evolution of the weighting factor as a function of nn.
Since a lower temperature of T = 1.35 GK in our calculations
only weakly impacts the condition obtained, the difference
should be due to the different β-decay properties used in that
work. Based on a full dynamical network calculation, faster
time scales, of the order of hundreds of milliseconds, are found
in Ref. [53] for an r-process in the neutron-wind scenario
of core-collapse type II supernovae. However, this different
time scale can be at least partially attributed to different seed
nuclides. In their calculation, the r-process starts from a seed
distribution containing neutron-rich nuclei with mass numbers
between 80 and 100, whereas ours starts from 56Fe.

Solar r-process abundances after β decays calculated by
using different mass models are displayed in Fig. 8. Shadowed
areas show the regions with underproduced abundances before
the neutrons freeze out. After β decays to the stability line,
these gaps are too large to be completely filled in by β-delayed
neutron emissions. It should be pointed out that the solar
system r-process abundances are defined as the abundances
not produced in the s-process and p-process that still have
to be created elsewhere to explain the actual solar system
abundances. Although it is thought that the r-process is
responsible for the majority of those isotopic abundances
with Z � 56, its contribution to the lighter elements is still

debatable [54,55]. It is possible that some of the discrepancies
in the reproduction of the low-mass abundances may be due
to an additional nucleosynthesis component creating some of
those abundances. However, since astrophysical conditions
and nuclear properties both affect the resulting r-process
abundances, one needs to determine or at least understand the
uncertainty in the nuclear physics properties in any future work
to disentangle the two effects [56]. In this paper we only discuss
possible nuclear physics reasons for such underabundances.

The r-process abundances calculated with all nuclear mass
models result in abundance underproduction at A ∼ 120 and
A ∼ 170. Traditionally, the underestimation of the isotopic
abundances before the A ∼ 130 peak has been attributed to the
overestimated strength of the N = 82 shell closure [8,47,51]
in the theoretical nuclear physics model even though the
experimental evidence is still debated [57–59]. Since it is not
possible to do a complete study of the shell-quenching effect at
the single-particle level, which should affect more nuclei than
the one with N = 82, we only study the effect of a reduced
shell closure by artificially decreasing the shell gap energies
at N = 82 in the RMF and FRDM models by 2 and 1 MeV,
respectively. In such a way, the shell gaps of interest for the
r-process would roughly have the same values as those in the
quenched models ETFSI-Q and HFB-13. Eventually, a better
agreement with the observation at A ∼ 120 is obtained, as
shown in Figs. 8(a) and 8(b). This can be easily understood
as follows. A reduction of shell gap leads to a nuclear matter
repopulation in the isotopic chain according to Eq. (3). The
r-process waiting points located at N = 82 move closer to the
valley of stability and thus some of the underabundance can
be filled. Furthermore, based on Fig. 3 one could expect that the
quenched shell gap at N = 82 would not affect the abundance
around A ∼ 115. It is interesting to note that the r-process
simulation using the shell-quenched ETFSI-Q model in
Fig. 8(c) show good agreement with the solar abundance
pattern at A ∼ 120 together with a large underproduction at a
lower mass number A ∼ 115.

The abundance trough at A ∼ 115 for the FRDM, RMF, and
ETFSI-Q models can be related to the additional bump of Sn at
A = 110–120 in Fig. 3 and thus to the associated nuclear shape
transition. In the case of the ETFSI-Q model, nuclear shape
changes from prolate to oblate and then to spherical nuclei
with N = 82. This transition leads to a deviation from the
approximate relationship between neutron separation energies
and mass number for each isotope, as can be clearly recognized
in Fig. 3(c) by the sudden increase of the separation energies.
To highlight the sensitivity of the r-process calculation to the
effect of the nuclear shape transition, we lowered the separation
energies of 118,120Mo by 1 MeV in the ETFSI-Q model, but
we kept the other nuclear physics input unchanged. Those
isotopes are in the r-process path and show a bump in the
one-neutron separation energies as a function of mass number.
As shown in Fig. 8(c) the A ∼ 115 trough is largely filled in.
A similar analysis leads to the same conclusion for the FRDM
and RMF mass models. Although we have mainly focused
on the underabundance below N = 82, a similar conclusion
can be drawn for the trough around A ∼ 170. As an example,
Fig. 8(b) shows that the trough is almost completely filled in
by lowering the separation energies of 185Pm and 186Sm by

025806-7



SUN, MONTES, GENG, GEISSEL, LITVINOV, AND MENG PHYSICAL REVIEW C 78, 025806 (2008)

FIG. 8. (Color online) Our best fits to the solar r-process abundances (in the logarithm scale) using different nuclear mass inputs. The
β-decay properties are taken from the FRDM model [49]. The best fits are displayed as blue-solid lines. In the sub-figure (a), the red-dashed
curve is the same as the blue-solid curve but with a shell closure at N = 82 2 MeV smaller. In the sub-figure (b), the red-dashed curve is the
same as the blue-solid curve but with a shell closure at N = 82 1 MeV smaller and separation energies of 185Pm and 186Sm 1 MeV smaller.
In the sub-figure (c), the red-dashed curve is the same as the blue-solid curve but with separation energies of 118,120Mo 1 MeV smaller. In the
sub-figure (d), the red-dashed curve is the same as the blue-solid curve but with half-live of isotopes 113,115,117Y five times larger . The shadowed
areas correspond to the range where the abundances of these isotopes are largely underestimated before neutrons freeze-out.

1 MeV. This suggests that the potentially wrongly assigned
location of the shape transition before the neutron magic
number in the theoretical predictions can lead to troughs before
the abundance peaks.

Of all the mass models, the HFB-13 model is the only one
that shows a smooth one-neutron separation energy change
from Sr to Ru. As a result, the r-process waiting points are
continuous and there is no apparent gap in the r-process path
[see Fig. 3(d)]. Only modifications in the nuclear masses would
not result in the filling of the abundance gap at A ∼ 115. Such
underproduction may be traced back to the β-decay properties.
By increasing the β-decay half-lives of the critical nuclei
113,115,117Y by a factor of 5, we found that the trough before
the A ∼ 130 peak in the HFB-13 case can be nearly filled in,
as shown in Fig. 8(d).

V. SUMMARY

We have applied the most recent comprehensive mass
models, the nonrelativistic microscopically rooted HFB-13

and the relativistic RMF, to r-process calculations. For the
sake of comparison, we also included the widely used macro-
microscopic models FRDM and ETFSI-Q. Of these models,
the HFB-13 and RMF models are used for the first time in such
calculations. Based on a simple r-process model, it is found
that all mass models reproduce the main features of the solar
r-process pattern and the position of the abundance peaks.
Since r-process simulations have to rely on predicted nuclear
physics properties of unknown regions in the nuclear chart, we
have compared the predictions of different mass models. We
have also made a systematic study of the influence of the mass
model uncertainty in the application of the r-process and thus
in the required astrophysical conditions. This nuclear physical
uncertainty is very important for a complete understanding
of the r-process since the results of more modern fullly
dynamic r-process calculations depend on the nuclear mass
input used. It is found that the deduced astrophysical conditions
such as the neutron irradiation time of the r-process can be
significantly different depending on the mass model used.
Among the different models, the simulation using the RMF
masses requires a longer time scale (up to a factor of 4)
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than those using FRDM and HFB-13 models. Furthermore,
it is found that the optimal astrophysical conditions obtained
by using the ETFSI-Q and RMF mass models require a
relatively constant weighting factor for neutron densities in
the range 1022 to 1028 cm−3, whereas the FRDM and HFB-13
simulations favor a large weighting factor at low densities.
In addition, we have explored the possible deficiencies in
different mass models and found that the observed abundance
underproduction before the abundance peaks in all the models
can be a combined and complex effect of both shell structure
and shape transition. An exception is the underproduction
at A ∼ 115 in the HFB-13 model, which can be attributed
to incorrect β-decay rates. Future experiments are needed to
determine the strength of the shell closure toward the neutron

dripline as well as the precise locations of the shape transition
toward the shell-closures.
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