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We study the properties of neutron stars involving antikaon condensation with three different models in the
framework of relativistic mean field (RMF) approximation theory: the Glendenning-Moszkowski (GM) model, the
Zimanyi-Moszkowski (ZM) model, and the hybrid derivative coupling (HD) model. We take the isovector-scalar
(δ-meson) channel interaction into account in our calculations and find that large mass neutron stars with kaon
condensation can exist if the kaon optical potential is appropriately weak. The δ-meson channel interaction
has a significant influence on the property of neutron stars and the effects are a little different for the three
models.
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I. INTRODUCTION

A neutron star (NS) is a natural laboratory to investigate the
composition, the phase structure, and its transition of dense and
cold/hot strongly interacting matter. Theoretical investigations
have shown that, with the increase of density, some new degree
of freedom other than nucleons such as hyperons [1–4], pion
and kaon condensation [5–27], even quarks (see, for example,
Refs. [28–36]) may appear in the interior of neutron stars.
All of these exotic components in the core of NS soften the
equation of state (EOS) [1,33,37,38] and lower the maximum
mass and the gravitational redshift of neutron stars. On the
other hand, a recent radio observation of the object PSR
J0751+1807 yielded a neutron star mass (2.1 ± 0.2) M�
with 1σ error bars [39], and, 95% confidence, one of the
pulsars Ter 5 I and J has a mass larger than 1.68 M� [40].
In addition, resent observed gravitational redshift of the X-ray
burster EXO 0748-676 implies z � 0.35 [41] even though
it is still in doubt (see for example Ref. [42]) and further
confirmations are necessary. Since the observed mass and the
redshift have been implemented for years to constrain
the theoretical predictions of the EOS [31,32,34,37,38,43–45],
the composition of large mass neutron stars has become then
a hot topic for debate (see, for example, Refs. [46,47]).
The existence of hyperons or quark matter in the core of
neutron stars under the constraint of recent observations has
been reinvestigated in various approaches (see, for example,
Refs. [48–56]). The kaon condensation has also been revisited
in the modified quark-meson-coupling model [57], chiral
Lagrangian approach [58], and the Glendenning-Moszkowski
(GM) model [27] in the framework of the relativistic mean
field approximation.

It has been shown that the relativistic mean field (RMF)
approximation, as a hadronic effective field theory, is able to
reproduce not only the saturation properties of (astro)nuclear
matter but also the ground state properties of finite nuclei (for
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reviews see Refs. [1,59–64]), and even the nuclear shape phase
transition [65]. Concerning the interactions among hadrons,
one usually considers isoscalar-scalar, isoscalar-vector, and
isovector-vector channels. In the mid-1990s, the contribution
of the isovector-scalar [by exchanging the δ meson, or a0(980)]
channel was taken into account [66], and soon was expected to
be important in neutron stars [67–73]. Technically, when one
implements the RMF approximation to study the properties
of neutron star matter, one has the Glendenning-Moszkowski
(GM) model [8], the Zimanyi-Moszkowski (ZM) model [74],
and the hybrid derivative coupling (HD) model [75], which
handle the scalar meson field dependence of the effective
mass of the nucleon in different ways. The GM model, even
with the isovector-scalar channel being included, has been
widely used to study not only asymmetric nuclear matter and
neutron star property [2–4,7,8,66–73,76–78] but also heavy
ion collisions [79–81]. However, the ZM model and the
HD model [74,75,82–85] have not yet been implemented so
popularly, especially in the case of including the interaction
in the isovector-scalar (δ-meson) channel up to now. With
the GM model, it has been shown that the δ-meson leads
to a larger repulsion and a definite splitting of proton and
neutron effective masses in dense neutron-rich matter and
the involvement of the δ-meson mainly affects the behavior
of the system at high density [70]. Nevertheless, the effects of
the δ-meson on the observables such as the mass and redshift
of neutron stars in the ZM and HD models have not yet been
discussed. Since (anti)kaon condensation may appear in the
high density range, we will then go deep into the topic of
the property of neutron stars involving kaon condensation and
manifest the effect of the interaction with δ-meson exchange
in the three models in this work.

In order to illuminate the effect of the δ-meson channel
(or the difference between the cases with and without the
δ-meson) in the models, we have calculated the mass-radius
relation, the gravitational redshifts and the relative population
of the components of neutron stars in the GM, HD, and
ZM models. This paper is organized as follows. We give in
Sec. II a concise description of the GM model, the HD model,
and the ZM model in the framework of RMF theory with kaon
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condensation in the case of the isovector-scalar δ-meson. In
Sec. III we describe our calculations of neutron stars’ structure
and compare the results with and without the δ-meson and
those among the three models. Finally, we give a summary in
Sec. IV.

II. RMF APPROXIMATION THEORY WITH
KAON CONDENSATION

The RMF approximation theory is quite successful in
understanding the properties of nuclear matter and finite nuclei
(see for example Refs. [1,59–64]). In the standard RMF
theory, the strong interaction between baryons is described
by the exchange of isoscalar-scalar σ , isoscalar-vector ω, and
isovector-vector ρ mesons through the Yukawa couplings. This
picture has been consistently extended to include (anti)kaon
condensation [12,13,17,27] and hyperons [2–4,8,45]. How-
ever, it does not include the contribution of the isovector-scalar
δ-meson until the mid-1990s [66], which is soon expected to
be important in neutron stars [67–73]. In this work we take
the generalized RMF theory including the contribution of the
δ-meson. Since the experiment has provided evidence that
the interaction between �-hyperon and nucleon is repulsive
[86], the �-hyperon may emerge only in the very high
density region of neutron stars [1], for simplicity, we are
not concerned about the contribution of hyperons in the
present work. The Lagrangian density of a nuclear system then
reads

L =
∑
N

�̄N [iγµ∂µ − m∗
N − gωγµωµ − gργ

µ�t · �ρµ]�N

+ 1

2

(
∂µσ∂µσ − m2

σ σ 2
) − U (σ ) + 1

2

(
∂µ

�δ · ∂µ�δ − m2
δ
�δ2

)
+ 1

2
m2

ωωµωµ − 1

4
FµνF

µν + 1

2
m2

ρ �ρµ · �ρ µ − 1

4
�Gµν

�Gµν

+
∑

�

�̄�(iγµ∂µ − m�)��, (1)

where m∗
N is the effective mass of nucleon, Fµν ≡ ∂µων −

∂νωµ, �Gµν ≡ ∂µ �ρν − ∂ν �ρµ are the vector meson field tensors.
The self-interactions of mesons are induced only in the
σ -channel and read [87] U (σ ) = 1

3bm(gσσ )3 + 1
4c(gσσ )4, in

which m is the bare mass of the nucleon. The last line is the
free Lagrangians for leptons which refer to e− and µ− here.

For the effective mass of the nucleon, m∗
N , which arises

from the effect of the coupling with mesons, by extending that
developed in Ref. [8], we have

m∗
N = m − gσNσ − t3NgδNδ3, (2)

in which t3N is the third-component of the isospin. Such a
model has been used extensively [66–73,78] and is usually
referred to as a GM model. We can also go along the way
developed in Ref. [74] and define the effective mass of baryons
as

m∗
N = m

1 + gσNσ+t3NgδN δ3

m

. (3)

Hereafter we denote this model as the ZM model (the
difference between the present one and the original one is only
that we include the interaction by exchanging the isovector-
scalar δ-meson). Once more, extending the one developed in
Ref. [75], we have the effective mass of the nucleon in the
hybrid derivative coupling (HD) model as

m∗
N = m

1 − gσ σ+t3Ngδδ3

2m

1 + gσ σ+t3Ngδδ3

2m

. (4)

From these expressions of the effective mass we can easily
see that the isovector-scalar meson leads to a neutron-proton
effective mass splitting due to the third-component of the
isospin. It is also remarkable that the HD model is the
intermediate between the ones in Eqs. (2) and (3).

Solving the Euler-Lagrange equations for meson fields in
RMF approximation along the conventional way we get

m2
σ σ = gσ

[∑
N

Ci
Nρs

N − bm(gσσ )2 − c (gσσ )3

]
, (5)

m2
δδ3 = gδ

∑
N

t3NCi
NρS

N, (6)

m2
ωω0 = gω(ρp + ρn), (7)

m2
ρρ03 = gρ(ρp − ρn)/2, (8)

in which ρN, ρs
N are the nucleon and scalar density, respec-

tively. The coefficient Ci
N is different for the three models

and the index i = 1, 2, 3 stands for the GM, HD, and ZM
model, respectively. In detail, the coefficient is specialized
as C1

N = 1, C2
N = (1 + gσ σ+t3N gδδ3

2m
)−2 and C3

N = (m∗
N

m
)2. In

addition, the field equations involve several parameters, for
instance gσ

mσ
,

gδ

mδ
,

gω

mω
,

gρ

mρ
, b, c, and so on.

With the increase of the density, kaon condensation may
appear in the interior of the neutron stars. We take the
Lagrangian of kaon condensation as the same as that in
Refs. [12,13,15,17,18,27] which reads

LK = D∗
µK∗DµK − m∗

K
2
K∗K, (9)

where Dµ = ∂µ + igωKωµ + igρK�tK · �ρµ is the covariant
derivative and the (anti)kaon effective mass should be extended
from m∗

K = mK − gσKσ to m∗
K = mK − gσKσ − 1

2gδKδ3 due
to the involvement of the δ-meson. At the same time, the disper-
sion relation should also be modified as ωK = mK − gσKσ −
1
2gδKδ3 − gωKω0 − 1

2gρKρ03. The gσK, gωK, gρK , and gδK are
coupling constants between the kaon and the corresponding
meson, respectively.

Now the meson field equations with kaon condensation and
δ-meson can be written as

m2
σ σ = gσ

[∑
N

Ci
Nρs

N − bm(gσσ )2 − c (gσσ )3

]

+ gσKρK, (10)

m2
δδ3 = gδ

∑
N

t3NCi
NρS

N + gδKρK, (11)

m2
ωω0 = gω(ρp + ρn) − gωKρK, (12)

m2
ρρ03 = gρ(ρp − ρn)/2 − gρKρK, (13)
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in which ρK = 2m∗
KK∗K = 2(ωK + gωKω0 + 1

2gρKρ03)
K∗K is the kaon density. The expressions of the total energy
density and the pressure including the contribution of the δ

meson can be written as

ε = 1

2
m2

σ σ 2 + b

3
m (gσσ )3 + c

4
(gσσ )4 + 1

2
m2

δδ
2
3

+ 1

2
m2

ωω2
0 + 1

2
m2

ρρ
2
03 + m∗

KρK

+
∑

i=N,λ

νi

(2π )3

∫ ki
F

0
d3k

√
k2 + m∗

i
2, (14)

and

p = −1

2
m2

σ σ 2 − b

3
m(gσσ )3 − c

4
(gσσ )4 − 1

2
m2

δδ
2
3

+ 1

2
m2

ωω2
0 + 1

2
m2

ρρ
2
03

+
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i=N,λ

1

3

νi

(2π )3

∫ ki
F

0
d3k

k2√
k2 + m∗

i
2
, (15)

in which ki
F is the fermi momentum of baryons or leptons,

νi = 2 is the degeneracy of nucleons and leptons (electron
and muon, here) in spin space. Note that, for the leptons, the
effective mass m∗

i is just taken as the same as that in free space.
It has been known that, besides the pure normal phase and

the pure kaon condensation phase, there exists a mixed phase
with both the normal phase and the kaon phase [1,12,13,27]. To
deal with the mixed phase we implement the Gibbs condition
in the same way as used in Ref. [27]. Here, for the sake of
convenience later, we only show the formulism of the total
density as

ρmix = (1 − χ )ρN (µn,µe) + χρK (µn,µe), (16)

in which χ is the fraction of the kaon condensation. The
discussion concerning the mixed phase has been accomplished
in the GM and ZM models for the case without the δ

meson in Ref. [27]. In this paper we will analyze the effect
of the δ-meson on the mixed phase besides the pure kaon
condensation phase not only in the GM and ZM models but
also in the HD model. Up to now, we obtain the EOS of the
neutron star matter in the RMF approximation theory with the
δ-meson in three models for the effective mass of the nucleon.

III. NUMERICAL RESULTS AND DISCUSSIONS

Substituting the EOS we obtained in the last section into
the Tolman-Oppenheimer-Volkoff (TOV) equations [88,89]
for the structure of a static, spherically symmetric, relativistic
star, we can obtain the mass-radius (M-R) relation of neutron
star. The TOV equations read

dp

dr
= [p(r) + ε(r)][M(r) + 4πr3p(r)]

r[r − 2M(r)]
, (17)

M = 4π

∫ R

0
ε(r)r2dr. (18)

It has been known that the general relativity predicts not only
a maximal mass for a star stable to radial perturbations for a
given EOS but also a redshift for photons leaving the surface
of a star with a strong gravitational field. The gravitational
redshift obeys the relation as

z =
(

1 − 2GM

c2R

)−1/2

− 1, (19)

which can be easily determined by the M-R relation.
As mentioned in the last section, to determine the EOS in a

practical calculation, we need parameters gσ

mσ
,

gδ

mδ
,

gω

mω
,

gρ

mρ
, b, c,

and so forth. In our present calculation, for the parameter gδ

mδ
,

we take a value by rescaling the one given in Ref. [67]. For
the others, we fix them with the bulk properties of nuclear
matter at the saturation density ρ0. The saturation nuclear
matter properties being fitted are ρ0 = 0.153 fm−3, E/A =
−16.3 MeV, asym = 32.5 MeV, K = 265 MeV, and m∗ =
0.8 m, where the compression modulus is selected the same
as mentioned in Ref. [75]. The obtained results are listed in
Table I in which the notation fi ≡ ( gδ

mδ
)2 with i = σ, δ, ω, ρ

is adopted. Moreover, the coupling constants between the
vector meson and kaon gωK, gρK are determined by the
meson SU(3) symmetry as gωK = 1

3gω, gρK = gρ . The scalar
coupling constant gσK is fixed to the optical potential of the K−
at ρ0 with UK (ρ0) = −gσKσ (ρ0) − gωKω0(ρ0) = −90 MeV.
While the additional parameter gδK is chosen as gδK = −0.1gδ

for the case of the δ meson.
Since the constraint on the EOS of neutron stars by the

recent observed maximal mass and the gravitational redshift
has been discussed in our previous paper [27], we did not
emphasize it here. In the following, we discuss then the results
obtained in the three different RMF models and show the
effects of the involvement of the δ-meson.

TABLE I. Parameters used in our calculations (fi ≡ ( gi

mi
)2 with i = σ, δ, ω, ρ are fitted by the

saturation nuclear matter properties except for fδ).

Parameter fδ(fm2) fσ (fm2) fω(fm2) fρ(fm2) b c

GM δ 10.0 8.91425 4.24085 13.75890 0.00695 0.01294
GM 0.0 8.91425 4.24085 4.87904 0.00695 0.01294
HD δ 10.0 8.97982 4.24085 10.40608 0.00035 0.00013
HD 0.0 8.97982 4.24085 4.87904 0.00035 0.00013
ZM δ 10.0 9.02106 4.24085 8.26147 −0.00660 0.00428
ZM 0.0 9.02106 4.24085 4.87904 −0.00660 0.00428
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(a) (b) (c) FIG. 1. Calculated equation of state (EOS)
in the three models for the cases with (solid
line) and without (dotted-dash line) the δ-meson
channel interaction [(a), (b), (c) denote the
results in the GM model, HD model, ZM model,
respectively].

Figures 1 and 2 illustrate the EOS and the M-R relation
with kaon condensation in the cases with and without the δ

meson in the GM, HD, ZM models, respectively. From these
figures, we can notice generally that the kaon condensation
softens the EOS and would lower the maximal mass of NS.
There exists the mixed phase which connects the normal
phase and the pure kaon phase in all three models except
the case without the δ-meson in the GM model. In more detail,
Fig. 1(a) shows that the range for the mixed phase to appear
in the case with the δ-meson is larger than that of without
the δ-meson in the GM model, which in fact disappears.
Figure 1(b) (for the HD model) and (c) (for the ZM model)
manifests that the energy density range of the mixed phase is
nearly the same for the cases including and not including the
δ-meson channel interaction. The figures also show that the
pressure of the mixed phase is higher in the case with
the δ-meson than that without the δ-meson in the GM and
HD models. As a consequence, the maximal mass of the
neutron star in the case with the δ-meson is larger than that
without the δ-meson in these two models, while nearly the
same in the ZM model. The exact values for the cases with
and without the δ-meson are 1.962 M� and 1.875 M� in the
GM model, 1.905 M� and 1.841 M� in the HD model, and
1.908 M� and 1.885 M� in the ZM model, respectively,
which are listed in Table II. The radii corresponding to the
maximal masses are a little different but all about 12 ∼ 14 km
in the three models and the difference between those with
and without the δ-meson is not as obvious (the concrete
values are also listed in Table II). However, the radii of
the intermediate mass neutron stars in the cases with the
δ-meson are more different than those in the cases without
the δ-meson and the ones with the δ-meson are larger than
those without the δ-meson if they hold the same intermediate
mass.

Comparing the results shown in the figures, we find that
the range of the mixed phase in the HD and ZM models is
much wider than that in the GM model and the maximal mass
of the neutron stars is all larger than 1.9 M� in the case with
the δ-meson, whereas a little smaller in the case without the
δ-meson.

For the relation between the gravitational redshift and the
neutron star mass, we display the calculated results in the GM,
HD, ZM models in Fig. 3. From the figure we notice that,
for the low mass neutron stars, the difference between those
with and without the δ-meson is very small in the GM model,
while a little larger in the HD and ZM models. However,
the gravitational redshift corresponding to the maximal mass
neutron stars with the δ-meson is slightly larger than that
without the δ-meson in the GM model, while a little smaller
in the HD and ZM models. Comparing the concrete values of
the redshift (listed in Table II), we know that it is the largest in
the case with the δ-meson in the GM model, and the smallest
in the ZM model with the δ-meson.

It is remarkable that, although the maximal mass of neutron
stars calculated in the case without the δ-meson in all three
models is a little smaller than 1.9 M� and the gravitational
redshift is lower than 0.35 for some cases, we cannot exclude
the existence of the large mass and high redshift neutron stars,
since the kaon optical potential we take is rather strong [with
UK (ρ0) = −90 MeV] and the effective nucleon mass is quite
large [m∗(ρ0) = 0.8 m]. Our previous work [27] shows that the
smaller the effective nucleon mass or the smaller the absolute
value of the kaon optical potential at saturation nuclear density,
the larger the maximal mass and the gravitational redshift of
the neutron star, and some investigations indicate that the
kaon optical potential can be quite weak [with UK (ρ0) =
−80 MeV even −50 MeV] [90–92]. Then we can infer that,
as we decrease one of the two factors, we could obtain a much

TABLE II. Calculated mass (Mmax), radius (R(Mmax)), redshift (z(Mmax)), baryon density at the center (ρcent),
baryon density range for the mixed phase to appear (ρmix = (ρ1, ρ2) ), the fraction of the kaon condensation at the
center (χcent), and the baryon density for kaon condensation to appear if no mixed phase exists (ρpkc) of the maximal
mass neutron star in the models.

Model Mmax/M� R(Mmax)/km z(Mmax) ρcent/ρ0 ρmix/ρ0 χcent ρpkc/ρ0

GM δ 1.962 12.26 0.377 6.04 (4.85, 6.97) 0.51 5.25
GM 1.875 12.01 0.362 6.00 (4.49, 4.49) 1.00 4.49
HD δ 1.905 12.71 0.339 5.56 (4.21, 6.99) 0.41 4.49
HD 1.841 12.25 0.341 5.68 (4.10, 7.76) 0.32 4.27
ZM δ 1.908 12.83 0.335 5.34 (3.88, 6.65) 0.46 4.11
ZM 1.885 12.32 0.350 5.53 (3.95, 6.97) 0.45 4.12
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(a) (b) (c)

FIG. 2. Calculated mass-radius relation of the neutron star with
kaon condensation in the three models with and without the δ-meson
channel interaction (marked as GMδ, GM, HDδ, HD, ZMδ, ZM,
respectively).

larger maximal mass and gravitational redshift for neutron
stars. Furthermore, from the analysis above we know that the
δ-meson channel interaction makes the EOS stiffer and the
maximal mass of neutron stars gets larger.

To show the effect of the δ-meson in neutron stars further,
we have also calculated the distribution of the relative popula-
tion of the constituents in neutron stars in the three models. The
obtained results of density distribution are illustrated in Fig. 4,
while that of the radius distribution are illustrated in Fig. 5. In
Fig. 4, we manifest also the center density ρc of the neutron star
with the maximal mass and the baryon density range (ρ1, ρ2)
for the mixed phase to exist. Their concrete values are listed in
Table II. From the left panels (a) and (d) of Fig. 4 and Table II,
we notice that, in the GM model, ρc ∼ 6.0ρ0 for both with and
without the δ-meson. The center density of the neutron star
with a δ-meson is in the middle of the baryon density range
of the mixed phase, so that the pure kaon condensation cannot
appear in this case. While, in the case without the δ-meson
in the GM model, the mixed phase shrinks to one point (i.e.,
ρ1 = ρ2) and its density is smaller than the center density. It
indicates apparently that the pure kaon phase exists. As the
middle panels [(b) and (e)] and right panels [(c) and (f)] of
Fig. 4 show for the HD and ZM models, the center density
is evident between the density range of the mixed phase, i.e.,
ρc ∈ (ρ1, ρ2), so that the pure kaon condensation phase does
not exist in either the HD model or the ZM model for both
cases with and without the δ-meson. Table II also manifests
evidently the difference between the center densities and the
density range of mixed phase. We find that the center density
of the GM model is larger than that of the HD and ZM models,
and the density ranges of the mixed phase in HD and ZM
models are larger than that in the GM model. Concerning more
concretely the density range for the mixed phase to exist, we
learn that the HD model without the δ-meson is the widest

(a) (b) (c)

FIG. 3. Calculated gravitational redshift vs the mass of the
neutron star with kaon condensation [(a), (b), (c) show the result
of the GM model, HD model, ZM model, respectively].

and that the GM model without δ-meson is the narrowest,
which is one point in fact. Furthermore, from Fig. 4, one can
recognize that the δ-meson channel interaction enhances the
relative population of charged particles [proton with positive
charge, electron, muon, and (anti)kaon with negative charge]
and descend that of neutrons. Such an effect on the relative
population of the components may influence the observation
properties (for instance, the magnetic field, the rotation, and
so on) of neutron stars. In addition, if we do not take the mixed
phase into account, we obtain that the baryon density for the
kaon condensation to appear is larger than the ρ1 mentioned
above (the details can be seen from the last column of Table
II, i.e., ρpkc/ρ0). It is obvious that the mixed phase induces the
kaon condensate to emerge in the lower density region.

Figure 5 shows the radial distribution of the relative
population of the components in the NS with the maximal
mass in the cases with and without the δ-meson, respectively.
We find that the radius range for kaon condensation to exist gets
larger and larger going from the GM model to the HD model,
and then to the ZM model in both cases and the differences
are more apparent for the case with the δ-meson. Comparing
the same panels (a) and (d), (b) and (e), (c) and (f) of Fig. 5,
we find that the range for the kaon condensation to exist is
much larger in the case without the δ-meson than that with the
δ-meson in the GM and HD models, while those in the ZM
model are only slightly different.

From Figs. 4 and 5, we also notice that the relative
population of the proton is larger than that of the neutron
in some range close to the center of NS. Combining the
expression of ωK and the equation of motion for δ-meson, we
know that once the population of the proton becomes higher
than that of the neutron, the kaon energy ωK gets larger than
that without the δ-meson. It means that, when considering
the existence of the δ-meson, the kaon condensation may
appear later than that without the δ-meson, as the data listed in
Table II and characteristics displayed in Fig. 4 show.

From the above discussion, we notice that the mixed phase
is quite important in the neutron star matter and there does not
exist a pure kaon condensation phase in the neutron stars in
five cases we considered. However, with the definition of the
hadron density of the mixed phase in Eq. (16), we can extract a
fraction of the kaon condensation phase. The obtained results
of the fraction of the kaon condensation in the neutron star
with the maximal mass in the GM, HD, ZM models with
and without the δ-meson are illustrated in Fig. 6. Looking
over Fig. 6 carefully, we notice that, except for the pure kaon
condensation phase which can appear in the region close to
the center of the NS with the maximal mass in the GM model
without the δ-meson (as mentioned above), a fraction of the
kaon condensation phase is not very large (even if at the center
of the maximal mass NS, the fraction is about 51% in the GM
model with the δ-meson, and only about 41% with the δ-meson
and 32% without the δ-meson in the ZM model, 45% in the
HD model with and without δ-meson). Comparing the results
with and without the δ-meson, one can recognize that the
existence of the interaction with δ-meson exchange decreases
the fraction of the kaon condensation in the GM model while
increases it in the HD model and maintains the same in the ZM
model. Combining these results with those illustrated in Fig. 5,
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FIG. 4. Calculated relative population of the
components in neutron star matter with kaon
condensation vs the baryon density in the GM (a),
HD (b), and ZM (c) models in the case including
the δ-meson channel interaction and the results
in the case not including the δ-meson channel
interaction [(d), (e), (f) for that of the GM model,
HD model, ZM model, respectively].

we find that the higher χcent and larger radius range involving
the kaon condensation exist in the case without the δ-meson in
the GM model, so that the maximal mass of the NS is smaller
than that with the δ-meson because of the softening effect
of kaon condensation. In the HD model, the circumstance is
different, despite the higher χcent for the case with the δ-meson,
the maximal mass is still larger than that without the δ-meson,
since the range for the kaon condensation to exist is quite
narrow. While a small difference of the maximal masses of
NSs in the cases with and without the δ-meson in the ZM
model comes from the small difference of χcent and nearly the
same existence range of kaon condensation.

IV. SUMMARY

In this paper we have studied antikaon condensation in
neutron stars with the isovector-scalar δ-meson and compared
the results with those without the δ-meson in three models:
the GM model, the ZM model, and the HD model which are
all in the framework of the RMF approximation theory. In the
calculations, we adopted the Gibbs conditions instead of the
Maxwell construction to deal with the mixed phase with both
the normal baryons and the kaon condensation.

(a) (b) (c)

(d) (e) (f)

FIG. 5. Calculated relative population of the components in
neutron star matter with kaon condensation vs the radius of the
maximal mass neutron star in the GM (a), HD (b), and ZM (c) models
in the case including the δ-meson channel interaction and the results
in the case not including the δ-meson channel interaction [(d), (e), (f)
for that of the GM model, HD model, ZM model, respectively].

In our calculations we make use of the parameters obtained
by fitting the saturation nuclear matter properties: ρ0 =
0.153 fm−3, E/A = −16.3 MeV, asym = 32.5 MeV, K =
265 MeV, and m∗ = 0.8 m. And we take the kaon-nucleon
optical potential at the saturation density UK = −90 MeV as
a representative. With these parameters we obtain the equation
of state, the mass-radius relation, the gravitational redshift, the
distribution of the relative population of the particles, and kaon
condensation in neutron star in the GM, HD, and ZM models
with and without the δ-meson.

Our calculations indicate that the existence of the interac-
tion with δ-meson exchange enlarges the maximal mass and
the radius of neutron stars in all three models. Meanwhile,
even though the kaon optical taken here is quite strong (UK =
−90 MeV), the maximal mass of the neutron can be larger
than 1.68 M� for both with and without the δ-meson in all
models and larger than 1.9 M� in the case with the δ-meson.
One can then infer that large mass neutron stars with kaon
condensation can exist if an appropriately weaker kaon optical
potential is adopted. At the same time, the gravitational redshift
of the maximal mass neutron star in the GM model with the
δ-meson can be as large as 0.377, and all others are a little
smaller than 0.35 (the smallest one is 0.335, obtained in the
ZM model with the δ-meson). Comparing the results given in
the models with the δ-meson and those without the δ-meson,
one can learn that the interaction with δ-meson exchange
makes the redshift a little larger in the GM model, while
smaller in the ZM and HD models. Our calculation also gives
the distribution of the relative population (particles and kaon
condensation) in neutron stars. It shows that the interaction
with a δ-meson enhances the relative population of charged
particles (proton with positive charge, electron, muon, and
(anti)kaon-condensation with negative charge) and descends
that of neutrons. It also manifests that the mixed phase with
both normal nuclear matter and kaon condensation matter
can exist in neutron stars in five cases and the pure kaon
condensation phase can only appear in the region close to the
center of a neutron star in the GM model without the δ-meson
channel interaction. However, the baryon density range for the
mixed phase to exist is different in different models, where the
HD model without a δ-meson holds the widest and the GM
model without a δ-meson gives the narrowest which, in fact,
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(a) (b) (c)
FIG. 6. Calculated density range of the

mixed phase vs the fraction of the kaon con-
densation χ in the GM model (a), HD model
(b), and ZM model (c) (the gray lines are the
center densities of the NS).

shrinks to one point, i.e., no mixed phase exists. Furthermore,
the interaction with δ-meson exchange influences the fraction
of the kaon condensation in the mixed phase. In the GM model,
the fraction gets decreased and, in turn, the maximal mass
becomes larger. Meanwhile, the decrease of a fraction of the
kaon condensation in the GM model induces an increase of
the redshift. Wherever the cases are different in the ZM and
HD models.

Finally, it should be mentioned that we have not taken into
account the contribution of the constituents of hyperons in
neutron stars in our present calculations. Since the experi-
ment has provided evidence for the interaction between the
�-hyperon and nucleon is repulsive [86], the �-hyperon may
not then appear in neutron star matter. Previous investigations
have shown that �-hyperons may emerge only in the very
high density region of neutron stars. Their contribution may
not be significant, so that our results of the existence of
(anti)kaon condensation and the effect of the interaction in
the δ-meson channel would not change drastically as the
�-hyperon degree of freedom is considered. Moreover due
to the neutral charge characteristic of the �-hyperon and

the fact that the attractive interaction between �-hyperons is
quite weak [93], the �-hyperon may not influence our results
obviously even though such a constituent may exist in neutron
stars. In short, our present results about the existence of kaon
condensation in large mass neutron stars and the effect the
interaction in the δ-meson exchanging channel may also be
available to neutron stars including hyperons (mainly with
�-hyperon and fewer �-hyperons). However a concrete study
is required. A related investigation is under progress.
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[51] T. Klähn, D. B. Blaschke, F. Sandin, Ch. Fuchs, A. Faessler,
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