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Neutron contribution to nuclear deeply virtual Compton scattering asymmetries
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Using a simple model for nuclear generalized parton distributions (GPDs), we study the role of the neutron
contribution to nuclear deeply virtual Compton scattering (DVCS) observables. As an example, we use the
beam-spin asymmetry AA

LU measured in coherent and incoherent DVCS on a wide range of nuclear targets
in the HERMES and JLab kinematics. We find that at small values of the momentum transfer t, AA

LU is
dominated by the coherent-enriched contribution, which enhances AA

LU compared to the free proton asymmetry
A

p

LU, AA
LU(φ)/Ap

LU(φ) = 1.8–2.2. At large values of t , the nuclear asymmetry is dominated by the incoherent
contribution and AA

LU/(φ)Ap

LU(φ) = 0.66−0.74. The deviation of AA
LU(φ)/Ap

LU(φ) from unity at large t is a result
of the neutron contribution, which gives a possibility to constrain neutron GPDs in incoherent nuclear DVCS. A
similar trend is expected for other DVCS asymmetries.
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I. INTRODUCTION

Hard exclusive reactions such as deeply virtual Compton
scattering (DVCS), γ ∗T → γ T ′, and hard exclusive meson
production (HEMP), γ ∗T → MT ′, have emerged as indis-
pensable tools to access the microscopic (parton) properties
of hadrons [1–14]. In the above reactions, T and T ′ stand
for any hadronic target (nucleon, pion, atomic nucleus); M

denotes any meson. Note that the above reactions may also
include transitions between different hadronic states such as,
e.g., N → �,p → n,N → Nπ [15–17] and production of
pairs of mesons [18,19].

In addition, “inverse” hard exclusive reactions such as
γN → γ ∗N → l+l−N [20] and πN → γ ∗N → l+l−N [21],
and ”u-channel” reactions such as γ ∗γ → ππ [22] were
investigated.

In the Bjorken limit (large Q2), the QCD factorization
theorem for DVCS and HEMP on any hadronic target [13,14]
states that corresponding scattering amplitudes factorize in
convolution of perturbative (hard) coefficient functions with
nonperturbative (soft) matrix elements, which are parameter-
ized in terms of generalized parton distributions (GPDs). GPDs
are universal (process-independent) functions that contain
information on parton distributions and correlations in hadrons
and in matrix elements describing transitions between different
hadrons (see above).

In this paper, we consider DVCS on nuclear targets, γ ∗A →
γA, which gives an access to nuclear GPDs. We would like
to single out the following three important roles of nuclear
DVCS:

(i) It gives information on nucleon GPDs, which is
complimentary to that obtained in DVCS on the free
proton;

(ii) It allows us to study novel nuclear effects, which
decouple from DIS and elastic scattering on nuclei;
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(iii) It imposes stringent constraints on theoretical models
attempting to give a covariant description of the nuclear
structure.

In this paper, we deal with the first point. In particular, we
examine the role of the neutron contribution to nuclear DVCS
asymmetries on a wide range of nuclei. This allows one to
constrain neutron GPDs, which are not directly accessible.

Nuclear DVCS opens possibilities to study novel nuclear
effects, which seem to be predominantly encoded in the real
part of the DVCS scattering amplitude. It was speculated
in the framework of the nuclear liquid drop model that the
so-called nuclear D-term, which contributes to the real part of
the nuclear DVCS amplitude, has a fast, nontrivial dependence
on the atomic number A (A7/3 vs naively expected A2) [23].
This observation was confirmed by an analysis of nuclear
GPDs using the Walecka model [24]. In that analysis, the
fast A-dependence of nuclear GPDs comes from nuclear
meson degrees of freedom. Hence, the measurement of DVCS
observables sensitive to the real part of the DVCS amplitude
gives a possibility to study non-nucleon (mesonic) degrees of
freedom in nuclei.

In the small Bjorken xB limit, a model for nuclear GPDs,
which combines the model for nucleon GPDs based on the
aligned-jet model with phenomenological parametrizations of
usual nuclear PDFs, was suggested in [25,26]. It was found
that the ratio of the real parts of the nuclear to nucleon DVCS
amplitudes has a very unexpected behavior as a function
of xB , which is very different from the corresponding ratio
of the imaginary parts. The latter was found to be similar
to the ratio of the nuclear to nucleon structure functions
measured in inclusive DIS. This, again, hints that novel nuclear
effects might be lurking in the real part of the nuclear DVCS
amplitude.

The third role of nuclear DVCS is related to the fact that
nuclear GPDs, similarly to nucleon GPDs, should obey the
fundamental properties of polynomiality and positivity. In
order to achieve these properties, theoretical models used to
build nuclear GPDs must give a covariant description of the
nuclear structure, which imposes severe constraints on the
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nuclear models. This problem was discussed in relation to
modeling deuteron GPDs in [27].

GPDs of composite hadrons (nucleons and pions), which
satisfy the properties of polynomiality and positivity, were
modeled using the representation of GPDs essentially in terms
of a triangle Feynman diagram [28–32]. In principle, this
approach can be extended to nuclear targets. However, it
appears very difficult to build a successful phenomenology
of nuclear GPDs based on triangle Feynman diagrams, which
would make a connection with the quantities used for the
description of the nuclear structure in traditional nuclear
physics such as, e.g., the nuclear spectral function and the
binding energy.

The literature on nuclear DVCS and nuclear GPDs is not
numerous and can readily be comprehensively reviewed.

Originally, the formalism of deuteron GPDs was developed
in [33]. The formalism of nuclear GPDs of any spin-0, spin-1/2,
and spin-1 nuclei was presented in [34]. Assuming that nuclei
are collections of free protons and neutrons, predictions for
DVCS observables (asymmetries) were made. In particular, in
accord with the earlier result of [35], it was predicted that the
nuclear DVCS beam-spin asymmetry is enhanced compared to
the free proton asymmetry, AA

LU(φ)/Ap

LU(φ) ∼ 5/3, for spin-0
and spin-1/2 nuclei.

Up until now, the main theoretical approach to dynamical
models of nuclear GPDs was the convolution approximation,
which assumes that nuclear GPDs are given by convolution of
unmodified or modified nucleon GPDs with the distribution
of nucleons in the nuclear target. The latter distribution
is obtained from the nonrelativistic nuclear wave function.
Within the convolution approximation, GPDs were considered
of such nuclei as deuterium [27,36,37], 3He [38,39], 4He
[40,41], 20Ne, and 76Kr [35], a wide range of nuclei from
12C to 208Pb [24] (in that analysis, besides nucleons, meson
degrees of freedom were also used in the convolution).

While the convolution approximation is reliable for xB >

0.1, it is not applicable for small xB , where such coherent nu-
clear effects as nuclear shadowing and antishadowing become
important. A model of nuclear GPDs for heavy nuclei, which
takes into account nuclear shadowing and antishadowing, was
proposed in [25,26] (see also the discussion above).

Another important aspect of nuclear DVCS, at least from
the practical point of view, is the interplay between the
coherent (the nucleus remains intact) and incoherent (the

nucleus excites or breaks up) contributions to nuclear DVCS.
This was studied in [35] and a general expression for
nuclear DVCS asymmetries, which interpolates between the
coherent and incoherent regimes, was derived. It was predicted
that for the coherent contribution, in the kinematics of the
HERMES experiment, the ratio of the nuclear (20Ne and
76Kr) to the free proton beam-spin asymmetries is enhanced,
AA

LU(φ)/Ap

LU(φ) ≈ 1.8. For the incoherent contribution, it
was predicted that AA

LU(φ)/Ap

LU(φ) = 1, provided that the
neutron contribution to the nuclear DVCS amplitude was
neglected.

It is the main goal of the present work to go beyond this
approximation and to study the role of the neutron contribu-
tion in coherent and incoherent nuclear DVCS observables
(asymmetries).

On the experimental side, initial measurements of nuclear
DVCS were reported by the HERMES collaboration at DESY
[42] and more data on nuclear DVCS at HERMES is expected
[43]. The Hall A collaboration at Jefferson Lab recently
reported a measurement of DVCS on deuterium with the aim to
study the neutron GPDs [44]. It is planned that nuclear GPDs
will be studied at Jefferson Lab at the present 6 GeV and the
future 12 GeV energy of the electron beam. At high energies,
nuclear GPDs will be studied at the LHC in ultraperipheral
nucleus-nucleus collisions, see, e.g., [45], and at the future
Electron-Ion Collider.

This paper is organized as follows. In Sec. II, we explain our
model of nuclear GPDs. The interpolating formula between
the coherent and incoherent regimes of nuclear DVCS is
derived in Sec. III. Predictions for the nuclear beam-spin
DVCS asymmetry in HERMES and JLab kinematics, with
an emphasis on the neutron contribution, are presented in
Sec. IV. We summarize and discuss our results in Sec. V.

II. MODEL FOR NUCLEAR AND NUCLEON GPDs

We use a simple model for nuclear GPDs that captures main
features of the dependence of nuclear GPDs on the atomic
number A and on the momentum transfer t . We assume that
the nucleus consists of A uncorrelated nucleons: Z protons
and N = A − Z neutrons [34], see Fig. 1. For simplicity, we
shall consider spin-0 nuclei. In this case, there is only one
leading-twist quark nuclear GPD, Hq

A, which can be expressed

+k

+
k

γ∗
γ∗

γ

γ

NN

AA
AA

FIG. 1. Schematic representation of nuclear
quark GPDs.
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in terms of the free proton and neutron quark GPDs Hq and
Eq as follows:

H
q

A(x, ξA,Q2, t) =
∣∣∣∣dxN

dx

∣∣∣∣
[
Z

(
Hq/p(xN, ξN,Q2, t)

+ t

4m2
N

Eq/p(xN, ξN,Q2, t)

)

+N

(
Hq/n(xN, ξN,Q2, t)

+ t

4m2
N

Eq/n(xN, ξN,Q2, t)

)]
FA(t),

(1)

where FA(t) is the nuclear form factor normalized to unity; mN

is the nucleon mass; other variables are introduced below. Note
that the GPDs Hq and Eq enter Eq. (1) in the combination that
leads to the proper nuclear charge form factor [35].

The Bjorken variable xA is defined with respect to the
nuclear target. In the laboratory frame, we have

xA = Q2

2νMA

= Q2

2νAmN

= 1

A
xB, (2)

where ν is the photon energy; MA is the mass of the nucleus.
From the relations

ξA = xA

2 − xA

, ξN = xB

2 − xB

, (3)

it follows that
ξN

1 + ξN

= A
ξA

1 + ξA

. (4)

Next we find the relation between x and xN . In the
symmetric notation [8], the outgoing interacting quark carries
the plus-momentum k+ = (x + ξA)P̄ +

A , see the left-hand side
of Fig. 1. On the other hand, k+ can also be written as (see the
right-hand side of Fig. 1)

k+ = (xN + ξN )P̄ +
N = (xN + ξN )

(
1

A
P +

A + �+

2

)

= (xN + ξN )

(
1

A
(1 + ξA) − ξA

)
P̄ +

A . (5)

In this derivation, we used the assumption that P +
N = P +

A /A.
Therefore, with the help of Eq. (4), we find that

xN

x
= ξN

ξA

. (6)

In the forward limit, Eq. (1) reduces to the model for nuclear
quark parton distribution functions (PDFs),

qA(xA,Q2) = A[Z qp(xB,Q2) + N qn(xB,Q2)]. (7)

These nuclear PDFs satisfy the baryon number (total charge)
and momentum sum rules,∫ 1

−1
dxA

∑
q

eq qA(xA,Q2)

=
∫ 1

−1
dxB

∑
q

eq[Z qp(xB,Q2) + N qn(xB,Q2)] = Z,

∫ 1

−1
dxA

∑
q

xAqA(xA,Q2)

=
∫ 1

−1
dxB

∑
q

xB

[
Z

A
qp(xB,Q2) + N

A
qn(xB,Q2)

]
. (8)

Taking the first x-moment of the nuclear GPD weighted
with quark charges, one obtains the nuclear electric form
factor,

Fe.m.
A (t) ≡

∫ 1

−1
dx

∑
q

eq H
q

A(x, ξA,Q2, t)

= [
ZF

p

E (t) + NFn
E(t)

]
FA(t), (9)

where F
p,n

E (t) = F
p,n

1 (t) + t/(4m2
N )Fp,n

2 (t) are the electric
form factors of the proton and neutron expressed in terms
of the corresponding Dirac and Pauli form factors.

The fact that the right-hand side of Eq. (9) does not
depend on ξA means that the first x-moment of H

q

A satisfies
polynomiality. An examination shows that higher x-moments
of H

q

A do not satisfy polynomiality, even if the proton and
neutron GPDs do. As we mentioned in the Introduction, it is
an outstanding theoretical challenge to build a model of nuclear
GPDs with the property of polynomiality (and positivity),
which would make a connection to the quantities used for
the description of the nuclear structure in traditional nuclear
physics such as, e.g., the nuclear spectral function and the
binding energy.

DVCS observables are expressed in terms of the so-called
Compton form factors (CFFs), which are defined as nuclear
GPDs convoluted with the corresponding hard scattering
coefficients. For spin-0 nuclei, to the leading order in αs , the
only CFF reads

HA(ξA,Q2, t)

=
∑

e2
q

∫ 1

−1
dxH

q

A(x, ξA,Q2, t)

×
(

1

x − ξA + i0
+ 1

x + ξA − i0

)

=
(

ξN

ξA

) ∑
e2
q

∫ 1

−1
dxN

[
Z

(
Hq/p(xN, ξN,Q2, t)

+ t

4m2
N

Eq/p(xN, ξN ,Q2, t)

)
+ N

(
Hq/n(xN, ξN,Q2, t)

+ t

4m2
N

Eq/n(xN, ξN,Q2, t)

)]

×FA(t)

(
1

xN − ξN + i0
+ 1

xN + ξN − i0

)

=
(

ξN

ξA

) [
Z

(
Hp(ξN,Q2, t) + t

4m2
N

Ep(ξN,Q2, t)

)

+N

(
Hn(ξN,Q2, t) + t

4m2
N

En(ξN,Q2, t)

)]
FA(t).

(10)

An important corollary of Eq. (10) is that HA scales as A2.
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In our analysis, for the nucleon CFFs Hp,n and Ep,n, we
used results of the minimal model of the dual parametrization
of nucleon GPDs [46]. The name “dual” is a reflection
of the fact that the parametrization is given as an infinite
series of generalized light-cone distribution amplitudes in
the t-channel [47], which is similar to the construction of
scattering amplitudes using the assumption of duality in
hadronic physics.

The minimal model of the dual parametrization is de-
signed primarily for not very large values of Bjorken xB ,
where the model can be formulated in terms of the usual
parton distributions, the forward limit of the GPD Eq/p and
Gegenbauer moments of the nucleon D-term. Assuming a
nonfactorized Regge-motivated t-dependence and adjusting
the slopes of Regge trajectories, the resulting model leads to a
good description of high-energy (small-xB) H1 and ZEUS data
on the DVCS cross section, HERMES data on various DVCS
asymmetries and the early 2001 CLAS data on the beam-spin
DVCS asymmetry [46].

Naturally, the minimal model of the dual parametrization
has its limitations, especially when applied to moderate values
of xB . Difficulties of the dual parametrization in the description
of the recent high precision Jefferson Lab (Hall A) data on the
DVCS cross section were discussed in [48].

We give our numerical predictions in the form of ratios of
nuclear to free proton DVCS asymmetries. Thus, we expect
that the intrinsic dependence on the particular model of
nucleon GPDs will partially cancel in the ratio.

In the present numerical analysis, the role of the GPD
Eq/p is not important. Our predictions are not sensitive to the
assumption about the proton total angular momentum carried
by quarks, Ju and Jd : We simply set Ju = Jd = 0.

For the nuclear form factor FA(t), for 4He, we used the
result of [49]. For other nuclei, we used the parametrization
of nuclear charge density distributions [50] (see Appendix for
details).

III. COHERENT AND INCOHERENT NUCLEAR DVCS

In the situation, when the recoiled nucleus is not detected,
measurements of DVCS observables with nuclear targets
necessarily involve the coherent and incoherent contributions
[35]. The former contribution corresponds to the case when
the nuclear target stays intact, and it dominates at small
values of the momentum transfer t . The latter contribution
corresponds to the case when the initial nucleus A transforms
into the system of A − 1 spectator nucleons (bound or free)
and one interacting nucleon, and it dominates at large t . In
the approximation of closure over the final nuclear states, the
exact structure of the final system of A − 1 nucleons is not
important. The coherent DVCS and BH amplitudes (one of
two possible attachments of the real photon to the lepton lines
is shown) are presented in Fig. 2; the incoherent DVCS and
BH amplitudes are shown in Fig. 3.

In order to correctly sum the coherent and incoherent con-
tributions to the eA → eγA cross section, let us schematically

γ∗

γ
γ

γ∗

AAAA

FIG. 2. The coherent DVCS (left) and Bethe-Heitler (right)
scattering amplitudes on a nucleus A. Only one of two possible BH
amplitudes is shown.

write the corresponding amplitude as, see, e.g., [51],

A(t) = 〈A∗|
A∑
i

Ji e
i ��·�ri |A〉, (11)

where A∗ represents the final state consisting of A nucleons
(coherently scattered nucleus or any product of the nuclear
dissociation); Ji represents the operator corresponding to the
interaction with the nucleon i (one-particle operator); the
summation runs over all nucleons of the target; �� is the
momentum transfer. Assuming that the states |A∗〉 form a
complete set, the cross section summed over the nuclear final
states can be expressed in the following form:

dσA

dt
∝

∑
A∗

〈A|
A∑
j

J
†
j e−i ��·�rj |A∗〉〈A∗|

A∑
i

Ji e
i ��·�ri |A〉

= 〈A|
A∑
i,j

J
†
j Ji ei ��·(�ri−�rj )|A〉

= 〈A|
A∑

i �=j

J
†
j Ji ei ��·(�ri−�rj )|A〉 + 〈A|

A∑
i

J
†
i Ji |A〉

≈ A(A − 1)〈A|J †
NJN ei ��·(�ri−�rj )|A〉 + A 〈N |J †

NJN |N〉
∝ A(A − 1)F 2

A(t ′)
dσ̃N

dt
+ A

dσN

dt
, (12)

where dσ̃N/dt is the scattering cross section on the bound
nucleon; dσN/dt corresponds to the quasifree nucleon; t ′ =
A/(A − 1) t [51]. For the sake of the argument, we did

A-1
A

A-1
A

γ
γ∗

γ

γ∗

FIG. 3. The incoherent DVCS and Bethe-Heitler scattering am-
plitudes. The initial nucleus A transforms into a final state containing
A − 1 spectator nucleons (free or bound) and an interacting nucleon.
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not distinguish between protons and neutrons. Adopting the
HERMES terminology, we shall call the first term in the last
line of Eq. (12) coherent-enriched [43]. The second term is the
incoherent contribution.

The dependence of the coherent-enriched contribution
on t is steep and is governed by the nuclear form factor
squared F 2

A(t ′). Therefore, this contribution dominates the
nuclear cross section at small t . The t-dependence of the
incoherent contribution is much slower and is determined by
the t-dependence of the cross section on quasifree nucleons
dσN/dt . While this contribution is present at all t , it dominates
the nuclear cross section at large t .

Besides the t-dependence, the coherent-enriched and in-
coherent contributions have different A-dependences. The
coherent-enriched contribution scales as A(A − 1); the inco-
herent contribution scales as A.

Let us now consider the case when the recoiled nucleus is
intact. In this case, |A∗〉 = |A〉 in Eq. (11), and the expression
for the eA → eγA cross section becomes

dσA

dt
= A2F 2

A(t)
dσ̃N

dt
. (13)

In Eq. (13), dσA/dt is the genuine coherent nuclear scattering
cross section, which scales as A2 and whose t-dependence is
steep and is given by the nuclear form factor squared F 2

A(t).
Using Eq. (12), the full-fledged differential cross section

for the eA → eγA reaction [10] can be written as a sum of
the coherent-enriched and incoherent contributions,

dσA

dxA dy dt dφ
= α3xAy

8πQ2
√

1 + ε2

(
A − 1

A

∣∣∣∣TA(xA, y)

e3

∣∣∣∣
2

+
(

xB

xA

)2 A∑
i=1

∣∣∣∣Ti(xB, y)

e3

∣∣∣∣
2
)

, (14)

where TA is the amplitude for the coherent eA → eγA

scattering; Ti are the amplitudes for quasifree incoherent
eA → eγA scattering; the (A − 1)/A factor originates from
Eq. (12); the (xB/xA)2 factor is required for the incoherent
contribution not to depend on A; φ is the angle between the
lepton scattering and the production planes.

It is important to note that the prefactor (A − 1)/A corre-
sponds to the DVCS amplitude squared and to the interference
between the DVCS and Bethe-Heitler (BH) amplitudes. For
the BH amplitude squared, (A − 1)/A should be replaced by
(Z − 1)/Z.

In Eq. (14), in the laboratory frame,

y = ν

E
, ε = 2

xAMA

Q
= 2

xBmN

Q
, (15)

where E is the energy (momentum) of the incoming lepton.
Note that the variables y, ε and t are the same for nuclear and
nucleon targets.

For the comparison with the free nucleon case and with
experiments, it is convenient to express σA as a function

of xB ,

dσA

dxB dy dt dφ
= α3xBy

8πQ2
√

1 + ε2

(
A − 1

A3

∣∣∣∣TA(xA, y)

e3

∣∣∣∣
2

+
A∑

i=1

∣∣∣∣Ti(xB, y)

e3

∣∣∣∣
2
)

. (16)

For the BH amplitude squared, (A − 1)/A3 should be replaced
by (Z − 1)/(ZA2).

For illustration, let us consider the DVCS contribution
to Eq. (16). In this case, |TA|2 ∝ |HA|2, which scales as
[A2FA(t ′)]2, see Eq. (10). Therefore, the first term in Eq. (16)
behaves as A2F 2

A(t ′). The second term has the t-dependence
determined by the nucleon GPDs and scales as A.

In the situation where the recoiled nucleus is detected, the
eA → eγA cross section is purely coherent, and it reads

dσA

dxB dy dt dφ
= α3xBy

8πQ2
√

1 + ε2

1

A2

∣∣∣∣TA(xA, y)

e3

∣∣∣∣
2

. (17)

IV. NUCLEAR DVCS ASYMMETRIES

In this section, as an example of DVCS asymmetries,
we consider the beam-spin nuclear DVCS asymmetry in the
presence of the coherent and incoherent contributions, with an
emphasis on the neutron contribution. We make predictions
relevant for the HERMES and JLab kinematics.

A. Coherent and incoherent contributions to
DVCS asymmetries

Expressions for nuclear DVCS asymmetries can be readily
obtained from Eqs. (16) and (17). In this work, we consider
the beam-spin asymmetry, ALU, which is measured with
the longitudinally-polarized lepton beam and the unpolarized
target.

The nuclear and nucleon amplitudes squared in Eqs. (16)
and (17) receive contributions from the DVCS and Bethe-
Heitler (BH) scattering amplitudes and their interference,

|T |2 = |TDVCS|2 + |TBH|2 + I, (18)

where I = T ∗
DVCSTBH + T ∗

BHTDVCS.
The expression for the nuclear DVCS beam-spin asymme-

try reads [10]

AA
LU(φ) = �I

|TBH|2 + I + |TDVCS|2 , (19)

where �I = 1/2(Iλ=1 − Iλ=−1) with λ the helicity of the
incoming lepton; all other contributions correspond to the
unpolarized beam.

It is important to note that we work in the leading
twist (twist-two) approximation. Therefore, the numerator
of Eq. (19) does not contain the twist-three contribution of
the DVCS amplitude squared, and �I, I and |TDVCS|2 are
evaluated at the twist-two accuracy (see Appendix for details).

In the situation corresponding to Eq. (16), each term
in Eq. (19) contains the coherent-enriched and incoherent
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contributions,

I = A − 1

A3
IA + ZIp + N In,

|TBH|2 = Z − 1

ZA2

∣∣T A
BH

∣∣2 + Z
∣∣T p

BH

∣∣2 + N
∣∣T n

BH

∣∣2
, (20)

|TDVCS|2 = A − 1

A3

∣∣T A
DVCS

∣∣2 + Z
∣∣T p

DVCS

∣∣2 + N
∣∣T n

DVCS

∣∣2
.

Expressions for the free nucleon contributions Ip,n, |T p,n

BH |2,
and |T p,n

DVCS|2 in terms of cos φ and sin φ-harmonics are derived
in [10]. As a model of the nucleon GPDs, we used the results of
the dual parametrization of nucleon GPDs with Ju = Jd = 0
[46].

Expressions for IA, |T A
BH|2, and |T A

DVCS|2 for spin-0 zero
nuclei are the same as for the pion [53], after the replacement
of the pion charge form factor by the nuclear one evaluated at
t ′ = A/(A − 1)t .

In the case of the purely coherent scattering corresponding
to Eq. (17), the terms in Eq. (20) should be replaced by the
following expressions:

I = 1

A2
IA,

|TBH|2 = 1

A2

∣∣T A
BH

∣∣2
, (21)

|TDVCS|2 = 1

A2

∣∣T A
DVCS

∣∣2
.

In the purely coherent case, the nuclear form factor is evaluated
at the momentum transfer t .

Using Eqs. (19), (20), and (21), one can qualitatively
estimate the behavior of AA

LU(φ) as a function of A and Z.
Provided the |TBH|2-term dominates the unpolarized cross
section, the coherent-enriched contribution to AA

LU(φ) scales as
(A − 1)/(Z − 1). The purely coherent AA

LU(φ) scales as A/Z.
All expressions used in Eqs. (20) and (21) are collected in

the Appendix.
We would like to point out that IA and |T A

DVCS| in the right-
hand side of Eq. (20) involve the nuclear CFF HA proportional
to the proton and neutron contributions, which scale as Z

and N , respectively. In the case of the coherent-enriched
contribution, the relative weight of the proton and neutron
contributions is slightly different, which matters only for light
nuclei such 4He and 14N. However, even for the light nuclei,
this has a negligibly small effect on our numerical predictions.

B. Nuclear DVCS beam-spin asymmetry ALU in HERMES
kinematics

In the measurement of nuclear DVCS at HERMES, the
recoiled nucleus is not detected, but reconstructed using
the missing mass technique [42,43]. This corresponds to
the situation, when one sums over all final nuclear states.
This means that the nuclear beam-spin DVCS asymmetry,
AA

LU, receives contribution from the coherent-enriched and
incoherent terms and is given by Eqs. (19) and (20).

We quantify our numerical predictions for AA
LU by consid-

ering the ratio of the nuclear to the free proton asymmetries,
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FIG. 4. The ratio of the nuclear to free proton beam-spin DVCS
asymmetries, AA

LU(φ)/Ap

LU(φ), as a function of the momentum
transfer t for He, N, Ne, Kr, and Xe nuclei. The calculation is done
at xB = 0.065, Q2 = 1.7 GeV2 [43], and φ = 90◦.

AA
LU(φ)/Ap

LU(φ). This ratio is presented in Fig. 4 as a function
of t at an average HERMES kinematic point xB = 0.065 and
Q2 = 1.7 GeV2 [43]. The asymmetries are evaluated at φ =
90◦. Different curves correspond to different nuclei: 4He, 14N,
20Ne, 84Kr, and 131Xe.

At small values of t , when the nuclear asymmetries (cross
sections) are dominated by the coherent-enriched contribution,
AA

LU/(φ)Ap

LU(φ) = 1.8–2.2, which is consistent with the pre-
vious analyses [34,35]. The enhancement of AA

LU(φ)/Ap

LU(φ)
above unity is the combinatoric effect: Since the interference
between the Bethe-Heitler and the DVCS amplitudes scales as
Z(A − 1) and the Bethe-Heitler amplitude squared scales as
Z(Z − 1), AA

LU(φ) scales as (A − 1)/(Z − 1).
At large values of t , when the nuclear form factor eliminates

the coherent-enriched term, AA
LU(φ) is given by the incoherent

contribution, and AA
LU(φ)/Ap

LU(φ) < 1.
The fact that AA

LU(φ)/Ap

LU(φ) < 1 is a result of the neutron
contribution to AA

LU(φ), see Eq. (20). First (this is effect is
largest), the neutron contribution decreases the numerator of
AA

LU(φ), since F1n < 0, while F1p > 0. Second, the positive
neutron contributions |T n

BH|2 + In (somewhat suppressed by
the neutron electromagnetic form factors compared to the
proton contribution) and |T n

DVCS|2 (similar to the proton contri-
bution) increase the denominator of AA

LU(φ). The decrease of
the numerator of AA

LU(φ) and the increase of the denominator
work together to reduce AA

LU(φ)/Ap

LU(φ) significantly below
unity at large t .

Note that our present finding that AA
LU(φ)/Ap

LU(φ) < 1
at large t does not contradict the original analysis [35]. In
that work, it was predicted that AA

LU(φ)/Ap

LU(φ) → 1 as t

becomes large, if the neutron contribution to the nuclear
asymmetry is neglected. In the present work, we went beyond
this approximation and found that the neutron contribution is
not negligible and leads to AA

LU(φ)/Ap

LU(φ) < 1. Therefore,
studies of the incoherent contribution to nuclear DVCS
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FIG. 5. The ratio of the nuclear to free proton beam-spin DVCS asymmetries, AA
LU(φ)/Ap

LU(φ), as a function of the momentum transfer t for
He, N, Ne, Kr, and Xe nuclei. The calculation is done at xB = 0.065, Q2 = 1.7 GeV2 [43] and φ = 90◦. (a) corresponds to the coherent-enriched
contribution; (b) corresponds to the incoherent contribution.

asymmetries is a sensitive tool to constrain neutron GPDs. The
Hall A collaboration at Jefferson Lab explored this possibility
using the deuterium target [44].

Note also that the neutron GPDs enter the model of nuclear
GPDs, see Eq. (1). Hence, nuclear DVCS observables in the
coherent regime also provide certain constraints for the neutron
GPDs, albeit those constraints are less stringent and more
model-dependent compared to the incoherent regime.

By studying the t-dependence of the nuclear DVCS
cross section, the HERMES analysis separated the coherent-
enriched and incoherent contributions to AA

LU(φ). Our predic-
tions for these two contributions are presented separately in
Fig. 5. The left panel corresponds to the coherent-enriched
contribution to AA

LU(φ), which was calculated keeping only
the first terms in Eq. (20). The right panel corresponds to the
incoherent contribution calculated using the last two terms in
Eq. (20).

In the left panel of Fig. 5, the curve for 4He lies above
the curves for other nuclei because the coherent-enriched
contribution scales (A − 1)/(Z − 1).

In the right panel of Fig. 5, the ratio AA
LU(φ)/Ap

LU(φ) at
small t is close to unity because the neutron contribution
is suppressed by the small value of the neutron Dirac form
factor F1n(t). As |F1n(t)| increases with increasing |t |, the ratio
AA

LU(φ)/Ap

LU(φ) begins to progressively deviate from unity.
Taking different t-slices of Fig. 4, we can study the A-

dependence of AA
LU(φ). Figure 6 presents AA

LU(φ)/Ap

LU(φ) as
a function of A at t = −0.018 GeV2 (upper set of points) and
t = −0.2 GeV2 (lower set of points). These two values of t

correspond to the average HERMES values [43].
The interpretation of Fig. 6 is the same as for Fig. 4.

At small values of t , the coherent-enriched contribution
dominates and AA

LU(φ)/Ap

LU(φ) > 1 due to the fact that
AA

LU(φ) scales roughly as (A − 1)/(Z − 1). At large t , where
only the incoherent contribution matters, AA

LU(φ)/Ap

LU(φ) < 1

due to the neutron contribution (see the discussion
above).

Results presented in Fig. 6 should be compared to the results
of the HERMES analysis [43]. At t = −0.018 GeV2, the
agreement between our calculations (the upper set of points)
and the HERMES data is excellent. For the nuclei of 4He, 14N,
20Ne, and 84Kr, AA

LU(φ)/Ap

LU(φ) ≈ 1.65. For the nucleus of
131Xe, AA

LU(φ)/Ap

LU(φ) = 1.23, which is smaller than for other
lighter nuclei because of the reduction of the coherent-enriched
contribution by the nuclear form factor.

At t = −0.2 GeV2, we predict that AA
LU(φ)/Ap

LU(φ) =
0.66–0.74, depending of the target nucleus. The experimental
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FIG. 6. The ratio of the nuclear to free proton beam-spin DVCS
asymmetries, AA

LU(φ)/Ap

LU(φ), as a function of A. The calculation is
done at xB = 0.065, Q2 = 1.7 GeV2 and φ = 90◦.
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uncertainties of the HERMES data are too large and, in general,
do not exclude the deviation of AA

LU(φ)/Ap

LU(φ) from unity, as
we predict.

C. Nuclear DVCS beam-spin asymmetry ALU in
Jefferson Lab kinematics

There exists an exciting possibility to study purely coherent
nuclear DVCS at Jefferson Lab using the BoNuS recoil detec-
tor. In particular, an experiment to study ALU in coherent and
incoherent DVCS on 4He has been proposed [52]. The main
advantages of the proposed experiment compared to HERMES
are exclusivity of the measurement, which will allow to
measure the purely coherent DVCS, and small projected errors
due to high statistics, which will enable one to unambiguously
determine the magnitude of ALU in the coherent and incoherent
regimes. In addition, the proposed experiment might shed
some light on the question of modifications of nucleon GPDs
in nuclear medium.

Figure 7 presents our predictions for the ratio of the
coherent 4He to free proton beam-spin DVCS asymmetries,
AA

LU(φ)/Ap

LU(φ), as a function of the momentum transfer t .
The calculation corresponds to a typical point in the current
JLab kinematics: E = 6 GeV, xB = 0.15, and Q2 = 1.5 GeV2.
The ratio of the asymmetries is evaluated at φ = 90◦.

The behavior of AA
LU(φ)/Ap

LU(φ) presented in Fig. 7 is
similar to that in the left-hand side panel of Fig. 5. Since the
purely coherent AA

LU(φ) scales as A/Z, while the coherent-
enriched contribution to AA

LU(φ) scales as (A − 1)/(Z − 1),
the curve in Fig. 7 lies lower than the corresponding curve in
the left-hand side of Fig. 5.

In relation to incoherent DVCS on 4He, the proposed
experiment at Jefferson Lab will measure the e4He → epX

reaction, i.e., DVCS on a quasifree proton. In this case, the
neutron contribution is absent and the ratio AA

LU(φ)/Ap

LU(φ) =

 1

 1.2

 1.4

 1.6
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FIG. 7. The ratio of the coherent 4He to free proton beam-spin
DVCS asymmetries, AA

LU(φ)/Ap

LU(φ), as a function of the momentum
transfer t . The calculation corresponds to JLab kinematics, E =
6 GeV, xB = 0.15, Q2 = 1.5 GeV2, and was performed at φ = 90◦.

1, provided the bound proton in 4He is not modified. Therefore,
this measurement will probe modifications of proton GPDs in
4He.

V. CONCLUSIONS AND DISCUSSION

Using a simple model for nuclear GPDs, we studied the role
of the neutron contribution to nuclear DVCS observables. As
an example, we used the beam-spin asymmetry AA

LU measured
in coherent and incoherent DVCS on a wide range of nuclear
targets. In our analysis, we considered the 4He, 14N, 20Ne,
84Kr, and 131Xe nuclei in the HERMES kinematics and the
4He nucleus in the JLab kinematics.

We found that at small values of the momentum transfer
t, AA

LU is dominated by the coherent-enriched contribution,
which scales as (A − 1)/(Z − 1). This enhances the nuclear
AA

LU compared to the free proton A
p

LU, AA
LU(φ)/Ap

LU(φ) = 1.8–
2.2, in accordance with earlier predictions [34,35].

On the other hand, at large values of t , when the
nuclear asymmetry is dominated by the incoherent contri-
bution, AA

LU(φ)/Ap

LU(φ) is significantly smaller than unity:
AA

LU(φ)/Ap

LU(φ) = 0.66–0.74, depending on the target nu-
cleus. This deviation of AA

LU(φ)/Ap

LU(φ) from unity is a result
of the neutron contribution: The negative neutron contribution
(F1n < 0) decreases the numerator of AA

LU and, at the same
time, the positive neutron contribution |T n

BH|2 + In + |T n
DVCS|2

increases the denominator of AA
LU. Since the effect of the de-

viation of AA
LU(φ)/Ap

LU(φ) from unity is so sizable, incoherent
DVCS on nuclei gives a possibility to constrain neutron GPDs.

In this work, we considered one kind of DVCS observables,
namely, the beam-spin asymmetry. We expect that for other
DVCS asymmetries, such as, e.g., for the beam-charge DVCS
asymmetry, the ratio of the nuclear to the free proton
asymmetries will be qualitatively similar to AA

LU(φ)/Ap

LU(φ),
see [35].

All results presented in this work, data grids for the dual
parametrization of the nucleon GPDs and FORTRAN codes for
various DVCS asymmetries measured in DVCS on nucleons
and nuclei can be found and downloaded from the author’s
webpage http : //www.jlab.org/~vguzey.
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APPENDIX: INPUT FOR CALCULATION OF DVCS
ASYMMETRIES

In this appendix, we collect all expressions used in our
numerical analysis of the nuclear and proton DVCS beam-spin
asymmetries, see Eqs. (19), (20), and (21).
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The interference, Bethe-Heitler and DVCS terms, which
enter Eqs. (19), (20), and (21), read [10]

I = ±e6

xy3tP1(φ)P2(φ)

(
cI0,unp + cI1,unp cos(φ)

+ sI1,unp sin(φ)
)
,

|TBH|2 = e6

x2y2(1 + ε2)2tP1(φ)P2(φ)

(
cBH

0,unp + cBH
1,unp cos(φ)

+ cBH
2,unp cos(2φ)

)
,

|TDVCS|2 = e6

y2Q2
cDVCS

0,unp , (A1)

where we have kept only twist-two terms and neglected
the gluon GPDs. In Eq. (A1), P1(φ) and P2(φ) are lepton
propagators; the plus sign in front of the interference term
corresponds to electrons, while the minus sign is for positrons;
φ is the angle between the lepton and production planes;
the coefficients cI

0,1,unp, s
I
1,unp, c

BH
0,1,2, and cDVCS

0,unp are called
harmonics.

When Eq. (A1) is applied to the coherent-enriched contribu-
tion, it should be evaluated with x = xA and the corresponding
nuclear harmonics (see below). When Eq. (A1) is used to
calculate the incoherent contribution, it should be evaluated
with with x = xB and with the free proton and neutron
harmonics (see below).

A. Nuclear part

Expressions for the cos φ and sin φ harmonics of a spin-0
zero nucleus are the same as for the pion case [53] after the
replacement of the pion GPD and the electric form factor
by their nuclear counterparts (one has also divide the pion
harmonics involving GPDs by the factor of x due to a different
normalization of the interference and DVCS terms used in
[53]). The required harmonics read

cI0,unp = −8
t

Q2
(2 − y) [(2 − xA)(1 − y)

− (1 − xA)(2 − y)2

(
1 − tmin

t

)]
ZFA(t)�eHA,

cI1,unp = −8 K(2 − 2y + y2)ZFA(t)�eHA,

sI1,unp = 8K λy(2 − y) ZFA(t)�mHA,

cBH
0,unp =

{
((2 − y)2 + y2(1 + ε2)2)

×
[

4 x2
A

M2
A

t
+ 4(1 − xA) + (4xA + ε2)

t

Q2

]

+ 32 x2
AK2 M2

A

t
+ 2 ε2

[
4(1 − y)(3 + 2ε2)

+ y2(2 − ε4)
] − 4x2

A(2 − y)2(2 + ε2)
t

Q2

}
Z2F 2

A(t),

cBH
1,unp = −8 K (2 − y)

(
2 xA + ε2 − 4 x2

A

M2
A

t

)
Z2F 2

A(t),

cBH
2,unp = 32 K2 x2

A

M2
A

t
Z2F 2

A(t),

cDVCS
0,unp = 2(2 − 2y + y2)|HA|2, (A2)

where K is the so-called kinematic K-factor [10]; λ is the
incoming lepton helicity.

The nuclear form factor FA entering Eq. (A2) is evaluated
at t ′ = A/(A − 1)t for the coherent-enriched contribution and
at t for the purely coherent case.

For 4He, the nuclear form factor is parameterized as

FA(t) = (1 − (a2t)6)e−b2|t |, (A3)

where a = 0.316 fm and b = 0.681 fm [49].
For other nuclei used in this paper, the nuclear form factor

is defined as

FA(t) = 4π

∫ ∞

0
dr r

sin(
√|t |r)√|t | ρA(r), (A4)

where ρA(r) is the nuclear charge density distribution taken in
the following form [50]:

Nitrogen (A = 14, Z = 7):

w = −0.18, z = 0.505,

c = 2.57, ρ0 = 0.0127908, (A5)

ρA(r) = ρ0
1 + w r2

c2

1 + e(r−c)/z
.

Neon (A = 20, Z = 10):

z = 0.571, c = 2.805,

ρ0 = 0.00767524, (A6)

ρA(r) = ρ0
1

1 + e(r−c)/z
.

Krypton (A = 84, Z = 36):

z = 0.496, c = 4.83,

ρ0 = 0.00191897, (A7)

ρA(r) = ρ0
1

1 + e(r−c)/z
.

Xenon (A = 131, Z = 54):

w = 0.3749, z = 2.6776,

c = 5.3376, ρ0 = 0.00112617, (A8)

ρA(r) = ρ0
1 + w r2

c2

1 + e(r2−c2)/z2 .

B. Proton part

Expressions for the required cos φ and sin φ harmonics for
the proton target are derived in [10]

cI0,unp = −8 (2 − y)�e

[
(2 − y)2

1 − y
K2CI

unp

+ t

Q2
(1 − y)(2 − xB)

(
CI

unp + �CI
unp

)]
,

cI1,unp = −8 K(2 − 2y + y2)�eCI
unp,
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sI1,unp = 8K λy(2 − y)�m CI
unp,

cBH
0,unp = 8 K2

[
(2 + 3ε2)

Q2

t

(
F 2

1p − t

4m2
N

F 2
2p

)

+ 2x2
B

(
F1p + F2p

)2
]

+ (2 − y)2

×
{

(2 + ε2)

[
4x2

Bm2
N

t

(
1 + t

Q2

)2

+ 4(1 − xB)

(
1 + xB

t

Q2

) ] (
F 2

1p − t

4m2
N

F 2
2p

)

+ 4x2

[
xB +

(
1 − xB + ε2

2

) (
1 − t

Q2

)2

− xB (1 − 2xB )
t2

Q4

] (
F1p + F2p

)2

}

+ 8(1 + ε2)

(
1 − y − ε2y2

4

)

×
[

2ε2

(
1 − t

4m2
N

) (
F 2

1p − t

4m2
N

F 2
2p

)

− x2
B

(
1 − t

Q2

)2 (
F1p + F2p

)2

]
,

cBH
1,unp = 8 K (2 − y)

{(
4x2

Bm2
N

t
− 2xB − ε2

)

×
(

F 2
1p − t

4m2
N

F 2
2p

)
+ 2x2

B

(
1 − (1 − 2xB)

t

Q2

)

× (
F1p + F2p

)2
}

,

cBH
2,unp = 8 x2

B K2

{
4m2

N

t

(
F 2

1p − t

4m2
N

F 2
2p

)

+ 2
(
F1p + F2p

)2
}

,

cDVCS
0,unp = 2(2 − 2y + y2)CDVCS

unp , (A9)

where
CI

unp = F1p Hp − t

4m2
N

F2pEp,

�CI
unp = − x2

B

(2 − xB)2
(F1p + F2p)(Hp + Ep),

CDVCS
unp = 1

(2 − xB)2

[
4(1 − xB)|Hp|2 − x2

B(H∗
pEp + E∗

pHp)

−
(

x2
B + (2 − xB)2 t

4m2
N

)
|Ep|2

]
. (A10)

Equations (A9) and (A10) involve proton Compton form
factors (CFFs) Hp and Ep and electromagnetic form factors
F1p and F2p. For the CFFs, we used the dual parametrization
with Ju = Jd = 0 [46]. The proton electromagnetic form
factors are parameterized in the following form [10]:

F1p(t) =
1 − (1 + kp) t

4m2
N

1 − t

4m2
N

GD(t),

F2p(t) = kp

1 − t

4m2
N

GD(t), (A11)

GD(t) = 1

1 − t

m2
V

,

where kp is the proton anomalous magnetic moment, kp =
1.79; mV = 0.84 GeV. More elaborate parametrizations of the
nucleon elastic form factors are possible, see, e.g., [54], but
Eq. (A11) is sufficiently accurate for our purposes.

C. Neutron part

Expressions for the cos φ and sin φ harmonics for the
neutron case are readily obtained from Eqs. (A9) and (A10) by
replacing the proton CFFs and electromagnetic form factors
by their neutron counterparts. The neutron CFFs are obtained
from the proton ones by exchanging eu ↔ ed in the DVCS
amplitude.

The neutron electromagnetic form factors are parameter-
ized in the following form [10]:

F1n(t) = − t

4m2
N

kn

1 − t

4m2
N

GD(t),

(A12)
F2n(t) = kn

1 − t

4m2
N

GD(t),

where kn is the neutron anomalous magnetic moment, kn =
−1.91.
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