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Quark-hadron duality and truncated moments of nucleon structure functions
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We employ a novel new approach to study local quark-hadron duality using “truncated” moments, or integrals
of structure functions over restricted regions of x, to determine the degree to which individual resonance regions
are dominated by leading twist. Because truncated moments obey the same Q2 evolution equations as the leading
twist parton distributions, this approach makes possible for the first time a description of resonance region data
and the phenomenon of quark-hadron duality directly from QCD.
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I. INTRODUCTION

The structure and interactions of hadrons at intermediate
energies represents one of the most outstanding problems in
the standard model of particle and nuclear physics. Many
hadronic observables can be described at low energies in terms
of effective, hadronic (meson and baryon) degrees of freedom,
while at high energies perturbative QCD has proved a highly
successful approach to describing phenomena in terms of
elementary quark and gluon constituents. The precise nature of
the transition between the two regimes has remained shrouded
in mystery, however, and represents a fundamental challenge to
our understanding of strong nuclear interactions within QCD.

One of the most intriguing connections between the low
and high energy realms is the phenomenon of quark-hadron
duality, in which one finds in certain cases dual descriptions
of observables in terms of either explicit quark degrees of
freedom, or as averages over hadronic variables. A spectacular
example of such a duality is in inclusive electron-nucleon
scattering. First observed by Bloom and Gilman in the early
days of deep inelastic scattering (DIS) measurements [1], this
duality manifests itself in the similarity of structure functions
averaged over the resonance region (which is characterized
by hadronic bound states) and the scaling or leading twist
function describing the high energy, deep inelastic continuum
(characterized by scattering from free quarks) [2].

Unraveling the origin of the “Bloom-Gilman” duality
from first principles has proved to be a major challenge
in QCD. Until now the only rigorous connection with the
fundamental theory has been within the operator product or
“twist” expansion, in which moments of structure functions
are expanded as a series in inverse powers of the virtuality Q2

of the exchanged photon. The leading, O(1) term is given
by matrix elements of (leading twist) quark-gluon bilocal
operators, and is associated with free quark scattering, while
the O(1/Q2) and higher terms correspond to nonperturbative
(higher twist) quark-gluon interactions. Bloom-Gilman duality
is then interpreted in this language as the suppression of higher
twist contributions to the moments [3].

Recent experimental data [4] suggest that not only mo-
ments, but structure functions in individual resonance regions,
such as the �, S11 or F15 regions, closely resemble the

leading twist structure functions over the same intervals.
This indicates that duality also exists locally, in restricted
regions of hadronic final state mass W . The appearance of
this local duality cannot, however, be explained with the
theoretical tools presently at our disposal, and insight into the
workings of duality for individual resonance regions has been
confined to QCD-inspired models of the nucleon. As such our
understanding of quark-hadron duality in nucleon structure
functions within QCD is incomplete.

In this paper we present a new approach to the study of
local quark-hadron duality within a perturbative QCD context,
using “truncated” moments of structure functions. The virtue
of truncated moments is that they obey a similar set of Q2

evolution equations as those for parton distributions [5,6],
which therefore enables a rigorous connection to be made
between local duality and QCD. It allows us to quantify for the
first time the higher twist content of various resonance regions,
and determine the degree to which individual resonances are
dominated by leading twist.

Truncated moments were introduced several years ago by
Forte et al. [5] to study structure function moments for which
small-x data were not available. By restricting or truncating
the integration region to some minimum value of the Bjorken x

variable, one could avoid the problem of extrapolating parton
distributions into unmeasured regions at small x. Later Kotlorz
and Kotlorz [6] developed an alternative formulation of the
evolution equations which avoids the problem of mixing of
higher truncated moments when evolving in Q2.

In this work we partially follow the latter approach and
apply it to the study of structure functions in the large-x region,
populated by nucleon resonances. In particular, we study the
Q2 evolution of structure functions integrated over specific
nucleon resonance regions. To facilitate such an analysis
requires extension of the definition of the truncated moments
to include both upper and lower truncations. We show that
these “doubly truncated” moments also obey the same Q2

evolution equations. Using recent high-precision data on the
proton F2 structure function from Jefferson Lab and elsewhere,
we quantify the size of the higher twists for the lowest three
moments in various regions of W . This represents the first
quantitative test of local duality in structure functions within
a QCD framework.
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This paper is organized as follows. In Sec. II we review the
essential elements of Q2 evolution via the DGLAP equations,
and introduce truncated moments together with their evolution.
We test the accuracy of our numerical evolution procedure in
Sec. III, and further study recent proton structure function data
in the nucleon resonance region at W < 2 GeV. We divide the
data into the three traditional resonance regions and extract
the leading and higher twist content of each region. Finally,
in Sec. IV we summarize the conclusions of this analysis and
outline future work.

II. TRUNCATED MOMENTS AND EVOLUTION

A. QCD evolution equations

The Q2 dependence of a parton distribution function (PDF)
q(x,Q2) is described in perturbative QCD (pQCD) by the
DGLAP evolution equations [7]:

dq(x,Q2)

dt
= αS(Q2)

2π
(P ⊗ q)(x,Q2), (1)

where t ≡ ln (Q2/�2
QCD), with �QCD the QCD scale parame-

ter, and the symbol ⊗ denotes the Mellin convolution,

(P ⊗ q)(x,Q2) =
∫ 1

x

dy

y
P

(
x

y
, αS(Q2)

)
q(y,Q2), (2)

between the parton distribution q and the splitting function (or
the evolution kernel) P . In pQCD the latter can be expanded
as a series in the strong running coupling constant αS(Q2).
For the nonsinglet (NS) case, q is one of the flavor nonsinglet
combinations of quark distributions and P the corresponding
NS splitting function. For the singlet case, on the other
hand, q is a vector whose components are the flavor singlet
combination of quark distributions and the gluon distribution,
and correspondingly P is a 2 × 2 matrix of splitting functions.

Taking moments, the convolution in Eq. (1) turns into an
ordinary product, and the evolution equations become ordinary
first order differential equations in moment space n,

dMn(Q2)

dt
= αS(Q2)

2π
γn(Q2)Mn(Q2), (3)

which can be solved analytically. Here the nth full moment of
the parton distribution is defined as

Mn(Q2) =
∫ 1

0
dx xn−1q(x,Q2), (4)

and the anomalous dimension,

γn(Q2) =
∫ 1

0
dz zn−1P (z, αS(Q2)), (5)

is the moment of the splitting function P (z, αS(Q2)). The PDF
can then be determined via the inverse Mellin transform,

q(x,Q2) = 1

2πi

∫ c+i∞

c−i∞
dn x−n Mn(Q2). (6)

From the definition in Eq. (4), the full moments are obtained
by integrating the PDF over all values of the Bjorken variable,
0 � x � 1. Since x is related to the invariant mass squared W 2 of

the virtual photon-hadron system, W 2 = M2 + Q2(1 − x)/x,
where M is the nucleon mass, to reach the x → 0 limit requires
infinite energy; hence in practice some extrapolation to x = 0
is always needed to evaluate the moment. Similarly, at finite
Q2 one usually excludes from leading twist analyses the W <

2 GeV region in order to avoid low-W nucleon resonances, so
an analogous extrapolation to x = 1 is also performed.

B. Truncated moments

An alternative approach, which avoids uncertainties from
unmeasured regions at low and high x, makes use of the
so-called “truncated moments” [5]. In analogy with the full
moments, the truncated moments of a PDF q(x,Q2) are
defined as

Mn(x0, 1,Q2) =
∫ 1

x0

dx xn−1q(x,Q2), (7)

where the integration is restricted to x0 � x � 1 (the first two
arguments in Mn denote the lower and upper limits of the
integration). From the evolution equation (1), one can verify
that the truncated moments satisfy

dMn(x0, 1,Q2)

dt
= αS(Q2)

2π

∫ 1

x0

dy yn−1q(y,Q2)

×Gn

(
x0

y
,Q2

)
, (8)

where

Gn(x,Q2) =
∫ 1

x

dz zn−1P (z, αS(Q2)) (9)

is the truncated anomalous dimension. For x0 = 0, the latter
reduces to the usual x-independent anomalous dimension,
Gn(0,Q2) = γn(Q2), which can be taken outside the integral
in Eq. (8). The right hand side then depends only on the nth
moment, and the full moments of PDFs evolve independently
of each other.

For nonzero x0, the residual y dependence in the truncated
anomalous dimension leads to evolutions equations which are
not diagonal in n. This can be seen by expanding Gn(x0/y,Q2)
as a Taylor series around y = 1, and truncating the expansion
at a finite order m. Accordingly, Eq. (8) then turns into a system
of coupled evolution equations:

dMn(x0, 1,Q2)

dt
= αS(Q2)

2π

m∑
k=0

c
(m)
n,k (x0)Mn+k(x0, 1,Q2),

(10)

where

c
(m)
n,k (x0) =

m∑
p=k

(−1)p+kgn
p(x0)

k!(p − k)!
and

(11)

gn
p(x0) ≡ ∂p

∂yp
Gn

(
x0

y
,Q2

)∣∣∣∣
y=1

.

Unlike the full moments, the evolution of the truncated
moment of order n is determined by all truncated moments of

025206-2



QUARK-HADRON DUALITY AND TRUNCATED MOMENTS OF . . . PHYSICAL REVIEW C 78, 025206 (2008)

order n + k, with k > 0. However, the series of couplings to
higher moments converges, and can be truncated to any desired
accuracy. One can solve Eq. (10) to arbitrarily high accuracy
by using a sufficiently large basis of truncated moments. For
example, the higher moments (n � 2) can be calculated with
excellent accuracy even for a small (m = 4) number of terms in
the expansion of the truncated anomalous dimension. The first
moment, on the other hand, is more sensitive to the truncation
point x0 and the convergence of the truncated anomalous
dimension for n = 1 is weaker than for the higher moments.

C. Diagonal formulation of truncated moments

The evolution equations satisfied by the truncated moments
can be formulated in an alternative way which avoids the
problem of mixing of lower moments with higher moments [6].
Inverting the order of integration on the right hand side of
Eq. (8) and introducing a new variable u = x0(y/x), the
integral can be written as∫ 1

x0

dx xn−1(P ⊗ q)(x,Q2) = (P ′
n ⊗ Mn)(x0,Q

2), (12)

with

P ′
n(z, αS(Q2)) = znP (z, αS(Q2)). (13)

The evolution equation for the truncated moments then
becomes

dMn(x0, 1,Q2)

dt
= αS(Q2)

2π
(P ′

n ⊗ Mn)(x0,Q
2), (14)

which is very similar to the original evolution equation (1)
for the PDFs. Here P ′

n plays the role of the splitting function
for the truncated moments. The truncated moments therefore
satisfy DGLAP evolution with a modified splitting function
P (z, αS(Q2)) → znP (z, αS(Q2)) in the Mellin convolution.
The advantage of this approach is that it can be successfully
applied to any nth moment and for every truncation point
0 < x0 < 1, without the complication of mixing with higher
moments.

The evolution equations for the truncated moments can also
be generalized to any subset in the x-region, xmin � x � xmax.
Writing the “doubly-truncated” moment of the PDF as

Mn(xmin, xmax,Q
2) =

∫ xmax

xmin

dx xn−1q(x,Q2), (15)

its Q2 evolution can be obtained by subtracting the solutions
of truncated moments at the points xmin and xmax:

Mn(xmin, xmax,Q
2) = Mn(xmin, 1,Q2) − Mn(xmax, 1,Q2),

(16)

where Mn(xmin, 1,Q2) and Mn(xmax, 1,Q2) both satisfy
Eq. (14).

III. DATA ANALYSIS

The central aim of this study is to determine the extent to
which nucleon structure function data in specific regions in
x (or W ) are dominated by leading twist. This can be done

by constructing empirical truncated moments and evolving
them to a different Q2 using one of two methods. Namely,
(i) the structure functions are evolved and the corresponding
truncated moments the calculated, or (ii) the moments are
evolved directly using the evolution equations in Eq. (14)
above. We found the results of both methods to be essentially
equivalent. In the study of the proton structure function
data there is, however, difficulty in applying the target mass
corrections (TMCs) using the latter method. Here in principle
one can derive and solve the evolution equations for the target
mass corrected moments (the so-called truncated Nachtmann
moments), which contain the TMCs explicitly. In practice,
to avoid this problem we shall utilize method (i): we evolve
the structure functions, correct them for TMCs, and finally
calculate their moments.

Deviations of the evolved moments, computed to next-to-
leading order (NLO) accuracy, from the experimental data at
the new Q2 then reveal any higher twist contributions in the
original data. In particular, we will analyze recent data on the
proton F

p

2 structure function from Jefferson Lab covering a
range in Q2 from <∼1 GeV2 to ≈6 GeV2.

The evolution of the measured truncated moments requires
the structure function to be decomposed into its nonsinglet
and singlet components. Without performing a global pQCD
analysis of the structure function data, it is a priori unknown
which parts of the structure function are singlet and nonsinglet.
To proceed, we shall assume that in our region of interest,
at moderate to large x, the proton structure function is well
approximated by its nonsinglet component, and will evolve
the truncated moments as nonsinglets. The accuracy of this
approximation will improve with increasing order of the
truncated moments.

A. Evolution of truncated moments

We test the accuracy of the nonsinglet evolution by first
evolving a trial structure function whose decomposition into
its nonsinglet and singlet components is known. The trial
function is evolved exactly, with its nonsinglet and singlet
components computed separately, and also evolved under
the assumption that the total function can be treated as a
nonsinglet. A comparison of the discrepancy between the two
evolved truncated moments can then reveal the accuracy of the
nonsinglet evolution of the various moments as a function of
the truncation region.

There are many methods to solve the Q2 evolution
equations for the truncated moments [8]. The simplest and
most direct is to solve the equations by brute force using a
suitable numerical integration routine. In this work we use the
method of Ref. [9] for the evolution.

To illustrate the method of direct moment evolution, we
consider the evolution of the nonsinglet truncated moment,
MNS

n , to leading order in αS (although in practice our
numerical results are performed at NLO):

dMNS
n (x, 1, τ )

dτ
=

∫ 1

x

dy

y

(
x

y

)n

P
(0)
NS

(
x

y

)
MNS

n (y, 1, τ ),

(17)
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where the leading order NS splitting function is

P
(0)
NS (z) = 4

3

[
1 + z2

(1 − z)+
+ 3

2
δ(1 − z)

]
, (18)

and instead of t we use the variable τ , where

τ ≡ − 2

β0
ln

[
αS(Q2)

αS

(
Q2

0

)
]

, (19)

with αS(Q2) = 4π/[β0 ln(Q2/�2
QCD)] the running coupling

constant at leading order, and β0 = 11 − 2Nf /3 for Nf quark
flavors. By dividing the variables τ and x into small steps, the
evolution from τj to τj+1 can be written as

MNS
n (xi, 1, τj+1) = MNS

n (xi, 1, τj ) + �τj

Nx∑
k=i

�xk

xk

(
xi

xk

)n

×P
(0)
NS

(
xi

xk

)
MNS

n (xk, 1, τj ), (20)

where �τj = τj+1 − τj and �xk = xk − xk−1 are the steps at
positions j and k, and Nx is the number of steps in x. The final
truncated moment at τNτ

is then obtained by repeating the step
in Eq. (20) (Nτ − 1) times.

For the trial function we take the leading twist proton
F2 structure function computed from the MRST2004 PDF
fit [10]. The n = 2, 4, and 6 truncated moments of F

p

2 are
then evolved from Q2 = 25 GeV2 to 1 GeV2 using NS
evolution, and compared with the exact results using singlet
and nonsinglet evolution. The ratios of these are plotted in
Fig. 1 as a function of the truncation point Wmax, where
W 2

max = M2 + Q2(1/xmin − 1).
Generally the differences between the full and NS evolution

are of the order 2–4% for 1.2 <∼ Wmax <∼ 2 GeV, the traditional
nucleon resonance region, and increase with increasing Wmax.
Note that at Q2 = 1 GeV2,Wmax = 2 GeV corresponds to

1 1.2 1.4 1.6 1.8 2

W
max

 (GeV)

1

1.02

1.04

1.06

1.08

1.1

1.12

N
S

/f
ul

l

n=2
n=4
n=6

FIG. 1. Ratio of the truncated moments of F
p

2 evolved from Q2 =
25 to 1 GeV2, using NS and full evolution, versus the truncation
point Wmax (or xmin), for the n = 2 (solid), 4 (dotted), and 6 (dashed)
moments.

xmin = 0.24. For the n = 2 moment, which is most sensitive
to singlet evolution, the differences do not exceed ≈4% for
1.2 <∼ Wmax <∼ 2 GeV. As expected, for the higher moments
the differences are smaller, <∼2 − 3% for n = 4 and n = 6
for 1.3 <∼ Wmax � 2 GeV. In the region relevant for our study
one can therefore safely conclude that the error introduced
by evolving the F

p

2 moments as nonsinglets is less than 4%.
This uncertainty will be included in the errors in our final
results.

B. Extraction of higher twists

Having tested the accuracy of the nonsinglet evolution we
now turn our attention to the analysis of the F

p

2 structure
function data. In Fig. 2 (top panel) we compare the F

p

2
resonance data from Jefferson Lab experiment E91-110 [11] at
Q2 = 1 GeV2 (triangles) with an empirical fit [21] to the data
(dashed), and with leading twist fits to the deep-inelastic F

p

2
data [20] with (solid) and without (dot-dashed) target mass
corrections. The resonance fit [21] describes the F

p

2 data to
better than 3% over the range 0 � Q2 � 8 GeV2 and W 2 from
the inelastic threshold up to 10 GeV2.

Since the data at low Q2 contain significant contributions
arising from kinematical M2/Q2 corrections (which, although
subleading in Q2, contribute at leading twist), a direct
comparison of data with the leading twist structure function
requires the inclusion of TMCs. We do so here by applying
the standard TMC prescription for F2 from Ref. [12] (see
also Ref. [13] for a review of TMCs). As is evident from
Fig. 2, the leading twist fit to the DIS data, including TMCs,
agrees well with the average F

p

2 data in each resonance
region. A comparison of this fit with the DIS data at Q2 =
25 GeV2 (bottom panel of Fig. 2) shows the excellent
agreement between the leading twist function and the data
at this scale.

More specifically, the comparison of the data with the
target mass corrected leading twist function illustrates the
intriguing phenomenon of Bloom-Gilman duality, where
the data in the resonance region oscillate around, and on
average are approximately equal to, the leading twist function
[1]. This duality reveals itself in the relatively small value
of the higher twist contributions at these scales observed in
recent high-precision F

p

2 measurements—see Ref. [2] for a
review of the data. Note that the nonzero value of F2 with
TMCs in the limit x → 1, which is related to the so-called
threshold problem, introduces a small additional uncertainty
into structure function analyses at low Q2 [13,14].

To determine the extent to which the F
p

2 data at low Q2 are
dominated by leading twist, we assume that the data beyond
some large Q2 value are dominated by twist-2 contributions.
In view of the comparison with the data in Fig. 2, in this
analysis we take this scale to be Q2 = Q2

0 = 25 GeV2. This
assumption is also consistent with most global analyses of
PDFs, which fit leading twist PDFs to structure function data
down to Q2 ∼ 1–2 GeV2 [10,15–17]. Although these analyses
typically exclude low-W resonance data, in practice there is
little contribution to the low moments from the resonance
region W � 2 GeV.
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FIG. 2. (Color online) (Top panel) Comparison of proton F2 data from JLab experiment E91-110 [11] at Q2 = 1 GeV2 (triangles), and the
fit [21] to the data (“Resonance Fit”, dashed), with a global fit of DIS data used to extract target mass contributions [20]. Shown is the leading
twist DIS fit with (“LT+TMC”, solid) and without (“LT”, dot-dashed) the TMCs. The vertical lines indicate the extent of the second (S11)
resonance region. (Bottom panel) DIS data at Q2 = 25 GeV2 (circles) compared with the LT and LT+TMC fits.

The analysis method then proceeds in four main steps:

(i) For each W 2 region of interest, the x range to be covered
(�x) is calculated at the particular (lower) Q2 where
the leading twist contribution is to be extracted. For
the second (S11) resonance region, for example, this is
indicated by the vertical lines in Fig. 2 (top panel).

(ii) The structure function extracted from a precision fit to
data [20] at the starting scale Q2

0 = 25 GeV2 is evolved
in leading twist down to lower Q2 and the TMCs are
applied. Note that at the higher Q2

0 value the same
interval �x is used, as, e.g., indicated by the vertical
lines in Fig. 2 (bottom panel), which corresponds to a
higher W range.

(iii) The truncated moment of the evolved leading twist,
target mass corrected structure function from Step 2 is
calculated for the interval �x defined in Step 1.

(iv) The truncated moment of the resonance data at Q2 is
calculated in the interval �x and compared with the
result of Step 3.

After evolving down to Q2 = 1 GeV2 and applying the
target mass corrections, the n = 2 truncated moment M2 is
shown in Fig. 3(a) as a function of Wmax, where it is compared
with the moment of the actual data at Q2 = 1 GeV2. The
difference between the evolved curve and the data attests to
the presence of higher twist contributions in the data at Q2 =
1 GeV2. The importance of the TMCs is also clearly evident,

and these in fact reduce the difference between the leading
twist moment and the data by some 40% for large Wmax. The
ratio of the truncated moments of the data to the leading twist
in Fig. 3(b) illustrates that without TMCs the leading twist
moment differs from the data by ∼20% for Wmax > 1.5 GeV.
After correcting for TMCs, the size of the apparent higher
twists is reduced to ∼15%. It is imperative, therefore, that the
kinematical effects associated with finite values of Q2/ν2 be
properly accounted for before drawing any conclusions about
higher twists from data.

Note that the truncated moments displayed in Fig. 3
are computed over the range Wth � W � Wmax, where the
Wth = M + mπ is the inelastic threshold. This is consistent
with the assumption that the truncated moments at Q2

0 =
25 GeV2 are entirely of twist-2, since the elastic cross section
contributes only to the higher twist part of the structure
function. For a meaningful comparison, we therefore do not
include the elastic contribution at lower Q2. At Q2 = 1 GeV2

this corresponds to the integration range xmin � x � xth, where
xth = [1 + mπ (mπ + 2M)/Q2]−1 � 0.78.

The results in Fig. 3 give a clear indication of the magnitude
and sign of higher twists in the data at Q2 = 1 GeV2. To
quantify the higher twist content of the specific resonance
regions, and at different values of Q2, we consider several
intervals in W : W 2

th � W 2 � 1.9 GeV2, corresponding to the
traditional �(1232) (or first) resonance region; 1.9 � W 2 �
2.5 GeV2 for the S11(1535) (or second) resonance region; and
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FIG. 3. (a) Truncated moment M2 as a function of the truncation point Wmax at Q2 = 1 GeV2, evolved as leading twist (LT) from Q2
0 =

25 GeV2 with (solid) and without (dashed) target mass corrections (TMC), and compared with the moment calculated from data (dotted) at
Q2 = 1 GeV2. (b) Ratio of the M2 truncated moments of the data to the leading twist + TMC (solid), and data to leading twist without TMC
(dashed) at Q2 = 1 GeV2.

2.5 � W 2 � 3.1 GeV2 for the F15(1680) (or third) resonance
region. The n = 2 truncated moments corresponding to these
regions are plotted in Fig. 4 for various Q2 values, from
Q2 = 1 GeV2 to Q2 = 6 GeV2. Shown are ratios of moments
calculated from the data to the moments obtained from NLO
evolution of the leading twist moments from Q2

0 = 25 GeV2,
corrected for target mass effects. Below Q2 = 1 GeV2 the
applicability of a pQCD analysis becomes doubtful and the
decomposition into leading and higher twists is no longer
reliable.
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FIG. 4. Q2 dependence of the ratio of n = 2 truncated moments
M2 calculated from the data and from leading twist evolution from
Q2

0 = 25 GeV2 (including TMCs), for various intervals in W : the
first (�) resonance region (diamonds), second (S11) resonance region
(squares), the first and second combined, corresponding to W 2

max =
2.5 GeV2 (dotted curve), third (F15) resonance region (open circles),
first three regions combined, W 2

max = 3.1 GeV2 (dashed curve), and
the entire resonance region W 2

max = 4 GeV2 (filled circles). Note that
some of the points are offset slightly for clarity.

The results indicate deviations from leading twist behavior
of the entire resonance region data (filled circles in Fig. 4)
at the level of <∼15% for all values of Q2 considered, with
significant Q2 dependence for Q2 <∼ 4 GeV2. This is made
more explicit in Fig. 5, where the higher twist contributions to
M2 (defined as the difference between the total and leading
twist moments) are shown as ratios of the moments evaluated
from the data.

The strong Q2 dependence of the higher twists is evident
here in the change of sign around Q2 = 2 GeV2, with the
higher twists going from ≈ − 10% at Q2 = 1 GeV2 to
≈10–15% for Q2 ≈ 5 GeV2. The slope at Q2 ≈ 1–2 GeV2

would be decreased if the full NS + singlet evolution were
performed, as evident from Fig. 1, since the NS-only evolution
leads to a few percent overestimate of the LT+TMC results. At
larger Q2 the higher twists are naturally expected to decrease,
once the leading twist component of the moments begins to
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FIG. 5. Q2 dependence of the fractional higher twist (HT)
contribution to the n = 2 truncated moment data, for various intervals
in W (as in Fig. 4).
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dominate. Note that the extraction of higher twists beyond
Q2 = 6 GeV2 would require evolution from a starting scale
larger than the Q2

0 = 25 GeV2 used in this analysis. At larger
Q2, however, data in the large-x region, which determines the
behavior of the resonances after evolution to lower Q2, are not
well determined, making extraction of higher twists beyond
Q2 ≈ 6 GeV2 problematic at present.

Turning to the individual resonance regions, the results
in Figs. 4 and 5 show that in the � region (diamonds) the
higher twist contributions are smallest in magnitude at large
Q2, decreasing from ≈ − 15% of the data at Q2 = 1 GeV2

to values consistent with zero (within errors) at larger Q2.
The higher twists are largest, on the other hand, for the
S11 region (squares), where they vary between ≈ − 15% of
the data at Q2 = 1 GeV2 and 20–25% at Q2 ∼ 5 GeV2.
Combined, the higher twist contribution from the first two
resonance regions (dotted curve) is <∼15% in magnitude for
all Q2. The rather dramatic difference between the � and
the S11, may, at least in part, be due to the choice of the
differentiation point of W 2 = 1.9 GeV2. A lower W 2 choice,
for instance, would lower the higher twist content of the S11

at large Q2, while raising that of the �. However, our W 2

choice corresponds to the local minimum between these two
resonances in the inclusive spectra, and is the one most widely
utilized.

The higher twist content of the F15 region (open circles)
is similar to the S11 at low Q2, but decreases more rapidly
for Q2 > 3 GeV2. The higher twist content of the first three
resonance regions combined (dashed curve) is <∼15–20% in
magnitude for Q2 � 6 GeV2. Integrating up to W 2

max = 4 GeV2

(filled circles), the data on the n = 2 truncated moment are
found to be leading twist dominated at the level of 85–90%
over the entire Q2 range.

The results in Figs. 4 and 5 contain two sources of
uncertainty: from the experimental uncertainty on the F2 data
(statistical and systematic), and from the nonsinglet evolution
of the data. For the experimental error we take an overall
uncertainty of 2% for all truncated moment data, with the

exception of the n = 4 and n = 6 moments for W 2
max = 1.9

and 4 GeV2, where the experimental uncertainties are 4% and
3% for M4, and 5% and 4.5% for M6 for the two W regions,
respectively. The evolution error is estimated by comparing the
nonsinglet evolution with the full evolution using the MRST
fit, as in Fig. 1, with the appropriate correction factor applied
at each Q2 and W interval. We do not assign an uncertainty
for the structure function at the Q2

0 = 25 GeV2 input scale,
as this is negligible for all but the � region analysis at Q2 =
6 GeV2, where we estimate it to be <∼3%.

Note that the size of the error bars on the S11 and F15 data
points at the lowest Q2 are larger than those for the �. This is
due to the fact that these resonances lie at higher W , and hence
at lower values of x compared to the �, and where the NS
approximation to the full evolution is not as good as at large
x. The error bar on the � is smaller at the same low Q2 values
since it appears at larger x, where the NS versus full evolution
differences are smaller.

The relatively small size of the higher twists at scales ∼ few
GeV2 is consistent with the qualitative observations made in
earlier data analyses about the approximate validity of Bloom-
Gilman duality [4]. In this analysis we are able to for the
first time quantify precisely the degree to which this duality
holds as a function of Q2 (see also Ref. [18]). The fact that
duality works better (higher twists are smaller) when more
resonances are included is also borne out in various quark
model studies [2,19].

Similar behavior is found also for the n = 4 and n =
6 truncated moment ratios, illustrated in Figs. 6 and 7,
respectively. For the higher moments, the overall magnitude of
the higher twists is qualitatively similar to the n = 2 moments,
although the Q2 values at which they start decreasing in
importance are larger. At low Q2 values the higher twist
contributions are also relatively larger for higher moments: at
Q2 = 1 GeV2, for example, the magnitude of the higher twist
component of the W 2 < 4 GeV2 region increases from ∼10%
for the n = 2 moment, to ∼15–20% for n = 4, and ∼20–30%
for n = 6. This behavior can be understood from the relatively
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FIG. 6. (a) Q2 dependence of the ratio of truncated moments M4 calculated from the data and from leading twist evolution from Q2
0 =

25 GeV2 (including TMCs), for various intervals in W (labels as in Fig. 4). (b) Fractional higher twist contribution to the n = 4 truncated
moment data, for various intervals in W (as in Fig. 5).
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FIG. 7. (a) Ratio of truncated moments M6 calculated from the data and from leading twist evolution from Q2
0 = 25 GeV2 (including

TMCs), for various intervals in W (labels as in Fig. 4). (b) Fractional higher twist contribution to the n = 6 truncated moment data, for various
intervals in W (as in Fig. 5).

greater role played by the nucleon resonances and the large-x
region, which is emphasized more by the (x-weighted) higher
moments.

IV. CONCLUSION

Quark-hadron duality in nucleon structure functions re-
mains an intriguing empirical phenomenon which challenges
our understanding of strong interaction dynamics, as one
transitions from hadronic degrees of freedom in the nucleon
resonance region to quarks and gluons in the deep inelastic
continuum. Until now the only rigorous connection with QCD
has been for moments of structure functions analyzed within
the twist expansion. Any insight about the workings of duality
for individual resonances, or specific resonance regions, has
been confined to QCD-inspired models of the nucleon.

In this paper we have presented a new approach to the
study of local quark-hadron duality within a perturbative
QCD context, using so-called truncated moments of structure
functions. The fact that truncated moments obey a similar
set of Q2 evolution equations to the DGLAP equations for
parton distributions enables a rigorous connection to be made
between local quark-hadron duality and QCD. It allows us
to quantify for the first time the higher twist content of
various resonance regions, and determine the degree to which
individual resonance regions are dominated by leading twist.

We find deviations from leading twist behavior of the
truncated moments of the resonance region data (W � 2 GeV)
at the level of <∼15% for Q2 > 1 GeV2. Significant Q2

dependence in the ratio of moments of data to leading twist is
evident for Q2 <∼ 3 GeV2, with the higher twists changing sign
around Q2 = 2 GeV2. For the n = 2 truncated moment, M2,
the higher twists are found to vary from ≈ − 10% at Q2 =
1 GeV2 to ≈10–15% at Q2 ≈ 5 GeV2.

Separating the W � 2 GeV data into the three traditional
resonance regions, our results indicate that at a scale of Q2 =
1 GeV2 the � resonance region contains about −15% higher
twist component of the total M2, but is consistent with zero

at larger Q2. The higher twists in the second (S11) and third
(F15) resonance regions are larger in magnitude, with the S11

ranging from ≈ − 15% at Q2 = 1 GeV2 to 20–25% at Q2 ∼
5 GeV2, and the F15 varying from 0 and 15% over the same
range.

Similar behavior is found also for the n = 4 and n = 6
truncated moments. Here the relatively greater role played by
the resonances due to the large-x enhancement leads to larger
higher twists at the same Q2. At Q2 = 1 GeV2, for example,
the higher twist component of the W � 2 GeV region increases
from around −10% forM2 to ≈ − 15% forM4, and ≈ − 25%
for M6.

In contrast to earlier analyses of duality using complete
moments of structure functions which have quantified the
total higher twist content over all x, this analysis in terms
of truncated moments reveals the distribution of higher twist
corrections over various regions in x (or W ). Note that, unlike
many previous moment analyses, an effort was also made to
quantify the uncertainty associated with evolving the structure
function data as a nonsinglet, which was found to be <∼4%.

While this analysis has been to some extent exploratory,
it has illustrated an encouraging new approach to quantifying
and understanding local Bloom-Gilman duality within a well-
defined theoretical framework. It opens the way to further
study of local duality in other structure functions, such as the
longitudinal structure function FL or spin-dependent structure
functions.
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