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We study the origin of the resonances associated with pole singularities of the scattering amplitude in the
chiral unitary approach. We propose a “natural renormalization” scheme using the low-energy interaction and the
general principle of the scattering theory. We develop a method to distinguish dynamically generated resonances
from genuine quark states [Castillejo-Dalitz-Dyson (CDD) poles] using the natural renormalization scheme and
phenomenological fitting. Analyzing physical meson-baryon scatterings, we find that the �(1405) resonance is
largely dominated by the meson-baryon molecule component. In contrast, the N (1535) resonance requires a
sizable CDD pole contribution, while the effect of the meson-baryon dynamics is also important.
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I. INTRODUCTION

Chiral symmetry is one of the guiding principles for
studying hadron physics based on the underlying theory of
QCD. The chiral perturbation theory [1–5] enables us to study
low-energy hadron dynamics systematically. By construction,
however, perturbative calculations cannot be applied to the
system with bound states and/or resonances. For instance, the
leading order term of the chiral perturbation theory describes
well the πN scattering lengths [6,7], while it cannot reproduce
either the πN scattering amplitude around the � resonance
energy or the K̄N scattering length due to the presence of
the �(1405) resonance below the threshold. To describe the
latter system in the chiral effective theory, the resonances can
be either introduced as elementary fields in the Lagrangian or
generated dynamically in hadron scattering. In general, they
can also mix. The clarification of these dynamics is one of
issues that we discuss in this paper.

Recent developments in the study of resonance scattering
based on chiral dynamics have been made; the implementation
of the unitarity condition on the scattering amplitude leads to
the nonperturbative resummation of the s-channel diagrams,
generating the resonance pole in the amplitude dynamically.
This chiral unitary approach was successfully applied to the
scattering of the pseudoscalar meson with octet baryons [8–
13], with pseudoscalar mesons [14–17], with decuplet baryons
[18,19], with vector mesons [20,21], and with heavy flavored
hadrons [22–24], thanks to the dominant contribution from
the model-independent low-energy interaction [25,26]. These
studies reproduce many scattering observables as well as the
properties of the observed resonances.
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Despite the remarkable success of the chiral unitary
approach, the origin of the resonances is not well understood,
especially for the baryonic sector. One simply expects that
the resonances found in this approach are quasibound states
of a meson and a baryon generated by their two-body
interaction. Hereafter we call this by the meson-baryon picture
of the resonance. This picture may be in contrast to the
description of resonances as genuine quark states. Such a
state is generally called the Castillejo-Dalitz-Dyson (CDD)
pole [27,28], which is not generated in the dynamics of the
meson-baryon scattering, but has some different origins.1 The
importance of the CDD pole in the chiral unitary approach was
first pointed out and discussed in Ref. [29].

In most cases, the CDD pole is introduced explicitly as an
elementary field in the chiral perturbation theory [30,31] or
in the unitarized framework [29,32–34]. There are, however,
some cases in which the CDD pole contribution is hidden in the
model parameters. For instance, in ππ scattering, it has been
argued that the pole for the ρ meson is attributed to contact
terms in the higher order Lagrangian [17], which is known
to behave as a contracted resonance propagator in the chiral
perturbation theory [5,35]. Hence, the nature of the ρ meson
is considered to be of the CDD pole, presumably originated
from the quark dynamics. This observation is in accordance
with the study of the large Nc limit and the Nc scaling, where
the pole of the ρ meson behaves as a q̄q resonance rather than
a two-meson quasibound state [29,36].

1Strictly speaking, a pole singularity of scattering amplitude for an
elementary particle is different from the pole originally introduced in
Ref. [27], which gives a pole of the inverse amplitude. The presence
of the original CDD pole was later interpreted as an independent
particle participating in the scattering; see, e.g., Ref. [28]. We will
nevertheless use the term “CDD pole” to indicate the pole of the
elementary particle for simplicity.
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Furthermore, it is also possible to have both CDD pole
and dynamical state in one system [29,33]. In this case,
the two components will be mixed in physical states. An
example of the mixed situation has been studied in Ref. [37].
There they studied the coupling property of the introduced
field, which turned out to be similar to the corresponding
physical resonance in full amplitude. In general, such a
comparison of the couplings is useful in studying the origin of
the resonance.

In this paper, we study the origin of the resonances
in chiral dynamics, paying attention to the renormalization
procedure. In the chiral unitary approach, we need to introduce
renormalization parameters (subtraction constants) in order
to tame the divergence in loop integrals, which have been
used to fit experimental data [9,38–40]. Here we propose a
different strategy: determining the subtraction constant first to
study the structure of the resonances. Namely, we investigate
whether the baryonic resonances obtained in the chiral unitary
approach are purely dynamically generated resonances by
meson-baryon scatterings or they have some components other
than the dynamical one. For this purpose, we develop a renor-
malization scheme based on purely a theoretical argument to
exclude the CDD pole contribution in the loop function. We
introduce the following two requirements: (1) the scattering
equation shares a common feature with ordinary quantum
mechanical problems based on the Schrödinger equation, and
(2) the obtained scattering amplitude is consistent with the
low-energy interaction at a certain kinematic point. With these
conditions, we determine the value of the subtraction constant
uniquely for the single-channel scattering system without
CDD poles. We call this scheme “ natural renormalization,”
which specifies a standard value of the subtraction constant.
Having this scheme, we will discuss the meaning of the
subtraction constant, which is different from the standard
value, in what follows.

Next we consider the scattering amplitude in comparison
with experimental data and propose a method to extract the
low-energy structure of the amplitude in the natural renor-
malization scheme. From the viewpoint of renormalization,
we first note that the change of the subtraction constant can
be absorbed into the change of the interaction kernel, once
the experimental input is given. If the resonance is dominated
by the meson-baryon component, experimental data are well
reproduced in the natural renormalization scheme with the
interaction kernel without the CDD pole contribution. If the
experimental amplitude requires a large contribution from
the CDD pole, one has to introduce its effect either in the
subtraction constant or in the kernel interaction. In one way,
we can reproduce experimental data by suitably choosing the
subtraction constant, but keeping the interaction kernel un-
changed. We find that this phenomenological amplitude can be
equivalently expressed by the natural value of the subtraction
constant and the interaction with explicit contribution of the
CDD pole. In this way, the origin of the resonances can be
studied, making use of the natural renormalization scheme
and the experimental input.

This paper is organized as follows. In Sec. II, we describe
the formulation of the chiral unitary approach for a single
channel scattering, based on the N/D method. In Sec. III,

we discuss the properties of the loop function theoretically
in the meson-baryon picture. We derive the natural value for
the subtraction constant from the consistency with the general
principle and low-energy interaction. In Sec. IV, we present
an interpretation of phenomenological fitting to experimental
data. From the viewpoint of the renormalization, we analyze
the deviation of the subtraction constant from the natural value.
We then generalize the framework to the coupled-channel
scattering problem in Sec. V and perform numerical analysis in
Sec. VI for the strangeness S = −1 and S = 0 meson-baryon
scatterings. The obtained results are discussed in connection
with related works in Sec. VII, and concluding remarks are
given in the last section.

II. CHIRAL UNITARY APPROACH

A. Unitarity and N/D method

In this section, we present the framework of the chiral
unitary approach for s-wave meson-baryon scattering. We
first discuss the scattering problem in a single channel for
simplicity. Generalization to the coupled-channel scattering
will be given in Sec. V. We consider the scattering of a
pseudoscalar meson with mass m from a target baryon with
mass MT . The s-channel two-body unitarity condition for the
amplitude T (

√
s) can be expressed as

Im T −1(
√

s) = ρ(
√

s)

2
, (1)

where ρ(
√

s) = 2MT q̄/(4π
√

s) is the two-body
phase space of the scattering system with q̄ =√

[s − (MT − m)2][s − (MT + m)2]/(2
√

s). This is the
so-called elastic unitarity. Based on the N/D method [11],
the general form of the scattering amplitude satisfying Eq. (1)
is given by

T (
√

s) = 1

V −1(
√

s) − G(
√

s)
, (2)

where V (
√

s) is a real function expressing dynamical contri-
butions other than the s-channel unitarity and will be identified
as the kernel interaction. G(

√
s) is obtained by the once

subtracted dispersion relation with the phase-space function
ρ(

√
s):

G(
√

s) = −ã(s0) − 1

2π

∫ ∞

s+
ds ′

(
ρ(s ′)

s ′ − s − iε
− ρ(s ′)

s ′ − s0

)
,

(3)

where s+ = (MT + m)2 is the value of s at the s-channel
threshold, ã(s0) is the subtraction constant at the subtraction
point s0. One can easily verify that the amplitude given in
Eqs. (2) and (3) satisfies Eq. (1).

Equivalently, the function G(
√

s) can be written as the finite
part of the meson-baryon loop function

i

∫
d4q

(2π )4

2MT

(P − q)2 − M2
T + iε

1

q2 − m2 + iε
, (4)

which is logarithmically divergent. Utilizing the dimensional
regularization, we obtain the same structure as Eq. (3) up to a
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constant

G(
√

s) = 2MT

(4π )2

{
a(µ) + ln

M2
T

µ2
+ m2 − M2

T + s

2s
ln

m2

M2
T

+ q̄√
s

[
ln

(
s − (

M2
T − m2

) + 2
√

sq̄
)

+ ln
(
s + (

M2
T − m2

) + 2
√

sq̄
)

− ln
( −s + (

M2
T − m2) + 2

√
sq̄

)

− ln
( −s − (

M2
T − m2

) + 2
√

sq̄
)]}

, (5)

where a(µ) is the subtraction constant determined at the
renormalization scale µ. The equivalence is verified by noting
that both Eqs. (3) and (5) have the same imaginary part
and that the real part satisfies the dispersion relation. For a
single channel, there is only one degree of freedom for the
regularization. Here we set µ = MT from now on and simply
denote the subtraction constant a ≡ a(MT ), which plays the
role of the ultraviolet cutoff parameter of the loop integral.
A different choice of µ shifts a by a constant value without
affecting the physics.

B. Kernel interaction

Let us consider the meaning of the function V (
√

s), which
governs the dynamics of the system. In principle, V (

√
s)

can be constructed once all the singularities on the complex
energy plane are known. In practice, it is not possible, and we
determine it with the help of chiral symmetry.

Regarding the G(
√

s) function as the meson-baryon loop
function, we can interpret T (

√
s) in Eq. (2) as the solution of

the Bethe-Salpeter equation with the kernel interaction V (
√

s).
In the chiral unitary approach, it was shown that the off-shell
effects can be absorbed into the renormalization of the kernel
interaction [9,15], leading to the algebraic solution given in
Eq. (2), which includes the resummation of the s-channel
bubble diagrams.

One way to determine the interaction kernel V (
√

s) is
to match the unitarized amplitude T (

√
s) with the chiral

perturbation theory order by order [11]. At leading order,
where loops are absent, V (

√
s) is given by the s-wave

interaction of the Weinberg-Tomozawa (WT) term [6,7]

V (
√

s) = VWT(
√

s)

= − C

2f 2
[
√

s − MT ] ∼ − C

2f 2
ω, (6)

where C is the group theoretical factor whose general form is
given in Ref. [26], and f and ω are the decay constant and the
energy of the meson, respectively. Based on the matching with
the chiral perturbation theory, one can introduce higher order
terms in V (

√
s) systematically [12,39–43].

Here we note that if the CDD pole contribution exists, it
should be included in V (

√
s) except for the pole at infinity,

which can be included in the subtraction constant. This is
the prescription of the N/D method [29]. The effect of the
CDD pole can be introduced by explicitly adding a resonance
propagator in the interaction V (

√
s), in such a way that it does

not violate the low-energy theorem [33]. While the higher

order terms of the chiral Lagrangian may contain the CDD pole
contribution implicitly [5,35], the leading order WT term (6)
is apparently not affected by the s-channel resonance structure
[44].

C. Properties of the loop function

For later convenience, we now recall the general properties
of the loop function. The loop function G(

√
s) is monoton-

ically decreasing in the energy region below the threshold√
s � MT + m [25,26]. One can verify it by differentiating the

expression in Eq. (3) with respect to
√

s:

dG

d
√

s
= − 1

2π

∫ ∞

s+
ds ′ ρ(s ′)

√
s

(s ′ − s + iε)2
, (7)

which is negative for (0� )
√

s � MT + m.
The physical s-channel scattering takes place above the

threshold
√

s � MT + m, which is on the unitarity (right hand)
cut. The energy region below the threshold

√
s � MT + m

corresponds to the bound state region of the s-channel
scattering. In the present formulation of the N/D method, we
fully take into account the unitarity cut, while the contribution
from the unphysical (left hand) cut is included through order-
by-order matching. This means that the crossed diagram in
the u channel is treated only perturbatively. Our amplitude in
Eq. (2) therefore should not be extrapolated to the energy
region below the mass of the target

√
s � MT , where the

contributions from the u-channel diagrams become important.
As for the renormalization procedure of the loop function

in Eq. (4), one can equivalently utilize procedures other than
the dimensional regularization, such as the three-momentum
cutoff scheme. On the one hand, the cutoff scheme provides
an intuitive interpretation of the loop function in connection
with the second-order perturbation of quantum mechanics. On
the other hand, the dimensional regularization is compatible
with the analyticity of the amplitude, which is suitable for
the N/D method based on dispersion theory. We will make
use of both renormalization schemes for the loop function in
the following sections.

III. NATURAL RENORMALIZATION CONDITION

In this section, we propose the “natural renormalization
scheme,” which provides a suitable description for meson-
baryon scattering without the CDD pole contribution. Our
strategy is to determine theoretically the subtraction constant
of the loop function in order to study the structure of the
resonances. This is in contrast to the previous studies in which
the subtraction constant is fitted to data. To determine the
value of the subtraction constant theoretically, throughout
this section, we assume that there is no contribution to the
intermediate states in the loop function from the CDD pole
and the amplitude follows the low-energy structure required by
chiral symmetry. For illustration, the interaction kernel V (

√
s)

is chosen to be the WT term VWT(
√

s) given in Eq. (6), which
does not contain the CDD pole contribution. We may also
consider higher order terms, such as quark mass terms. In
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this case, however, some of the higher order terms are known
to contain resonance contributions. For the loop integral, we
first show that the subtraction constant has an upper limit for
the consistency with the physical interpretation of the loop
function, which is inferred by familiar quantum mechanical
problems. Next we consider the matching of the unitarized
amplitude with the low-energy interaction, and we derive
the allowed region of the subtraction constant. Combining
these two conditions, we determine the natural subtraction
constant for the dynamical generation of resonances in a way
consistent with low-energy chiral dynamics. Note that this
natural renormalization scheme is not aimed to describe an
arbitrary meson-baryon scattering, but it assumes the absence
of the CDD pole contribution in the loop function, as we
discuss in detail below.

A. Consistency with physical loop function

Let us first consider the sign of the loop function (5)
below the threshold

√
s � MT + m where the imaginary part

vanishes. In the meson-baryon picture, we can assume that
there are no states below the threshold contributing to the loop
function as intermediate states. This sets up the model space of
solving the scattering equation. In this case, the loop function
should be negative below the threshold. This is essentially the
same as what happens in the perturbative calculations of the
energy of the lowest state which couples to higher states in
a quantum mechanical system, where the energy correction
becomes always negative.

This condition is automatically satisfied in the cutoff
regularization; if we introduce a three-momentum cutoff qmax,
the loop function can be written as

G3d (
√

s) = 2MT

(2π )2

∫ qmax

0
dq

q2

E

1

ω

× E + ω

(
√

s − (E + ω) + iε)(
√

s + E + ω)
,

with

E =
√

M2
T + q2, ω =

√
m2 + q2.

This is always negative for
√

s � MT + m � E + ω, irrespec-
tive of the cutoff momentum qmax.

In the dimensional regularization, however, the real part
can become positive if one takes a large positive value for
the subtraction constant a in Eq. (5). This can be avoided by
introducing an upper limit for the subtraction constant. As
we discussed in the previous section, our amplitude can be
in principle extrapolated down to

√
s = MT . Since the loop

function below the threshold is a decreasing function as seen
in Eq. (7), to make the loop function negative for the relevant
energy region

√
s � MT , it is sufficient for G(

√
s) to have the

negative value at
√

s = MT , that is,

G(MT ) � 0,

which is equivalent to

a � a(1)
max = −




m2

2M2
T

ln
m2

M2
T

+
m

√
m2 − 4M2

T

2M2
T

× [
ln

(
m2 + m

√
m2 − 4M2

T

)

+ ln
(
2M2

T − m2 + m

√
m2 − 4M2

T

)

− ln
( − m2 + m

√
m2 − 4M2

T

)

− ln
( − 2M2

T + m2 + m

√
m2 − 4M2

T

)]}
. (8)

If the subtraction constant satisfies this condition, the loop
function with dimensional regularization is consistent with the
physical requirement in the region of the s-channel scattering
(MT �

√
s).

B. Matching with the low-energy interaction

Next we require the amplitude T (
√

s) to follow the chiral
low-energy theorem [45–47]. As a result of the spontaneous
chiral symmetry breaking, the scattering amplitude T (

√
s) can

be expanded in powers of momenta of the pseudoscalar meson
at low energy. Since we choose VWT(

√
s) for the interaction

kernel as the leading order term of the chiral perturbation
theory, the consistency of the low-energy theorem can be
achieved by matching the full scattering amplitude T (

√
s) with

the kernel interaction VWT(
√

s) at a certain scale
√

s = µm:

T (µm) = VWT(µm), (9)

which is realized when

G(µm) = 0, (10)

as easily seen in Eq. (2). Since the subtraction constant is a
real number, Eq. (10) should be satisfied below the threshold
µm � MT + m, otherwise the loop function has an imaginary
part. On the other hand, the matching scale should not be
far below the threshold, since the u-channel cut lies in the
region

√
s � MT − m, and the effect of the crossing dynamics

becomes important at lower energies. Therefore, here we set
the lower limit of the matching scale at µm = MT , to satisfy
Eq. (9) within the s-channel scattering region. In summary, we
impose the matching scale to lie in the region

MT � µm � MT + m, (11)

which corresponds to choosing the subtraction constant as

a(2)
min � a � a(2)

max, (12)

with

a(2)
min = a(1)

max, a(2)
max = − m

MT + m
ln

m2

M2
T

.

The matching condition of Eq. (9) was discussed for πN

scattering in Ref. [48]. It is reasonable to set the matching scale
µm in this region when respecting the low-energy expansion.
We note that for on-shell kinematics, the three-momentum is
zero (p = 0) at

√
s = MT + m, while it takes an imaginary
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value for the vanishing energy of the Nambu-Goldstone
(NG) boson (ω = 0) where

√
s =

√
M2

T − m2 ∼ MT . Since the
chiral perturbation theory is valid for small four-momentum
pµ = (ω,p), the matching scale µm should lie around the
region (11). In the chiral limit m → 0, the range (11) reduces
into one value µm = MT , where ω = |p| = 0.

One may consider the correction to Eq. (9) from the higher
order interaction terms, such as the explicit symmetry breaking
(quark masses) terms. Once again, our aim is to determine
the property of the loop function by excluding the CDD pole
from it. Therefore, in this case we can match the amplitude
to the interaction V including the higher order corrections by
the same condition G(µm) = 0. The inclusion of the higher
order terms in the interaction does not change the values of
the subtraction constant in Eq. (12). In this case, however, we
should note the possibility of having the CDD pole contribution
in the interaction kernel V from the higher order chiral
Lagrangian.

C. Natural value for the subtraction constant

Based on the physical meaning of the loop function and
matching with the chiral amplitude at low energy, we have
derived two conditions for the subtraction constant, Eqs. (8)
and (12), which read a(2)

min � a � a(1)
max with a(2)

min = a(1)
max. This

means that the subtraction constant anatural which satisfies both
conditions is uniquely fixed by

anatural = a(2)
min = a(1)

max. (13)

In terms of the zero of the loop function, this condition is
equivalent to requiring

G(µm) = 0, µm = MT . (14)

This subtraction constant is compatible with the absence
of the CDD pole in the loop function, as we will discuss
below. It also guarantees the matching of the scattering
amplitude with the chiral low-energy interaction. We note
once again that the subtraction constant so obtained does not
necessarily explain experimental data. We have just specified
a standard value of the subtraction constant. The relation to
the phenomenologically determined value will be discussed in
the next section.

In this renormalization condition, we exclude any states
below the threshold as a model space of the unitarization, so
that the unitarized amplitude in Eq. (2) naturally implements
the meson-baryon picture in the model-building. Therefore,
with the value of anatural, the loop function does not include
the CDD pole contribution. The condition (14) was already
proposed in a different context in Ref. [12], where the matching
with the u-channel scattering amplitude was emphasized. A
similar argument with the present context based on chiral
symmetry was given in Refs. [33,48]. Our point is to regard
this condition as the exclusion of the CDD pole in the loop
function, based on the consistency with the negativeness of
the loop function. For illustration, the loop function of the
K̄N channel with a = anatural is plotted in Fig. 1, where MT =
939 MeV, m = 496 MeV, and f = 106.95 MeV are used.

-20

-15

-10

-5

0

5

10

G
 [

M
eV

]

140012001000800600400

s1/2 [MeV]

 re G

s1/2 = MT s1/2 = MT+m

s-channel
scattering region

FIG. 1. Real part of the loop function G(
√

s) for the K̄N channel
when a = anatural is adopted. The s-channel scattering region is
defined as

√
s > MT .

Let us make some remarks on related works. First, in
Ref. [11], a “natural” value for the subtraction constant was
estimated to be a ∼ −2, by comparing the loop function of
dimensional regularization with that of a three-momentum
cutoff of ∼630 MeV. This is different from our value of
anatural, practically and conceptually. In the present context,
the value (13) is derived for the loop function as unaffected by
CDD poles. We used the expression of the three-momentum
cutoff to illustrate that the real part of the loop function is
negative below threshold. It is not needed to introduce the
explicit scale (such as ∼630 MeV) of the cutoff in our case.
The “natural” value in Ref. [11] can, in principle, be applied
to any system, as long as the typical cutoff scale of the
physics is around ∼630 MeV. On the other hand, our natural
renormalization scheme is introduced just for excluding the
CDD poles; it does not describe the scattering with CDD poles.
This possibility is considered in the next section. Second,
we introduce the condition of matching (9) to determine the
value of the subtraction constant explicitly, along the same
line with Ref. [48]. This is different from the order-by-order
matching introduced in Ref. [11]. The latter is a conceptual
matching used to derive the form of the interaction kernel V .
Our condition (14) explicitly requires the vanishing of the loop
function at a certain low-energy point. Then the value of the
subtraction constant is determined, once again, for the loop
function without CDD poles.

IV. INTERPRETATION OF PHENOMENOLOGICAL
MODEL

In this section, we discuss the origin of the dynamically
generated resonances by reanalyzing the simplest phenomeno-
logical model to determine the subtraction constant in the
chiral unitary approach, in comparison with the natural
renormalization scheme. Let us assume that we have enough
experimental data for the system of interest from the low-
energy to the resonance-energy region. From the viewpoint of
the renormalization, once the scattering amplitude T (observ-
able) is fixed, the change of the renormalization parameter in
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the loop function G can be absorbed into the change of the
interaction V . In other words, we cannot determine a priori
the interaction kernel and the loop function separately. Thus,
for a given amplitude T , we can construct different sets of
interaction V and loop function G,

T (
√

s) = 1

V −1(
√

s; a) − G(
√

s; a)
, (15)

where a labels the renormalization scheme. Once we specify
either the loop function G or the interaction kernel V , we also
determine the other one by Eq. (15) to reproduce the same
amplitude T .

In the conventional phenomenological approaches, the
interaction kernel V is determined in the beginning by chiral
perturbation theory. For instance, in the simplest models, the
interaction kernel V is chosen to be the leading order WT term,

T (
√

s) = 1

V −1
WT(

√
s) − G(

√
s; apheno)

, (16)

with the subtraction constant apheno in the loop function G

being a free parameter to reproduce experimental data. We
call this procedure the phenomenological renormalization
scheme. This scheme can describe various phenomena well,
but the subtraction constant does not always satisfy the natural
renormalization condition in Eq. (13). Such a subtraction
constant takes care of the contributions that are not included
in the interaction kernel VWT.

The renormalization condition proposed in the previous
section is to fix the subtraction constant such that in the
resulting loop function there is no contribution from states
below the threshold. To achieve the equivalent scattering
amplitude, we need to adopt a different interaction kernel
Vnatural as

T (
√

s) = 1

V −1
natural(

√
s) − G(

√
s; anatural)

, (17)

with the subtraction constant anatural given in Eq. (13). The
interaction kernel Vnatural should be modified from VWT in
order to reproduce experimental observables.

The physical observable T should equivalently be repro-
duced by both renormalization schemes. Thus, equating the
denominators of Eqs. (16) and (17)

V −1
natural(

√
s) − G(

√
s; anatural)

= V −1
WT(

√
s) − G(

√
s; apheno), (18)

we obtain the interaction kernel Vnatural in the natural renor-
malization scheme as

V −1
natural(

√
s) = V −1

WT(
√

s) − 2MT

16π2
�a, (19)

with �a ≡ apheno − anatural . Here we have exploited the fact
that the dependence of a in the loop function G reads constant
shift, as seen in Eq. (5). Using the explicit form of the WT
term (6), we finally obtain the interaction kernel in the natural

renormalization condition as

Vnatural(
√

s) = 1

− 2f 2

C(
√

s−MT )
− 2MT �a

16π2

(20)

= − 8π2

MT �a

√
s − MT√
s − Meff

, (21)

with an effective mass

Meff ≡ MT − 16π2f 2

CMT �a
. (22)

Hereafter, we call Vnatural(
√

s) the effective interaction in the
natural renormalization scheme. The expression in Eq. (21)
tells us that the interaction kernel Vnatural(

√
s) can have a pole,

which lies in the s-channel scattering region with an attractive
interaction C > 0 and a negative value for �a. Extracting the
WT term from the effective interaction (21), we find

Vnatural(
√

s) = − C

2f 2
(
√

s − MT ) + C

2f 2

(
√

s − MT )2

√
s − Meff

≡ VWT(
√

s) + �V (
√

s; �a). (23)

The second term can be interpreted as the pole whose energy
dependence is consistent with the chiral expansion, since
the pole term is quadratic in powers of the meson energy
ω = √

s − MT , while the leading WT term is linear in it.
This is consistent with the schematic discussion made in
Refs. [42,43] that the change of the subtraction constant may
introduce the effect of the higher order terms in the kernel
interaction. Mathematically, it is also possible to have a pole for
a repulsive interaction C < 0 with �a > 0. If the experiments
require such a value for the phenomenological subtraction
constant, the effective interaction would be the repulsive
contact interaction plus an explicit resonance term. The ππ

scattering amplitude in the linear σ model is an example of
this case [49].

The relevance of the second term of Eq. (23) depends on
the scale of the effective mass Meff , which is obtained by the
difference of the phenomenological and natural subtraction
constants �a. If �a is small, the effective pole mass Meff

becomes large. In this case, the second term of Eq. (23) can be
neglected or gives smooth energy dependence in the resonance
energy region

√
s ∼ MT + m � Meff. If the difference �a is

large, the effective mass Meff gets closer to the threshold. In
this case, the pole contribution is no longer negligible. This
means that the use of a negative �a with large absolute value is
equivalent to the introduction of a pole in the chiral Lagrangian.
We therefore consider that the pole in the effective interaction
(21) is a source of the physical resonances in this case. It
was known that the higher order term could be a source of a
resonance in the full amplitude, because these terms behave as
the contracted resonance propagator in the s channel. Here we
point out a possible source of the resonance in the conventional
chiral unitary model, even if we use the leading order chiral
interaction.

At this stage, two renormalization schemes (16) and (17)
are interpreted as follows. In the phenomenological scheme
(16), the interaction kernel VWT does not include the CDD pole
contribution, while in the natural scheme (17) the loop function

025203-6



ORIGIN OF RESONANCES IN THE CHIRAL UNITARY . . . PHYSICAL REVIEW C 78, 025203 (2008)

G does not contain the CDD pole, as discussed in the previous
section. Therefore, when the physical amplitude contains the
CDD pole contribution, the effect is attributed to G(

√
s; apheno)

in the phenomenological scheme, while to Vnatural(
√

s) in the
natural scheme. Indeed, we have demonstrated that Vnatural(

√
s)

contains a resonance propagator. In the limit �a → 0, the
two schemes agree with each other, which corresponds to
the amplitude compatible with the meson-baryon picture of
resonances, as explained in Sec. III. Note also that in the
N/D method, the CDD pole contributions except for those at
infinity should be included in the interaction kernel V , since
the loop function G expresses the only contribution from the
unitarity cut. In this respect, the phenomenological scheme
has accommodated the CDD pole contribution in the loop
function. In contrast, the natural scheme has more similarity
to the formulation of the N/D method, as the CDD pole
contribution is explicitly seen in the interaction kernel.

It is worth noting that the energy dependence of the inter-
action VWT(

√
s) leads to the pole in the effective interaction,

since the effective pole mass Meff is obtained by solving the
equation

1 − A · VWT(
√

s) = 0, A = 2MT �a

16π2
.

Thus, for an energy-independent interaction V , no pole can
appear. Taking into account that the coupling should be a
derivative type in the nonlinear realization of chiral symmetry,
the mechanism can be applied to any unitarized model with
chiral interaction, such as σ and ρ mesons in the meson-meson
scattering.

The interaction kernel in the natural renormalization
scheme Vnatural(

√
s) can also be expressed by renormalizing

�a to an effective coupling strength f ′:

Vnatural(
√

s) ≡ − C

2(f ′)2
(
√

s − MT ), (24)

where the change of the coupling strength is then given by

(f ′)2 − f 2 = CMT �a

16π2
(
√

s − MT ).

In the region of s-channel scattering
√

s > MT for attractive
interaction C > 0, we find that positive �a increases f 2

(and the interaction becomes less attractive), and negative �a

decreases f 2 (more attractive). In this way, we can translate
the change of the subtraction constant into the change of the
strength of the interaction kernel. This is again consistent with
the argument in Refs. [42,43].

As we mentioned, G(
√

s) is monotonically decreasing for√
s � MT + m. Since the subtraction constant a appears with

a positive sign in G(
√

s), we find that positive (negative) �a

makes µm increase (decrease). In this respect, the renormaliza-
tion condition µm = MT adopted in Refs. [25,26] was the most
advantageous prescription to generating a bound state, with
the matching scale being in the s-channel scattering region
µm � MT [45–47].

V. GENERALIZATION TO THE COUPLED-CHANNEL
SCATTERING

The arguments given so far can be applied to the meson-
baryon scattering in the flavor-symmetric limit, where channel
couplings are absent. In practice, the physically interesting
system is not flavor symmetric; that is, the physical masses
for particles break the flavor symmetry. As a consequence,
we encounter a coupled-channel scattering problem in the
chiral unitary approach. The interaction and amplitude are
extended to matrix forms with channel indices Vij (

√
s) and

Tij (
√

s), and the scattering equation (2) is expressed as a matrix
equation. The loop function is given by a diagonal matrix
whose ith component is given by Gi(

√
s), with a different

threshold for each channel i. The generalization of the natural
renormalization scheme (13) or (14) to the coupled-channel
case is straightforward, once the differences of the thresholds
and the masses of the target hadron Mi are properly taken
into account. For an illustration of the following argument,
we show the plot of the mass of the target baryon Mi and
the threshold Mi + mi for S = −1 and I = 0 meson-baryon
scattering in Fig. 2.

A. Natural values for the subtraction constants
in coupled-channel scattering

We first note that the matching Tij (µm) = Vij (µm) in matrix
form can be achieved when the loop functions in all channels
are zero at a common scale µm:

Gi(µm) = 0. (25)

This equation can be achieved when the imaginary parts of all
the loop functions vanish, namely, below the lowest threshold:

µm � min{Mi + mi}. (26)

Recalling the discussion in Sec. III, Eq. (25) should be
imposed in the s-channel scattering region in order to satisfy
the consistency with the physical loop function (Sec. III A) and

18001600140012001000800
mass [MeV]

min{Mi} min{Mi+mi}

KN

πΣ

ηΛ

KΞ

FIG. 2. Masses of the target baryons Mi and threshold energies
Mi + mi of channel i for S = −1 and I = 0 meson-baryon scattering.
The dashed line on the left denotes the lowest mass of the target hadron
(min{Mi}), the mass of the nucleon; the dashed line on the right stands
for the lowest threshold energy of the π� (min{Mi + mi}).
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the matching of the full amplitude to the low-energy interaction
(Sec. III B). In the coupled-channel case, however, the meaning
of the “s-channel scattering region” is not clear, since masses of
target baryons Mi depend on their channel i. Here we propose
a way to fix the scale µm by

Gi(µm) = 0, µm = min{Mi}, (27)

in the s-channel regions for all the channels. We adopt
this condition for the natural renormalization scheme in the
coupled-channel scattering. The natural values for the sub-
traction constants anatural,i can be determined such that the loop
function satisfies the condition (27). With this condition, the
loop functions in all channels are negative for their s-channel
scattering region, and the full amplitude Tij (

√
s) reduces to

the tree level one at
√

s = min{Mi}. The scale µm = min{Mi}
lies in the u-channel region for channels with Mi > µm, but
the extrapolation is of the order of mass difference of the
particles, which is coming from the flavor-symmetry breaking
and therefore is not very large.

The condition (27) is one of the ways to achieve the natural
renormalization in the coupled-channel cases. In principle, we
have other options for µm that satisfy Eq. (25). For instance, in
Ref. [12], µm is taken to be the mass of the hadron of the same
strangeness as the scattering system, i.e., µm = m� for the
S = −1 and I = 0 channels. Here we put more weight on the
consistency with the physical loop function [G(µm) � 0] and
choose the lowest mass of the target hadrons with µm = mN .

B. Effective interaction in coupled-channel scattering

Once the experimental amplitudes are fitted by phenomeno-
logical models with apheno,i , we can interpret the origin of the
resonances in a manner similar to that in Sec. IV. The WT
term in the coupled-channel case is given by2

VWT,ij (
√

s) = − Cij

4f 2
[2

√
s − Mi − Mj ], (28)

with the coupling matrix Cij fixed by the SU(3) group structure
of the channels. The equation for the amplitude (15) should be
read as a matrix equation. Comparing the phenomenological
and natural schemes, the effective interaction in the natural
renormalization scheme is found to be

Vnatural(
√

s) = (
V −1

WT

(√
s) − A

)−1
, (29)

with a diagonal matrix

Aij = 2Mi�ai

16π2
δij , �ai = apheno,i − anatural,i .

Because Eq. (29) is a matrix equation, �ai in channel i affects
the interactions in all channels. To discuss the poles in the
effective interaction, we rewrite it as

Vnatural(
√

s) = VWT(
√

s)(1 − A · VWT(
√

s))−1

2Here we ignore the small factor
√

(Mi + Ei)(Mj + Ej )/(4MiMj )
for simplicity of the discussion of the poles. In the numerical analysis
in Sec. VI, we include this factor, although the quantitative effect is
small: deviation of pole positions of the scattering amplitude is less
than 1 MeV.

= VWT(
√

s)
1

det[1 − A · VWT(
√

s)]

× cof [1 − A · VWT(
√

s)],

where det X and cof X are the determinant and the cofactor
matrix of X. The poles in the effective interaction are then
obtained by

det[1 − A · VWT(
√

s)] = 0. (30)

As seen in Eq. (28), each component of VWT(
√

s) is given by
the linear function of

√
s, so Eq. (30) is an nth order algebraic

equation of
√

s for the n-channel problem. There are n roots
for Eq. (30), zi(i = 1, . . . , n) which correspond to poles in
the effective interaction. It is also possible to have a pair of
complex poles which are conjugate of each other. We interpret
the imaginary part of the pole as the width of the pole in the
effective interaction, although there is no information of the
threshold in the construction of the effective interaction. For
the number of channels smaller than 5, the pole positions of
the effective interaction can be obtained by analytically solving
Eq. (30).

In the coupled-channel case, around the energy region close
to a pole position zeff, the effective interaction can be expressed
as

Vnatural,ij (
√

s) ∼ gigj√
s − zeff

,

where gi is the coupling strength to channel i, which is a
complex number in general. We can extract gi from the residue
of the pole:

Rij = (
√

s − zeff)Vnatural,ij (
√

s)|√s=zeff

= gigj . (31)

When we know all the roots of Eq. (30), residues of the pole
zeff can be calculated analytically as

Rij = VWT,im(zeff)
(4f 2)n

2ndet[A · C]
n
l �=eff(zeff − zl)

× cof [1 − A · VWT(zeff)]mj .

As in the single-channel case, we define the deviation of
the interaction �Vij as

Vnatural,ij (
√

s) = VWT,ij (
√

s) + �Vij (
√

s), (32)

from which we can estimate the effect of �ai by �Vij (
√

s).

VI. NUMERICAL ANALYSIS

By now we have established the natural renormalization
scheme to interpret the origin of the poles found in the
phenomenological models. In this section, we apply our
method to physical meson-baryon scatterings in S = −1 and
I = 0 channel and S = 0 and I = 1/2 channel, where the
�(1405) and N (1535) resonances are generated, respectively.
We use the isospin averaged masses for mesons and baryons,
and f = 106.95 MeV. The coupling strength Cij can be
calculated by the general expression in Ref. [26], while the
explicit numbers can be found in Refs. [38,50]. For these
channels, the scattering observables such as cross sections and

025203-8



ORIGIN OF RESONANCES IN THE CHIRAL UNITARY . . . PHYSICAL REVIEW C 78, 025203 (2008)

TABLE I. Natural and phenomenological values [43] for the
subtraction constants with the regularization scale µ = Mi .

S = −1 K̄N π� η� K�

apheno, i −1.042 −0.7228 −1.107 −1.194
anatural, i −1.150 −0.6995 −1.212 −1.138

S = 0 πN ηN K� K�

apheno, i 1.509 −0.2920 1.454 −2.813
anatural, i −0.3976 −1.239 −1.143 −1.138

phase shifts are well reproduced by the WT term together with
the subtraction constants apheno, i [42,43], which are based on
the results in Refs. [38,50]. On the other hand, according to
Eq. (27), we obtain the natural values of the subtraction
constants anatural, i by setting G(MN ) = 0 for all channels.

Both apheno, i and anatural, i are shown in Table I. At first
glance, the phenomenological subtraction constants are similar
to the natural values for S = −1 channels, while they are
not so for S = 0 channels. This indicates that �(1405) has
a large component of a dynamically generated resonance
of a meson-baryon system, but N (1535) requires some
contribution supplied by the subtraction constants, in addition
to the dynamical meson-baryon component.

First of all, we show the pole positions for �(1405) and
N (1535) in the amplitudes obtained by the phenomenological
renormalization scheme. With the phenomenological subtrac-
tion constants apheno,i and the WT interaction VWT, we find
pole positions at

z�∗
1 = 1429 − 14i MeV, z�∗

2 = 1397 − 73i MeV, (33)

for the �(1405) in S = −1 scattering. Note that this resonance
is expressed by two poles [51], which stem from the attractive
forces in K̄N and π� channels [52]. In the S = 0 scattering
amplitude, a pole is found at

zN∗ = 1493 − 31i MeV, (34)

which corresponds to N (1535). These poles reproduce the
properties of �(1405) and N (1535) as well as the scattering

TABLE II. Coupling strengths gi of the pole in the effective
interaction of the S = 0 channel [Eq. (35)].

πN ηN K� K�

gi 3.42 + 3.18i −0.192 − 2.14i −3.92 − 4.15i 5.99 + 4.42i

|gi | 4.67 2.15 5.71 7.44

observables such as the total cross sections and the phase
shifts [42,43].

Next we evaluate the effective interaction in the natural
renormalization scheme based on Eq. (29), and extract the
deviation from the WT term as in Eq. (32). We plot the
diagonal components of the deviation �Vii(

√
s) in Fig. 3.

We observe that �Vii(
√

s) are small in the S = −1 channel
case, whereas the deviations are large in the S = 0 channel
in the relevant energy region of 1400 �

√
s � 1600 MeV.

Moreover, we observe a bump structure at around 1700 MeV
in the S = 0 channel [Fig. 3(c)]. The origin of this structure is
due to the poles found in the effective interaction at

zN∗
eff = 1693 ± 37i MeV. (35)

These poles may contribute to the structure of the generated
N (1535) in the full amplitude whose pole is found at a similar
energy as shown in Eq. (34). We also calculate the coupling
strength gi to each channel, which is obtained as the residue
of the pole in the effective interaction, as in Eq. (31). The
values of the couplings are summarized in Table II. We observe
that the pole strongly couples to the K� channel. As seen in
Table I, the difference of the subtraction constants in the
K� channel has a large negative value, �aK� = −1.67. This
indicates that the important ingredient for N (1535) to be added
to the WT interaction is in the K� channel.

We estimate the theoretical uncertainty of the pole location
in Eq. (35) for N (1535) within the coupled-channel natural
renormalization scheme. Although we have chosen Eq. (27)
as a condition for the natural renormalization, as we mentioned
above, we may choose another matching scale within the

0.03

0.02

0.01

0.00

-0.01

-0.02

∆V
 [

M
eV

-1
]

1800160014001200

s1/2 [MeV]

 ∆V11
 ∆V22
 ∆V33
 ∆V44

0.03

0.02

0.01

0.00

-0.01

-0.02

∆V
 [

M
eV

-1
]

1800160014001200

s1/2 [MeV]

 ∆V11
 ∆V22
 ∆V33
 ∆V44

4

3

2

1

0

∆V
 [

M
eV

-1
]

1800160014001200

s1/2 [MeV]

 ∆V11
 ∆V22
 ∆V33
 ∆V44

(a) (b) (c)

FIG. 3. (Color online) Deviations of the effective interactions from the Weinberg-Tomozawa term �Vii(
√

s) defined in Eq. (32), (a) S =
−1 channels, (b) enlargement of panel (c), (c) S = 0 channels. The channels 1–4 correspond to K̄N, π�, η�, and K� for S = −1 channels,
and to πN, ηN, K�, and K� for S = 0 channels, respectively.
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region

Gi(µm) = 0, min{Mi} � µm � min{Mi + mi}, (36)

in which, except for the original condition µm = min{Mi},
loop functions in some channels become positive at

√
s > Mi

with the order of the flavor-symmetry breaking. Depending
on the choice of the natural renormalization condition, the
values of anatural change slightly. As a consequence, the pole
positions, which are the solutions of Eq. (30), depend on anatural

through the matrix Aij . Varying the matching scale between
the upper and lower values of Eq. (36), we find the pole of the
effective interaction in the region from zN∗

eff = 1693 ± 37i to
zN∗

eff = 1673 ± 146i MeV. The pole in the effective interaction
can be interpreted as a “bare state,” which will be dressed by
the meson-baryon cloud through the unitarization procedure.
It is therefore expected that the pole in the physical amplitude
of Eq. (34) evolves from one of the bare poles found
here.

In general, the effective interaction contains n poles, since
Eq. (30) has n roots. The relevant point is the energy scale of
the pole position. If poles appear in the energy region of our
interest, as in the case of N (1535), the effect of the pole on
the phenomenology is significant. On the other hand, if poles
are located away from the physically resonant region, these
poles are irrelevant to the physical observables. In this respect,
it is instructive to evaluate the pole of the effective interaction
for �(1405). Calculating Eq. (30) for the S = −1 channel, we
find a pole with almost no imaginary part,

z�∗
eff ∼ 7.9 GeV.

This is far from the relevant energy scale; therefore, the
pole plays essentially no role for the �(1405) physics of our
interest. Even if the poles in the physical amplitude of Eq. (33)
originates in this bare pole, a substantial effect from the meson-
baryon dynamics would be required. Therefore �(1405) is
largely dominated by the component of the dynamical meson
and baryon.

We also investigate the pole positions with the natural
renormalization with the WT interaction to see effects of the
dynamical component on the resonance. When we choose the
natural values anatural,i , we find

z�∗
1 = 1417 − 19i MeV, z�∗

2 = 1402 − 72i MeV,

for �(1405), and

zN∗ = 1582 − 61i MeV, (37)

for N (1535).3 We plot the pole positions in Fig. 4. The
poles for �(1405) are very similar to those obtained by the

3In Ref. [13], they used the WT term with natural values of the
subtraction constants and found a pole at a position similar to that
in Eq. (34). We confirm their result with f = 90 MeV; however, the
amplitude is not fitted to the scattering data. If we adopt the original
model in Ref. [38], namely, by choosing the channel-dependent fi ,
the pole position of the phenomenological model becomes zN∗ =
1533 − 37i MeV, which is closer to the result with the natural scheme
[Eq. (37)], but not in as good agreement as in the case of the S =
−1 channel.
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FIG. 4. (Color online) Pole positions of the meson-baryon scat-
tering amplitudes. The triangles stand for the pole positions with
the phenomenological amplitude; crosses denote the pole positions
in the natural renormalization with the WT interaction. z�∗

1 and z�∗
2

are the poles for �(1405) in the S = −1 scattering amplitude, and
zN∗

is the pole for N (1535) in the S = 0 amplitude.

phenomenological subtraction constants. This again indicates
the dominance of the meson-baryon component in �(1405).
On the other hand, the pole for N (1535) moves to the higher
energy when we use the natural values. Since a sizable
attractive interaction exists, a pole can be generated in S = 0
scattering, although the amplitude is not in good agreement
with experimental data, as indicated by the difference of
the pole positions. For the theoretical ambiguity of the pole
position of Eq. (37) in the natural renormalization, Eq. (36)
leads to the pole position of the amplitude as

zN∗ ∼ (1582–1602) ± (61–65)i MeV. (38)

These results in different natural schemes are still far from
the value in Eq. (34), with which the amplitude successfully
reproduces experimental data.

Study of the coupling properties of the pole for N (1535) is
instructive to further understand the origin of the resonance.
In Table III, we show the coupling strengths of the N (1535)
pole in the phenomenological amplitude of Eq. (34). In
Ref. [37], the pole in the physical amplitude exhibited a
similar coupling tendency with the pole in the effective
interaction. Based on this observation, Ref. [37] concluded
that the CDD pole contribution dominates in the physical
state. In the present case, comparing Table III with that
in the effective interaction (Table II), we find that this is
not the case for N (1535) in the present model. On the
other hand, the coupling property of the phenomenological
N (1535) is more similar to that of the pole in the amplitude
by the WT term with the natural renormalization scheme
[Eq. (37)] shown in Table IV. Since the latter is attributed
to the meson-baryon dynamical component of the resonance,
the analysis of the coupling strengths indicates the importance
of the meson-baryon component in N (1535) in addition to the
CDD pole contribution.

In summary for the numerical analysis, we have studied
the origin of �(1405) and N (1535) based on the natural
renormalization scheme and phenomenological amplitude of
the meson-baryon scattering. The S = −1 scattering and
�(1405) are well reproduced by the natural renormalization
with the WT term, indicating that the �(1405) resonance is
a (mostly) pure dynamical resonance. In contrast, the S = 0
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TABLE III. Coupling strengths gi of the pole in the phenomenological amplitude
of S = 0 channel [Eq. (34)].

πN ηN K� K�

gi 0.911 + 0.256i 1.60 − 0.374i −1.40 − 0.393i 2.92 − 0.451i

|gi | 0.949 1.64 1.45 2.96

scattering and the N (1535) resonance is not reproduced by the
WT term only, and the translation of the phenomenological
subtraction constants into the low-energy effective interaction
requires a pole term of which the mass is around 1700 MeV
in addition to the WT interaction. At the same time, the
dynamical component is also important for the structure of
N (1535), since the attractive interaction of the WT term
is strong enough to generate a resonance in the natural
renormalization, and the coupling property of N (1535) is
closer to the dynamical resonance. Therefore, we interpret
N (1535) as mixture of a pole singularity of genuine state with
the dynamical component.

VII. DISCUSSION

The results of the present analysis can be argued in various
theoretical perspectives. There are several discussions about
the structure of the baryon resonances: three-quark versus five-
quark, or hadronic molecule versus quark originated structure.
In principle, all these structures eventually stem from QCD
dynamics and mix with each other. Nevertheless, it helps our
physical understanding to extract several components out of
a resonance state and inspect the dominant contribution to
the resonance. For instance, the �(1405) resonance can be
schematically decomposed as [53]

|�(1405)〉 = NMB |B〉|M〉 + · · ·
+N3|qqq〉 + N5|qqqqq̄〉 + · · · , (39)

where |B〉|M〉 is the dynamical meson-baryon component in
the scattering theory of hadrons [54,55]; and the rest, which
corresponds to the CDD pole and is not represented by the
meson-baryon state, is expanded by the number of quarks.

According to the decomposition (39), the present analysis
for �(1405) unveils a large weight of the NMB . Probably, the
best way to disentangle the dynamical component from the
CDD pole contribution is the model-independent determina-
tion proposed in Ref. [56]. Unfortunately, the applicability of
this method is limited, and it seems to be difficult to deal with
the resonances considered in this paper [57]. Therefore, our
analysis, though studied in a specific model, can be regarded as
an alternative approach to this subject with larger applicability.

Another powerful method for clarifying the internal struc-
ture of the resonances is the use of the number of colors (Nc).
It is well known that the only q̄q meson survives in the large
Nc limit. The property of the meson resonances in the large Nc

limit was studied in a dynamical approach [29]. It was found
that the ρ meson survives in the large Nc limit while the σ

disappears, indicating the q̄q nature of the former resonance. A
systematic study of the Nc scaling of the resonance parameters
around Nc = 3 was performed in Ref. [36], leading to the same
conclusion for the properties of the mesonic resonances. In the
context of the baryon resonance, the scaling behavior of the
qqq baryon with Nc is known from the general argument,
so it is possible to investigate whether the N3 component
dominates. The method of Nc scaling has been applied to
�(1405) in Ref. [58], where the Nc behavior of both poles for
�(1405) given in Eq. (33) indicates their non-qqq structure.
Concerning �(1405), the present result (NMB dominates)
and the result in Ref. [58] (N3 � 1) consistently imply that
the �(1405) resonance is dominated by the meson-baryon
molecular component.

As for N (1535), we have found substantial contributions
other than those from NMB . There is an interesting possi-
bility of the origin of this CDD pole contribution: a chiral
partner of the ground state nucleon. The chiral partner is
a parity pair of the particles which transform each other
under the linear realization of the chiral transformation and
become degenerate when chiral symmetry is restored. Familiar
candidates are (ρ, a1) and (σ, π ) in the meson sector. Since
N (1535) is the lowest negative-parity state having the same
quantum number as the ground state nucleon, it is a candidate
for the chiral partner of the nucleon [59–63]. In the linear
realization of chiral symmetry, the chiral partner is introduced
as an explicit field in the chiral symmetric Lagrangian. Such
an explicit field is expressed as a CDD pole in the chiral
unitary approach. Therefore, the CDD pole found here could
be interpreted as the chiral partner of the nucleon.

On the other hand, as indicated by the coupling-strength
analysis, the strong meson-baryon interaction in the S = 0
channel also provides a sizable meson-baryon component
on top of the quark-originated N (1535). In Ref. [64], elec-
trotransition form factors of N (1535), namely, the helicity

TABLE IV. Coupling strengths gi of the pole in the natural renormalization of
S = 0 channel [Eq. (37)].

πN ηN K� K�

gi 0.126 + 0.330i −1.99 − 0.700i −1.63 + 0.508i −2.90 + 0.359i

|gi | 0.353 2.11 1.71 2.93
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amplitudes A1/2 and S1/2, have been discussed in the meson-
baryon picture. There N (1535) is expressed by the chiral
unitary approach with the phenomenological renormalization
scheme and the transition γ ∗N → N (1535) was computed
by considering the photon coupling only to the constituent
meson and baryon in N (1535). Then helicity amplitudes were
fairly reproduced, and the ratio An

1/2/A
p

1/2 agreed well with
experimental data. The success of this calculation without the
photon coupling to the possibly quark-originated pole term
in the effective interaction implies that the meson-baryon
components of N (1535) are essential for the structure of
N (1535) proved by low-energy virtual photon.

It is instructive to recall the study of exotic hadrons
in the chiral unitary approach [25,26] where the natural
renormalization scheme was adopted. It turned out that the
attractive interaction of the WT term in exotic channels is not
strong enough to generate a bound state in the SU(3) limit. As
emphasized in the present paper, the natural renormalization
scheme, together with the WT term as the interaction kernel,
excludes the CDD pole contribution in the scattering ampli-
tude. Thus, the conclusion of Refs. [25,26] is the absence of
the s-wave exotic hadrons which are dynamically generated
by a meson and baryon without the CDD pole contribution.

VIII. CONCLUSIONS

We have performed a detailed study of the formulation of
the chiral unitary approach in order to understand the origin of
baryon resonances. We point out that a certain choice for the
subtraction constants in the dimensional regularization leads
to the positive value of the loop function below threshold.
Avoiding this and matching the amplitude with the low-energy
interaction, we construct the “natural renormalization” scheme
for the loop function in which the CDD pole contribution is
excluded. We emphasize again that this scheme is not always
applied to the physical scattering system. But rather our aim
is to study the structure of the interaction kernel, using the
natural renormalization scheme as a starting point.

We then consider the physical meson-baryon scattering
with experimental data. We compare the natural renormal-
ization scheme with the phenomenological scheme in which
the subtraction constants are fitted to the experimental data
keeping the interaction kernel unchanged. From the viewpoint

of the renormalization, we show that the same amplitude can
be expressed by the natural renormalization scheme with an
effective interaction kernel which exhibits a propagator of an
elementary particle. This means the necessity of a seed of the
resonance in the kernel interaction when the subtraction con-
stant differs from the natural value. This is another mechanism
of the CDD pole contribution even if the kernel interaction
does not include the contracted resonance propagator in the
low-energy constant. Although both renormalization schemes
achieve the same scattering amplitude, the natural scheme is
suitable for decomposing the singularity of the amplitude along
the same line as the N/D method.

We analyze the S = −1 and S = 0 meson-baryon scat-
terings in which the �(1405) and N (1535) resonances are
dynamically generated. Utilizing the phenomenological fit-
ting, we show that �(1405) can be generated in the natural
renormalization scheme with the Weinberg-Tomozawa term,
while N (1535) requires substantial correction in addition to the
leading order chiral interaction, especially a pole singularity
at around 1700 MeV. These facts indicate that �(1405) can
be regarded almost purely as a dynamical state of the meson-
baryon scattering, while N (1535) may have an appreciable
component originated from quark dynamics, together with the
dynamical component as indicated by the coupling properties.

Our analysis can be applied to any system described
by the chiral unitary approach. We have also emphasized
the importance of the phenomenological fitting to the data,
otherwise we cannot extract the correct low-energy structure
which is necessary to interpret the origin of the resonance.
Hence, precise determination of the meson-hadron scattering
data will enable us to further study the properties of hadron
resonances.
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