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We discuss the open charm production in the peripheral reactions p̄p → ȲcYc and p̄p → McM̄c, where Yc

and Mc stand for �+
c , �+

c and D,D∗, respectively, at
√

s <∼ 15 GeV, which corresponds to the energy range of
FAIR. Our consideration is based on the topological decomposition of the planar quark and diquark diagrams,
which allows us to estimate consistently meson and baryon exchange trajectories and energy scale parameters
as well. The spin dependance is determined by the effective interaction of the lowest exchanged resonance.
Unknown parameters are fixed by an independent analysis of open strangeness production in p̄p → Ȳ Y and
p̄p → K̄K reactions and of SU(4) symmetry. We present the corresponding cross sections and longitudinal
double-spin asymmetries for exclusive binary reactions with open charm mesons and baryons in the final state.
The polarization observables have a nontrivial t and s dependence that is sensitive to details of the open charm
production mechanism.
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I. INTRODUCTION

Open charm production will be one of the major topics
of the hadron and heavy-ion program at FAIR [1]. Charm
spectroscopy will be addressed by the PANDA Collaboration
[2], and the CBM Xollaboration [3] will exploit charmed
particles as probes of the nuclear medium at maximum
compression. For both large-scale experiments at FAIR one
needs to know the properties of charmed baryons and mesons
as well as their production processes in elementary pp and p̄p

reactions. For this the opportunities at FAIR are promising, as,
for instance, the PAX Collaboration [4] envisages the use a
polarized antiproton beam. This offers the chance to study
in depth the mechanism of open charm production at the
moderate energies from threshold to

√
s <∼ 15 GeV. In this

energy range the phenomenology of charm production is not
well established. In present paper we select one important
problem of this wide field, namely, the analysis of exclusive
binary reactions p̄p → ȲcYc, p̄p → DD̄, p̄p → DD̄∗, etc.
in peripheral collisions in the mentioned energy range.

Since the initial energy is not asymptotically high, the
widely used models for the heavy-quark production based on
perturbative QCD (see, e.g., Refs. [5–7]) are not applicable,
and an essential improvement by including high-order correc-
tions is needed [8,9]. Another severe problem is related to the
dynamics of charm productions. In the popular QCD models,
the c quark is produced through gluon fragmentation. For c

production in peripheral collisions such a gluon must have
a large momentum (large x ∼ 1), that is, much larger than
its average value in a nucleon (x <∼ 0.2), and therefore this
mechanism is strongly suppressed.

It is expected that the mechanisms of peripheral charm pro-
duction in p̄p → DD̄ and p̄p → ȲcYc reactions are similar
to the strangeness production in p̄p → K̄K and p̄p → Ȳ Y

reactions, respectively, which were described successfully in
terms of Regge pole models [10–13] with certain baryon
and vector meson exchange trajectories. However, a direct

extrapolation of such models to the charm production faces
a problem. First, the linear Regge trajectories leads to large
negative values of the corresponding intercepts α�c

(0) ∼ −4.5
and αD∗ (0) ∼ −2. This would result in a suppression of the
charm production in peripheral reactions, which contradicts
the corresponding data on inclusive charm production. This
means, in turn, that the trajectories connected to masses and
spins of the charmed hadrons must be essentially nonlinear
(cf. Refs. [14,15]). Another problem is the estimate of the
energy scale parameter in the Regge pole propagator, which
also strongly affects the cross sections.

Therefore, using a model based essentially on a nonpertur-
bative QCD background would seem to be reliable for describ-
ing the peripheral reactions. Such an approach was developed
in Refs. [16–18] and applied for the evaluation of cross sections
of the exclusive �c production in πp and pp collisions. The
binary π−p → D−�c exclusive process plays an important
role in this consideration [17]. The model for this reaction is
based on quark-gluon string dynamics, under the assumption
of the annihilation of a qq̄ pair in the interaction and the forma-
tion of a qq̄ color tube with subsequent decay to the observed
hadrons (see also Refs. [19,20]). Schematically, the process
π−p → D−�c is described by the planar diagram shown
in Fig. 1(a). A more general case is exhibited in Fig. 1(b).
The assumption of the formation and decay of color-gluon
strings allows us to construct the space-time evolution of the
process and to obtain the factorization condition, where the
imaginary part of the amplitude of the process ab → cd is
expressed via a product of the probabilities wab and wcd of the
elastic scattering of ab → ab and cd → cd, respectively. This
gives a consistent prescription for evaluating the parameters
of the amplitude (trajectories and energy scale parameters) of
the nondiagonal transition ab → cd.

The aim of the present paper is to extend the results of
Refs. [16–18] for exclusive charm production in p̄p collisions.
In our consideration we analyze simultaneously the open

0556-2813/2008/78(2)/025201(12) 025201-1 ©2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.78.025201
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FIG. 1. Diagrammatic representation of the planar diagram for
the reaction π−p → D−�c (a) and for the more general case (b).

charm and open strangeness production. We are going to
consider the reactions p̄p → �̄� and p̄p → �̄c�c, p̄p →
K̄K, and p̄p → DD̄, etc. The strangeness production is
of interest in its own right, but some available (although
relatively old) experimental data allow us to fix the unknown
parameters of the model and get absolute values of the cross
sections of the open charm production. We also analyze the
double longitudinal asymmetry, which will be accessible in the
FAIR PAX experiment with the polarized antiproton beam.
The spin dependence of the amplitudes is generated by the
symmetry of the PNY and V NY interactions (P = K,D and
V = K∗,D∗, . . .), which was widely used in various studies
(see, e.g., Refs. [21,22]).

For completeness, we mention that some aspects of the
inclusive charm production in terms of the quark-gluon string
model were discussed in Refs. [23,24], polarization effects
in open charm photoproduction were considered in Ref. [25],
propagation of charmed hadrons in the nuclear medium were
analyzed in Refs. [26–28], and open charm production in
relativistic nucleus-nucleus collisions over a wide energy
region was analyzed in Ref. [29].

Our paper is organized as follows. In Sec. II we analyze
the strangeness production in the reactions p̄p → �̄�, p̄p →
�̄�0, and p̄p → �̄0�0, and the open charm production in
p̄p → �̄+

c �+
c , p̄p → �̄+

c �+
c , and p̄p → �̄+

c �+
c processes,

where the dominant contribution comes from the K∗ and D∗
exchange trajectories, respectively. First, we note equations for
the invariant amplitudes and then discuss our results for the
differential cross sections and the longitudinal asymmetry. In
Sec. III we provide a similar analysis for the p̄p → K̄K and
p̄p → DD̄ reactions, assuming the dominance of strange and
charmed baryon exchange trajectories. The reactions p̄p →
K̄K∗ and p̄p → DD̄∗ are discussed in Sec. IV. The summary
is given in Sec. V.

II. REACTIONS p̄ p → ȲY AND p̄ p → ȲcY ′
c

In this section, we discuss strange and charmed baryon-
antibaryon production in peripheral p̄p collisions. For the sake
of simplicity, we consider the exclusive production of �̄� and
�̄c�c pairs. The generalization for reactions with �̄�, �̄�,
and �̄� final states may be done in a straightforward manner.

The corresponding planar diagrams for �̄� and �̄c�c are
depicted in Figs. 2(a) and 2(b).

A. Reaction p̄ p → �̄�

Following Ref. [17] we assume that the amplitude of the
reaction p̄p → �̄� has the form of a Regge pole amplitude,
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FIG. 2. Planar diagram for the reactions p̄ → �� (a) and p̄ →
�c�c (b).

dominated by the K∗ exchange trajectory:

T p̄p→�̄�
mf nf ;mi,ni

= C(t)Mp̄p→�̄�
mf nf ;mi,ni

(s, t)
g2

K∗N�

s0

×�[1 − αs̄q(t)]

(
− s

sp̄p:�̄�

)αs̄q (t)−1

, (1)

where mi,mf , ni , and nf are the spin projections of p, �, p̄,
and �̄, respectively, q stands for u and d quarks, αs̄q(t) is the
K∗+ trajectory, g2

K∗N� is the coupling constant of the K∗N�

interaction, and s0 = 1 GeV is an universal scale parameter.
The spin dependence is accumulated in the amplitude M,

which is a smooth function of the Mandelstam variables s and
t . In the limit of s → ∞ one has M ∝ s. The explicit form of
M will be defined later on. The overall residual function C(t)
will be found from a comparison with available experimental
data.

In our consideration we use the nonlinear representation for
the meson trajectories developed in Ref. [15],

α(t) = α(0) + γ (
√

T − √
T − t), (2)

where γ = 3.65 GeV−1 is the universal parameter (a universal
slope in the asymptotic region) and T � 1 GeV2 is the scale
parameter, being special for each trajectory. In the diffractive
region with −t � T , the linear approximation

α(t) = α(0) + α′t (3)

is valid with α′ = γ /2
√

T .
The intercept αs̄q(0) and the slope α′

s̄q of the trajectory for
the nondiagonal transition are related to the corresponding
parameters for diagonal transitions as follows [15,16]:

2αs̄q(0) = αq̄q(0) + αs̄s(0), (4)

2/α′
s̄q = 1/α′

q̄q + 1/α′
s̄s , (5)

where αq̄q(t) and αs̄s(t) are the ρ and φ meson trajectories,
respectively.

In our numerical calculations we employ

αρ(0) = 0.55,
√

Tρ = 2.46 GeV, α′
ρ 
 0.742 GeV−2,

αK∗ (0) = 0.414,
√

TK∗ = 2.58 GeV, α′
K∗ 
 0.71 GeV−2,

αφ(0) = 0.28,
√

Tφ 
 2.70 GeV, α′
φ 
 0.676 GeV−2,

(6)

where the ρ and K∗ trajectories are taken as input according
to Ref. [15].

The energy scale parameter sp̄p:�̄� in Eq. (1) is related to
the corresponding scale parameters for the diagonal transitions
p̄p → p̄p, (sp̄p ) and �̄� → �̄�, (s�̄�) as

(sp̄p:�̄�)2(αK∗ (0)−1) = (sp̄p)αρ (0)−1 × (s�̄�)αφ (0)−1. (7)
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The scale parameter for the diagonal transition sab is deter-
mined by the sum of the transversal masses of the constituent
quarks [17],

sab =
(

na∑
i

Mi⊥

) 
 nb∑

j

Mj ⊥


 , (8)

with Mq⊥ 
 0.5 GeV, Ms⊥ 
 0.6 GeV, and Mc⊥ 
 1.6 GeV.
This leads to the following values for the scale factors: sp̄p 

2.25 GeV2, s�̄� 
 2.56 GeV2, and sp̄p:�̄� 
 2.43 GeV2.

We assume that the spin dependence of the amplitude in
Eq. (1) is determined by the symmetry of the N�K∗ inter-
action given by the effective Lagrangian in the conventional
form

LK∗NY = −Ȳ

(
γµ − κK∗NY

MN + MY

σµν

)
N∂νK∗µ + h.c., (9)

where N, Y, and K∗ denote the nucleon, hyperon, and the
K∗ meson fields, respectively, Y stands for �,�, etc., and κ

is the tensor coupling strength, and h.c. stands for hermition
conjugate.

Using this form, one can get the amplitude M in Eq. (1) as

Mp̄p→�̄�
mf nf ;minf

(s, t) = N (s, t) �(p) µ
mf mi

�(p̄) ν
nf ni

(
−gµν + qµqν

q2

)
,

(10)

where q’s are momentum transfers in the p�K∗ vertex: q =
pp − p�, with pp and p� as four-momenta of the incoming
proton and outgoing �. The functions �(p,p̄) read

�(p)
µ = ū�

[
(1 + κK∗N�)γµ − κK∗N�

(pp + p�)µ
MN + M�

]
up,

(11)

�(p̄)
µ = v̄p̄

[
(1 + κK∗N�)γµ + κK∗N�

(pp̄ + p�̄)µ
MN + M�

]
v�̄.

The normalization factor N (s, t) eliminates the additional s

and t dependence provided by the Dirac structure in Eq. (10),
which is beyond the Regge parametrization:

N (s, t) = F∞(s)

F (s, t)
, F∞(s) = 2s,

F 2(s, t) = Tr(�(p) µ�(p) µ′ †
)Tr(�(p̄) ν�(p̄) ν ′ †

)

×
(

gµν − qµqν

q2

)(
gµ′ν ′ − qµ′qν ′

q2

)
. (12)

For the NYK∗ coupling constants we use the average values
of the Nijmegen potential [30]: gK∗NY = −5.18, κK∗NY =
2.79 for Y = � and (−3.29,−0.91) for Y = �0.

The cross section is related to the invariant amplitude of
Eq. (1) as

dσ

dt
= 1

16π
(
s − 4M2

N

)2 |Tf i |2, (13)

where summing and averaging over the spin projection in
initial and the final state is provided. We will also discuss
the longitudinal double spin asymmetry, defined as

A = dσ� − dσ⇒

dσ� + dσ⇒ , (14)

where the symbols � and ⇒ correspond to the antiparallel and
parallel spin projections of incoming p and p̄ with respect to
the quantization axis chosen along the proton momentum in
the center-of-mass system (c.m.s.).

The generalization for the reactions p̄p → �̄�, p̄p →
�̄�, and p̄p → �̄� is accomplished by the substitu-
tions M� → M�, gK∗N� → gK∗N�, and κK∗N� → κK∗N� in
Eqs. (1) and (11).

B. Reaction p̄ p → �̄c�c

In this case, the amplitude is defined by Eq. (1) with the ob-
vious substitutions � → �+

c ≡ �c,�
0 → �+

c ≡ �c,K
∗ →

D̄∗, αφ → αJ/ψ , etc. As a first approximation, we assume
the validity of SU(4) symmetry and, therefore, the coupling
constants of the D∗NYc interaction are chosen to be the
same as for the case of K∗NY interaction. The corresponding
trajectory and the energy scale parameters read

αD∗ (0) = −1.02,
√

TD∗ = 3.91 GeV,

α′
D∗ 
 0.467 GeV−2, αJ/ψ (0) = −2.60,

(15)√
TJ/ψ 
 5.36 GeV, α′

J/ψ 
 0.34 GeV−2,

sp̄p:�̄c�c

 5.98 GeV2.

C. Results

1. Differential cross sections

Consider first the strange hyperon production p̄p → Ȳ Y,

which we use to fix the residual factor C(t) in Eq. (1). In
Fig. 3 we show the differential cross section of the reaction
p̄p → �̄� and p̄p → �̄�0 as a function of the momen-
tum transfer t = (pp − pY )2 at the initial momentum pL =
6 GeV/c together with the available experimental data [31].
The overall residual factor

C(t) = 0.37

(1 − t/1.15)2
(16)
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2
)

10
0

10
1

10
2

10
3

dσ
/d

t (
µb

/G
eV

2 )

pL=6 GeV/c

ΛΛ
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→ 

FIG. 3. Differential cross section of the reactions p̄p → �̄ (solid
curve) and p̄p → �̄�0 (dashed curve) as a function of the momentum
transfer t at pL = 6 GeV. The experimental data are taken from
Ref. [31].
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FIG. 4. Left panel: The differential cross
sections of the reactions p̄p → �̄� (solid curve),
p̄p → �̄�0 (dashed curve), and p̄p → �̄0�0

(dot-dashed curve) as a function of tmax − t at
pL = 10 GeV/c. Right panel: The differential
cross section as a function of the excess energy
�s1/2 at tmax − t = 0.2 GeV2.

provides a reasonable agreement of the calculation and the
data.

In Fig. 4 (left panel) we exhibit our prediction for the
differential cross sections of the reactions p̄p → �̄�, p̄p →
�̄�0 (�̄0�), and p̄p → �̄0�0 as a function of tmax − t at
initial momentum pL = 10 GeV/c. Here, tmax is the maximum
momentum transfer, which corresponds to � production at
zero angle relative to the momentum of the incoming proton
in the c.m.s.

The exponential decrease of the cross section is defined
by the Regge propagator (s/si)2αK∗ (t) and the residual C(t).
The dependence on the excess energy �s1/2 ≡ √

s − √
s0,

where
√

s0 = MY ′ + MȲ , is shown in Fig. 4 (right panel).
The calculation is done at fixed tmax − t = 0.2 GeV2. At high
energies, the cross section behaves as s2(αK∗ −1) 
 s−1.172. The
ratio of the cross sections with �̄�, �̄�0, and �̄0�0 final
states at high energy reads

1 : r : r2, (17)

where r = (gK∗N�/gK∗N�)−2 
 0.4.
The predicted differential cross sections of the charm

hyperon production are exhibited in Fig. 5. Here, we use the
notation �c ≡ �+

c and �c ≡ �+
c . The left panel shows the

dependence on tmax − t at fixed pL = 15 GeV/c. The right
panel exhibits the dependence on the energy excess �s1/2

at fixed tmax − t = 0.2 GeV2. The threshold initial momenta
(for a fixed target) for reactions with �̄c�c, �̄c�c, and �̄c�c

final states are 10.15, 11.83, and 10.85 (GeV/c), respectively.
The energy excesses at pL = 15 GeV/c for these final states

are 0.90, 0.571, and 0.570 GeV, respectively. This energy is
not asymptotically high and some particular behavior of the
cross sections in the preasymptotic region is expected. Thus, in
Fig. 5 (right panel) one can see a bumplike behavior at low �s,
which reflects the energy dependence of tmax in this region.

2. Longitudinal asymmetries

For a better understanding of the results of our numerical
calculation, it seems to be useful to perform a qualitative
analysis of the longitudinal asymmetry at forward production
angle (or t = tmax), where the orbital interaction is absent. In
this case, the amplitude of the p̄p → Ȳ Y reaction may be
written as

Tmf nf ;mi,ni
∼ R(s)

(
A(s) δmimf

δninf

+ 1√
2
B(s) (1 − 4mimf ) δ−mimf

δ−ninf

)
, (18)

where R(s) is a spin-independent function and mi,mf , ni, and
nf stand for the spin projections of p, Y, p̄, and Ȳ , respectively,
The longitudinal asymmetry is expressed through the spin-
conserving [A(s)] and spin-flip [B(s)] amplitudes as

A = B2(s)

A2(s) + B2(s)
. (19)
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FIG. 5. Left panel: The differential cross
sections of the reactions p̄p → �̄c�c (solid
curve), p̄p → �̄c�c (dashed curve), and p̄p →
�̄c�c (dot-dashed curve) as a function of tmax − t

at pL = 15 GeV/c. Right panel: The differential
cross section as a function of the excess energy
�s1/2 at tmax − t = 0.2 GeV2.
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FIG. 6. The quantities A2 (spin-conserving
amplitudes; solid curves) and B2 (spin-flip am-
plitudes; dashed curves) as a function of the
excess energy �s1/2 with t = tmax at different
values of the tensor coupling κ . The left and right
panels correspond to the reactions p̄p → �̄�

and p̄p → �̄c�c, respectively.

The spin-conserving amplitude is determined by the two
functions a0(s) and aκ (s):

A(s) = [a0(s) + aκ (s)]2,

a0(s) = 1 + pppY

(E + MN )(E + MY )
,

aκ (s) = κ a0(s) − 2κE

MN + MY

(
1 − pppY

(E + MN )(E + MY )

)
,

(20)

where κ is again the tensor coupling strength, pp and pY

denote the three-momenta of the proton and the outgoing
hyperon, respectively, and E = √

s/2 is the proton energy in
the c.m.s. In the case when Mp 
 MY or/and at high energies,
when

√
s � MY , aκ → 0 and the spin-conserving amplitude

becomes independent of κ .
In contrast, the spin-flip amplitude is proportional to the

square of the magnetic strength (1 + κ)2:

B(s) = −
√

2

[
(1 + κ)

(
pp

E + MN

− pY

E + MY

)]2

. (21)

At high energies with E � MY and pp 
 pY , B(s) → 0 and,
therefore, the asymmetry in Eq. (19) vanishes. However, at
finite energies and large values of (1 + κ), the amplitudes A(s)
and B(s) are comparable, and the longitudinal asymmetry may
be finite and large. The energy dependence of A2(s) and B2(s)
for the reactions p̄p → �̄� and p̄p → �̄c�c is shown in
Fig. 6. In the �̄� final state, the function B2(s) is rather
small owing to the small difference between MN and M�. The
dependence of A2(s) on the tensor coupling κ is rather weak.

This leads to the small value of the longitudinal asymmetry
for the p̄p → �̄� reaction.

In case of the p̄p → �̄c�c reaction, the situation is quite
different. The large difference between MN and M�c

leads to a
large value of B2(s), shown in Fig. 6 (right panel), and results
in a large value of the longitudinal asymmetry.

For the p̄p → �̄� (�̄�) reactions the spin-flip amplitude
|B(s)| is small because of the small magnetic strength, 1 + κ 

0.09, and the asymmetry is almost zero.

Our predictions for the p̄p → Ȳ Y reaction are shown
in Fig. 7. The left panel exhibits the t dependence at the
initial momentum pL = 10 GeV/c. The right panel shows the
dependence on the energy excess at tmax − t = 0.2 GeV2. One
can see that the result of the numerical calculations agrees
with our qualitative consideration. Thus, for p̄p → �̄�,
the asymmetry does not exceed 0.2 at forward angles and
decreases with energy. In the p̄p → �̄� and �̄� reactions it
is almost zero.

The longitudinal asymmetry for the p̄p → ȲcYc reactions
is presented in Fig. 8. In the case of the p̄p → �̄c�c reaction,
the asymmetry is large at low energy excess and decreases
rapidly with energy. In the reactions p̄p → �̄c�c and �̄c�c

the asymmetry is negligibly small.

III. REACTION p̄ p → M̄ M

In this section, we discuss the production of M̄M (with
M̄M being K̄K or DD̄) in p̄p collisions. We assume that
at small momentum transfer −t , where t = (pp − pK )2 or
t = (pp − pD̄)2, the dominant contribution comes from the
baryon exchange channels.
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FIG. 7. Left panel: The longitudinal asymmetry
for the reactions p̄p → �̄�, �̄�0, and �̄0�0 as a
function of momentum transfer t at pL = 10 GeV.
Right panel: The asymmetry as a function of the
excess energy at tmax − t = 0.2 GeV2.
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function of momentum transfer t at pL = 10 GeV.
Right panel: The asymmetry as a function of the
excess energy at tmax − t = 0.2 GeV2.

As an example, in Figs. 9(a) and 9(b) we show the planar
diagrams for p̄p → K−K+ and p̄p → D0D̄0, with � and
�+

c exchange, respectively. The cases of �(�+
c ) exchange,

or �+(�++
c ) exchange for the K̄K(D+D−) final state, are

similar. Here and further on we employ the quark-diquark
identity, used in many phenomenological approaches to QCD
[14,32,33]. This means that the exchanged baryon is consid-
ered as a quark-diquark string object, shown schematically in
Fig. 9(c).

A. Reaction p̄ p → K̄ K

Let us consider first the reaction p̄p → K̄K . For defi-
niteness, we consider p̄p → K−K+ with � exchange. The
cases of � and �+ for K̄0K0 final states may be executed
analogously.

The assumption of the quark-diquark identity allows us
to generalize our model developed in the previous section.
Namely, we assume that the amplitude of the reaction p̄p →
K−K+ has the form of a Regge pole amplitude dominated by
the � + � exchange trajectories. Thus, for the � exchange it
reads

T p̄p→K−K+
mi,ni

= C ′(t)Mp̄p→K−K+
mi,ni

(s, t)
g2

KN�

s0
�

[
1

2
− αds(t)

]

×
(

− s

sp̄p:K̄K

)αds (t)− 1
2

, (22)

where mi and ni are the spin projections of p and p̄,
respectively, d stands for a ud diquark, αds(t) is the �

trajectory, g2
KN� is the coupling constant of the KN�

interaction, and s0 = 1 GeV is a universal scale parameter.
The spin dependence is accumulated in the amplitude M,

which in the limit of s → ∞ results in M ≈ √
s. The explicit

form of M will be defined later. The overall residual function
C ′(t) will be found again from a comparison with available
experimental data.
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FIG. 9. Planar diagrams for the reactions p̄p → K−K+ (a) and
p̄p → D0D̄0 (b). (c) The exchanged baryon as a quark-diquark
object. The symbol d stands for a qq diquark.

The parameters of the trajectory for the nondiagonal
transition αds are related to the corresponding parameters for
the “diagonal” transitions αs̄s and αd̄d similarly to Eqs. (4)
and (5):

2αds(0) = αd̄d (0) + αs̄s(0), (23)

2/α′
ds = 1/α ′̄

dd
+ 1/α′

s̄s . (24)

Using the � trajectory as input [10],

αds = α� = −0.65 + 0.94t, (25)

and αs̄s from Eq. (6), one can evaluate the diagonal αd̄d

trajectory at small |t | as

αd̄d (t) = −1.58 + α ′̄
dd

t (26)

with α ′̄
dd

= 1.542 GeV−2.
The equation for the energy scale parameter sp̄p:K̄K is

slightly different from Eq. (7). Now it reads

(sp̄p:K̄K )2[αds (0)− 1
2 ] = (sp̄p)αd̄d (0) × (sK̄K )αs̄s (0)−1. (27)

Using sK̄K = 1.21 GeV2 and sp̄p = 2.25 GeV2, one gets
sp̄p:K̄K = 1.853 GeV2.

The spin dependence of the amplitude in Eq. (22) is
determined by the form of the KN� interaction given by
the effective Lagrangian

LNYK = −iN̄ γ5YK + h.c., (28)

where N, Y , and K denote the nucleon, hyperon, and the K

meson fields, respectively, and Y stands for �,�, and so on.
This form leads to the following expression of the amplitude
M in Eq. (22):

Mp̄p→K̄K
mini

(s, t) = N (s, t) [v̄ni
(pY/ − MY )umi

],

N (s, t) = F∞(s)

F (s, t)
, F 2

∞(s) = s M2
Y /2,

F 2(s, t) = 1
2

[(
s − 2M2

N

)(
M2

Y − t
)

+ 4MNMY

(
M2

N + M2
K + t

− (
M2

N − M2
K + t

)2 − M2
N

(
M2

Y + t
)]

,

(29)

where pY = pp − pK .
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FIG. 10. Differential cross section of the p̄p → K−K+ reaction
as a function of momentum transfer t at pL = 5 GeV. The contribu-
tions from � and � exchanges are shown by dashed and dot-dashed
curves, respectively. The experimental data are taken from Ref. [34].

For the KNY coupling constants we use the average values
of the Nijmegen potential [30]: gKNY = −15.755 for Y = �

and gKNY = −4.785 for Y = �0.
In case of the p̄p → K−K+ reaction, the total amplitude

is the coherent sum of the � and � exchange trajectories,
whereas the reaction p̄p → K̄0K0 is dominated by the �+
trajectory. Following Ref. [10] we use

α� 
 α�+ 
 −0.79 + 0.87t. (30)

For simplicity, for the � exchange channels we use the same
the energy scale parameter as for the � exchange, taking into
account similarity of the corresponding trajectories and the
fact that the contribution of the � exchange amplitude is much
smaller than the dominant � exchange one.

B. Reaction p̄ p → D D̄

In this case, the amplitude is defined by Eq. (22) with
the substitutions � → �+

c ≡ �c,�
0 → �+

c , �+ → �++
c ,

K+ → D̄0,K− → D0,K0 → D−, and K̄0 → D+ and so on.
As before, we assume the validity of SU(4) symmetry, which
means that the coupling constants of the DNYc interaction are
chosen to be the same as for the case of the KNY interaction.

The �c trajectory is calculated by using

2αdc(0) = αd̄d (0) + αc̄c(0), (31)

2/α′
dc = 1/α ′̄

dd
+ 1/α′

c̄c, (32)

where αc̄c(t) ≡ αJ/ψ (t) and αdd (t) are defined by Eqs. (15)
and (26), respectively. Thus, for αdc(t) and the energy scale
parameter sp̄p:DD̄ we have

α′
dc(0) 
 −2.09, α′

dc 
 0.557 GeV−2, (33)

sp̄p:DD̄ 
 3.59 GeV2. (34)

For simplicity, we assume α�+
c

≡ αdc 
 α�+
c


 α�++
c

.

C. Results

1. Differential cross sections

The differential cross section of the p̄p → K̄−K+ reaction
as a function of the momentum transfer t = (pp − pK+ )2

at initial momentum pL = 5 GeV/c together with available
experimental data [34] is presented in Fig. 10. The separate
contributions from � and �0 exchange are shown by dashed
and dot-dashed curves, respectively. The solid curve is the
coherent sum of these contributions. One can see a dominance
of the � exchange trajectory in p̄p → K̄−K+. This reaction
is used to fix the residual factor C ′(t) in Eq. (22). We find

C ′(t) = 0.52

(1 − t/1.15)2
; (35)

that is, it coincides within ∼30% with the residual in p̄p →
Ȳ Y reactions [cf. Eq. (16)], which supports the consistency of
the model.

In Fig. 11 (left panel), we show our prediction for the
differential cross sections of the reactions p̄p → K−K+ and
p̄p → K̄0K0 as a function of tmax − t at the initial momentum
pL = 10 GeV/c. The dependence of the differential cross
sections on energy (

√
s) at fixed tmax − t = 0.2 GeV2 is

exhibited in Fig. 11 (right panel). At large energies the cross
sections behave as ∼s−2.3 and ∼s−3.58 for the K−K+ and
K̄0K0 final states, respectively.

Our prediction for the differential cross sections of DD̄ pair
production is presented in Fig. 12. The left panel illustrates
the dependence on tmax − t at fixed pL = 15 GeV/c. The right
panel exhibits the dependence on the excess energy �s1/2 at
fixed tmax − t = 0.2 GeV2. The ratio of the cross sections with
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FIG. 11. Left panel: The differential cross
sections of the reactions p̄p → K−K+ (solid
curve) and p̄p → K̄0K ) (dashed curve) as a
function of tmax − t at pL = 10 GeV/c. Right
panel: The differential cross sections as a func-
tion of the energy

√
s at tmax − t = 0.2 GeV2.
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FIG. 12. Left panel: The differential cross
sections of the reactions p̄p → D̄0D0 (solid
curve) and p̄p → D−D+ (dashed curve) as a
function of tmax−t at pL = 15 GeV/c. Right panel:
The differential cross section as a function of the
excess energy �s1/2 at tmax − t = 0.2 GeV2.

D−D+ and D̄0D0 final states is close to (
√

2 gKN�/gKN�)4 

0.034. The cross sections decrease rapidly with energy as
s−6.18; therefore, the region with small excess energy is more
suitable for studying these reactions.

2. Longitudinal asymmetry

In reactions p̄p → K̄K (DD̄) at forward production angle
(or t = tmax), the spin in the final state is equal to zero. This
means that the production amplitude may be expressed as

Tmi,ni
∼ B(s) δmi−ni

, (36)

and therefore the asymmetry in Eq. (14) is A = 1. At finite
angles, the spin-orbital interactions becomes important, which
leads to an increase of the contribution of dσ⇒ to the total
cross section and to a decrease of the asymmetry.

In Fig. 13 we show our prediction for p̄p → K̄K . The left
panel exhibits the t dependence at pL = 10 GeV/c, whereas
the right panel exhibits the

√
s dependence at tmax − t =

0.2 GeV2. One can see a decrease of A with −t and an
almost constant value at large

√
s and fixed tmax − t . Some

difference in A for K̄0K0 and K+K− final states is explained
by the difference of masses of K0 and K± mesons, which
leads to the different relative momenta and to some difference
in spin-orbital interactions.

The longitudinal asymmetries for the p̄p → DD̄ reactions
are presented in Fig. 14. The left panel demonstrates the t

dependence at the initial momentum pL = 15 GeV/c. The
right panel shows the dependence on the excess energy at

tmax − t = 0.2 GeV2. One can see that the results of the
numerical calculation agree with our qualitative consideration.
The difference in the asymmetries for K̄K and DD̄ final states
is mainly due to the difference of masses of kaons and D

mesons.

IV. REACTION p̄ p → M̄ M∗

The reactions p̄p → K̄K∗ and p̄p → DD̄∗ are similar to
the reactions with K̄K and DD̄ final states, and the corre-
sponding amplitudes are described by the diagrams depicted
in Fig. 9, where one of the outgoing pseudoscalar mesons M

is replaced by the vector one, M∗, (i.e. K → K∗,D → D∗,
etc.). Thus, the invariant amplitude for p̄p → K̄K reads

T
p̄p→K̄−K∗+
λf ;mi,ni

= C ′(t)Mp̄p→K̄K

λf ;mi,ni
(s, t)

gK∗N�gKN�

s0
�

×
[

1

2
− αds(t)

] (
− s

sp̄p:K̄K∗

)αds (t)− 1
2

, (37)

where λf is the polarization of the outgoing K∗ and the other
notation has been introduced already in Secs. II and III. The
baryon exchange trajectories are the same as in the previous
Sec. III, sp̄p:K̄K∗ = sp̄p:K̄K , and C ′(t) is defined in Eq. (35)

The spin-dependent amplitude M has the following form:

Mp̄p→K̄K

λf ;mini
(s, t) = N (s, t) �

µ
λf ;mini

, (38)
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FIG. 13. The longitudinal asymmetry for
the reactions p̄p → K−K+ (solid curves) and
p̄p → K̄0K0 (dashed curves). Left panel: The
asymmetry as a function of momentum transfer
tmax − t at pL = 10 GeV. Right panel: The
asymmetry as a function of the energy

√
s at

tmax − t = 0.2 GeV2.
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FIG. 14. The longitudinal asymmetry for
p̄p → D0D̄0 (solid curves) and p̄p → D−D+

(dashed curves). Left panel: The asymmetry
as a function of momentum transfer tmax − t

at pL = 15 GeV. Right panel: The asymmetry
as a function of the energy excess �s1/2 at
tmax − t = 0.2 GeV2 .

with

�
µ
λf ;mini

= v̄ni

{
γ5 (pY/ − MY )

[
γ µ + κNYK∗

2(MN + MY )
(γ µp/K∗

−p/K∗γ
µ)

]}
umi

ε
µ∗
λi

, (39)

where ε
µ
λi

is the polarization vector of the K∗ meson and

N (s, t) = F∞(s)

F (s, t)
,

with

F 2(s, t) = Tr
[
�µ�ν

†] (
−gµν + p

µ

V pν
V

M2
V

)
,

F 2
∞ = 2sM2

Y

M2
V

[
M2

N + M2
V + 6MNM2

V z

+M2
V

(
2M2

N + M2
V

)
z2

]
, (40)

where MV = MK∗ , pV = pK∗ , and z = κV NY /(MN + MY ).
In the reaction p̄p → K−K∗+ the total amplitude is the

coherent sum of � and �0 exchange channels. In the case
of K̄0K∗0, the amplitude is defined by the �+ exchange
trajectory.

The amplitude for the K̄∗K reaction has a similar form:

�
µ
λf ;mini

= v̄ni

{[
γ µ + κNYK∗

2(MN + MY )
(γ µp/K∗

−p/K∗γ
µ)

]
(pY/ − MY ) γ5

}
umi

ε
µ∗
λi

. (41)

The generalization for DD̄∗ and D∗D̄ final states may be
done in a straightforward manner, similarly to that done in the
previous sections.

A. Differential cross sections

The differential cross sections of the reactions p̄p → K̄K∗
and p̄p → K̄∗K are exhibited in Fig. 15. The left panel shows
our prediction for the differential cross sections of the reactions
p̄p → K−K∗+ and p̄p → K̄0K∗0 as a function of tmax − t at
initial momentum pL = 10 GeV/c. The dependence of the
differential cross sections on energy

√
s at fixed tmax − t =

0.2 GeV2 is presented in the right panel. At large energies
the cross sections behave similarly to the cross sections of the
p̄p → K̄K reactions.

Our prediction for the differential cross sections of the DD̄∗
pair production is presented in Fig. 16. The left panel illustrates
the dependence on tmax − t at fixed pL = 15 GeV/c. The right
panel exhibits the dependence on the energy excess �s1/2

at fixed tmax − t = 0.2 GeV2. The ratio of the cross sections
with D−D∗+ and D̄0D

0
final states is defined by the coupling
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FIG. 15. Left panel: The differential cross
sections of the p̄p → K−K∗+ (solid curve) and
p̄p → K̄0K (dashed curve) reactions as a func-
tion of tmax − t at pL = 10 GeV/c. Right panel:
The differential cross sections as a function of
the energy

√
s at tmax − t = 0.2 GeV2.
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FIG. 16. Left panel: The differential cross
sections of the p̄p → D̄0D∗ (solid curve) and
p̄p → D−D∗+ (dashed curve) reactions as a
function of tmax−t at pL = 15 GeV/c. Right panel:
The differential cross section as a function of the
energy excess �s1/2 at tmax − t = 0.2 GeV2.

constants in KN�, K∗N� and KN�, K∗N� interactions
and is close to 0.03. The cross sections decrease with energy
similarly to the p̄p → DD̄ reactions, and therefore the region
with small excess energy is more suitable for studying these
reactions.

B. Longitudinal asymmetry

Let us consider first the case of the forward production
angle (or t = tmax) in p̄p → K̄K∗ (DD̄∗) reactions with pure
vector coupling in V ∗N�(V = K∗, D∗). For energies, where
pV 
 pp, the amplitude has the form

Tλi ;mi,ni
∼ R(s)

(
Aδmini

+ B δ−mini

)
δλiλV

, (42)

where λV is the polarization of the outgoing vector meson,
λi = mi + ni , and

A 

√

2, B 
 MN

MV

, (43)

where MV is the mass of the vector meson. This results in

A = M2
N − 2M2

V

M2
N + 2M2

V

. (44)

Thus, for the K̄K∗ final state, where MV ∼ MN, the asym-
metry has values A 
 −0.3 and increases at finite production
angles because of the spin-orbital interaction. For the p̄p →
DD̄∗ reaction, the asymmetry is much smaller,A 
 −0.8, and
it also increases with the production angle. The finite tensor
coupling changes these predictions, especially in the charm
sector with large MV .

In Fig. 17 we show our prediction for the p̄p → K̄K∗
reactions. The left panel exhibits the t dependence at pL =
10 GeV/c, whereas the right panel depicts the

√
s dependence

at tmax − t = 0.2 GeV2. One can see an increase of the
asymmetry with −t and its almost constant value at large

√
s

and fixed tmax − t . The difference inA for K̄0K∗0 and K+K∗−
final states is mainly due to the difference in tensor couplings
in K∗N� and K∗N� interactions. For completeness, we also
show the result for a calculation without tensor couplings. At
zero production angle the asymmetry is close to our qualitative
estimate.

The longitudinal asymmetries for p̄p → DD̄∗ reaction are
presented in Fig. 18. The left panel displays the t dependence at
initial momentum pL = 15 GeV/c. The right panel shows the
dependence on the energy excess at tmax − t = 0.2 GeV2. We
also show results for a calculation with pure vector couplings.
At zero production angle the asymmetry (left panel) coincides
with our qualitative estimate [cf. Eq. (44)]. The effect of the
tensor interaction is rather large. One can see a big difference
between D0D∗0 and D−D∗+ final states because of the
difference in the corresponding tensor couplings. Numerically,
result for the D−D∗+ final state is close to a calculation with
zero tensor coupling.

V. SUMMARY

In summary, we have analyzed the open charm production
in the exclusive binary reactions p̄p → ȲcYc, p̄p → DD̄, and
p̄p → DD̄∗ at small momentum transfer. Our consideration
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FIG. 17. The longitudinal asymmetry for

the reactions p̄p → K−K∗+ (solid curves) and
p̄p → K̄0K∗0 (dashed curves). The dot-dashed
curves correspond to the calculation with zero
tensor coupling constant. Left panel: The asym-
metry as a function of momentum transfer tmax −
t at pL = 10 GeV. Right panel: The asymmetry
as a function of the energy

√
s at tmax − t =

0.2 GeV2.
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FIG. 18. The longitudinal asymmetry for
the reactions p̄p → D0D̄∗0 (solid curves) and
p̄p → D−D+ (dashed curves). The dot-dashed
curves correspond to the calculation with zero
tensor coupling constant. Left panel: The asym-
metry as a function of momentum transfer
tmax − t at pL = 15 GeV. Right panel: The
asymmetry as a function of the excess energy
�

√
s at tmax − t = 0.2 GeV2

is based on a modified Regge-type model, motivated by
quark-gluon string dynamics. The most important parameters
of the model are the effective charmed meson and baryon
exchange trajectories and the energy scale parameters. They
are found from a consistent approach based on the topological
decomposition and factorization of the corresponding planar
quark diagrams. The coupling constants are taken to be the
same as in corresponding strangeness production reactions,
under the assumption of SU(4) symmetry. Unknown residual
functions are found from the comparison of the calculation
of p̄p → �̄� (�̄�) and p̄p → K̄K reactions with available
(although old) experimental data. As a result, we obtained
the absolute value of the corresponding cross sections in the
energy range of future FAIR experiments.

For the first time we made predictions for the longitudinal
asymmetry, which is quite different in different processes with
nontrivial t and s dependencies. In each case we presented an

analytical estimate for the forward production with the aim at
understanding the physics of the asymmetry.

Our calculations of cross sections and longitudinal asym-
metries in the exclusive reactions p̄p → Ȳ Y, p̄p → K̄K , and
p̄p → K̄K∗ are also of independent interest for forthcom-
ing experiments at FAIR as a first prediction of the open
strangeness production in peripheral reactions in this energy
region. Our consideration may serve as a first step toward more
involved reaction mechanisms and extensions to pp collisions.
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