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Particle multiplicities and ratios in excluded volume models
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One of the most surprising results is to find that a consistent description of all the experimental results on particle
multiplicities and ratios obtained from the lowest Alternating Gradient Synchrotron to the highest Relativistic
Heavy Ion Collider energies is possible within the framework of a thermal statistical model. We explore here the
utility of a thermodynamically consistent excluded volume model recently proposed by us in explaining the above
experimental results and we further compare our results with those obtained from an ideal gas model and other
excluded-volume model that are often used in describing a grand canonical statistical system consisting of hot,
dense hadron gas. We find that the energy dependence of the total multiplicities of strange and nonstrange hadrons
in general shows close agreement with the experimental data, although slight deviation is observed for some
multistrange hadrons, e.g., � + �̄, �, and �. The difference observed in these cases does not clearly support our
assumption of the same freeze-out volume of the fireball that homogeneously emit all kinds of particles. Similarly
we have calculated the ratios for particles and antiparticles such as K−/K+, p̄/p, �̄/�, �̄/�, and �̄/�, as
well as the ratios of the unequal mass particles 〈K+〉/〈π+〉, 〈K−〉/〈π−〉, 〈�〉/〈π〉, 〈�−〉/〈π〉, 〈� + �̄〉/〈π〉,
and 〈�〉/〈π〉 and studied their variations with respect to the center-of-mass energy in the excluded-volume models
and, finally, the results are compared with the experimental data. We find that in some cases, although the calculated
results show close agreements with the experimental data, the deviations between theory and experiment in cases
of unequal mass and multistrange particle ratios, like 〈�〉/〈π〉, 〈�−〉/〈π〉, 〈� + �̄〉/〈π〉, 〈�〉/〈π〉, etc., appear
to be quite large and thus warrant further investigations on the suitability of thermal hadron gas models.
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I. INTRODUCTION

In ultrarelativistic heavy-ion collisions, we expect that
matter with high energy density will be produced and color-
deconfined matter is formed. Such matter, better known as
quark-gluon plasma (QGP), is only a transient state of the
system because evolution back to ordinary hadronic matter
begins immediately [1–3]. Consequently, we face a difficult
question regarding how to diagnose and probe the plasma state.
One of the most potential probes for detecting QGP formation
is the observation of the abundance of strange particles. The
idea behind the strangeness enhancement is that strange and
antistrange quarks are easily created in a hot and dense
QGP, whereas in the hadronic phase, KK̄ pair production is
suppressed. One finds that the threshold mass for ss̄ production
is nearly 300 MeV/c2 in QGP, whereas the KK̄ threshold
mass is approximately 980 MeV/c2. Rafelski and Müller
[4–10] have suggested that a large number of strange quarks
present in QGP would automatically yield enhanced strange
particle production in the hadron gas (HG) resulting after
hadronization of QGP. However, one important assumption
in the theory is that the HG formed after QGP phase does not
find sufficient time to achieve chemical equilibrium, otherwise
the equilibrated HG will not retain the memory regarding
the primordial phase that might have existed earlier in the
evolution process. However, in the analysis of strangeness
enhancement, one should have a precise knowledge not only
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of the equation of state (EOS) of QGP alone but also of the
HG that gives the background contribution in this case.

In ultrarelativistic nucleus-nucleus collisions, a very high
density of matter exists over an extended region, and it is
often called a fireball. The physical variables characterizing a
fireball are the energy density ε, the baryon density nB , and
the volume. Thus one of the central problems in the study
of high-energy collisions lies in deducing the state of the
system by determining the temperature and baryon chemical
potential µB (which in turn determine ε and nB) existing in the
fireball from the observed final particle multiplicities, etc. The
freeze-out stage of the system when the particles fly toward
the detectors without further interactions is directly connected
to the observed multiplicity distributions of various particles.
Here we should emphasize that the fireball goes through two
types of freeze-out stages. First, it undergoes a chemical
freeze-out when inelastic collisions in the fireball no longer
occur. Later when elastic collisions also stop in the fireball, the
stage is called thermal freeze-out. Abundances of the particles
and their ratios provide important information regarding the
chemical equilibrium occurring in the fireball before the
thermal equilibrium. Moreover, chemical equilibrium in the
hot, dense HG removes any memory existing in the fireball
regarding a primordial phase transition. So the thermodynamic
properties of the fireball throw no light on the existence of QGP
before hadronization. We first connect the thermodynamic
properties of the fireball to an appropriate EOS for the hot
and dense hadron gas and, finally, we deduce the chemical
freeze-out conditions of the thermal HG fireball formed in the
ultrarelativistic heavy-ion collisions. In the last few years, one
has observed a very surprising result. It has been shown that a
consistent and appropriate description of all the experimental
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results on the particle multiplicities and particle ratios from
the lowest GSI Schwerionen Synchrotron (SIS) to the highest
Relativistic Heavy Ion Collider (RHIC) energies is available
within the framework of a thermal statistical model as applied
to a hot and dense HG phase. Recently we provided a model
based on the geometrical excluded volume correction that
describes suitably the thermodynamical quantities of a hot
and dense HG [11]. We further used this prescription to
determine the chemical freeze-out volume of the fireball and
thus we calculated pion and nucleon densities in our model
[12]. We find that the densities are reproduced well by their
Hanbury-Brown-Twiss experimental data.

In this article we attempt to explain the experimental
data on strange particle multiplicities and ratios in the HG
scenario using our excluded volume model discussed in earlier
articles [11,12]. Because many attempts [13] have been made
by various authors to explain particle multiplicities using
different HG models [14–18], it will be worthwhile to compare
chemical freeze-out parameters (i.e., T , µB) of the fireball as
determined in these models. Finally, we show our results for
strange particle multiplicities and ratios and compare them
with the experimental data. We also show the predictions of the
other important models, particularly the Rischke, Gorenstein,
Stöcker, and Greiner (RGSG) [19] model that is, again, a
thermodynamically consistent excluded volume model [19]. It
is indeed encouraging to notice that simple thermal models can
explain well the experimental data on particle multiplicities
and the strangeness enhancement. But the purpose here is to
demonstrate that the whole exercise crucially depends on the
EOS used to determine the thermodynamic state of the fireball
of the hot and dense HG.

II. METHOD OF CALCULATION

We have formulated a new thermodynamically consistent
excluded-volume model [11] for the description of hot and
dense HG. By incorporating the finite size of the baryons,
here we obtain a simple form of EOS for the HG where
the excluded volume effect has been incorporated in the
partition function by suitably defining the volume integral. Our
approach has many advantages over other models existing in
the literature [19,20] as it can suitably be used even at extreme
values of T and µB . We also find that causality is respected
by our model. Further, the final expressions in our model are
quite similar to those of the Cleymans and Suhonen model
[21], which is a thermodynamically inconsistent description
of the HG. However, our model involves extra terms in the
final expressions as the correction terms arising from the
requirement of thermodynamical consistency. In the following,
we present a brief description of our model for the sake of
completeness. This model assumes that the baryon of ith
species have an eigenvolume Vi . If R = ∑

i n
ex
i Vi be the

fraction of occupied volume, then the number density nex
i of

ith baryon can be written as:

nex
i = (1 − R) Ii λi − Ii λ2

i

∂R

∂λi

, (1)

where λi is the fugacity of ith baryons and Ii is the following
expression containing the modified Bessel function of the

second kind

Ii = gi

2π2

(mi

T

)2
T 3 K2(mi/T ) (2)

with gi is the spin-isospin degeneracy factor. Equation (1) can
be rewritten in the form

R = (1 − R)
∑

i

n0
i Vi −

∑
i

n0
i Vi λi

∂R

∂λi

, (3)

where n0
i is the number density of ith baryons when they are

treated as pointlike particles and thus n0
i ≡ Ii λi . Let us take

R0 ≡ ∑
i Xi , where Xi ≡ Ii λi Vi . If we put ∂R/∂λi = 0, then

R ≡ R̂ = R0

1 + R0
. (4)

Equation (4) gives the thermodynamic inconsistent expression
for R in the model of Cleymans and Suhonen [21], the number
density nex

i of ith baryon is given as nex
i = n0

i /(1 + R0) that
resembles Eq. (4). Hence the additional term ∂R/∂λi in Eq. (3)
restores thermodynamic consistency in our model. Rewriting
Eq. (3), we get:

R = R̂ + �R, (5)

where the operator � is given as

� ≡ − 1

1 + R0

∑
i

Ii λ2
i Vi

∂

∂λi

. (6)

Now using Neumann iteration method, Eq. (3) can be cast in
the form

R = R̂ + �R̂ + �2R̂ + �3R̂ + · · · . (7)

Retaining the terms up to second order only, the expression for
R can be written as

R =
∑

i Xi

1 + ∑
Xi

−
∑

i X2
i(

1 + ∑
i Xi

)3 + 2

∑
i X3

i(
1 + ∑

i Xi

)4

− 3

∑
i Xi λi

∑
i X2

i Ii Vi(
1 + ∑

i Xi

)5
. (8)

Finally, by calculating the values of R and its first derivative
∂R/∂λi , one can calculate the value of particle number density
by using Eq. (1).

We have considered here a hot and dense HG with baryonic
and mesonic resonances having masses up to 2 GeV/c2. To
conserve strangeness quantum number, we used the criterion
of net strangeness number density equal to zero. In all the
above calculations we also considered that all the mesons
behave as pointlike particles. Furthermore, we took equal
volume V = 4π r3/3 for all baryons with a hard-core radius
r = 0.8 fm. Here it should be emphasized that the finite
width of the resonances are not taken into account in the
present calculation. The grand canonical ensemble approach
as used here is suitable for systems with large number of
produced hadrons. For small systems and for low energies, in
the case of strange particle production, a canonical ensemble
treatment is necessary [22]. It leads to a phase-space reduction
for particle production (known as canonical suppression). It
has been shown [23] that the canonical suppression factor is
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negligible for all strange hadrons above Alternating Gradient
Synchrotron (AGS) energies (

√
sNN ≈ 5 GeV) but it yields

a sizable correction for the lower energies. We have not
incorporated the canonical correction in the present analysis
because our results are mostly valid for energies above AGS
energies.

We consider all hadronic resonances having well-defined
masses, i.e., their decay widths are small. All hadronic
resonances decay rapidly in strong decays after freeze-out
and thus contribute to the stable particle abundances. Some
heavy resonances may decay in cascades. This has been
implemented in the calculation by considering all decays
proceeding sequentially from the heaviest to lightest particles.
As a consequence of this, the light particles get contributions
from the heaviest particles. Thus it has the form:

n1 = b2→1 · · · bN bN−1 nN,

where bk→k−1 combines the branching ratios for the k → k −
1 decay [24] with the appropriate Clebsch-Gordan coefficients.
The later accounts for the isospin symmetry in strong decays
and allows us to treat separately the different charged states
of isospin multiplets of particles. To calculate contributions
from some heavy resonance decays we are forced to take
some approximations. For example, in most of the cases there
are several decay channels. In our approach we discard all
decays with branching ratios less than 2%. In addition, if
the decay channels are classified as dominant, largely seen,
or possibly seen, we take into account the dominant channel
only. If two or more than two channels are described as equally
important, we take all of them with the same weight. For
example, f0(980) decays into π (according to Ref. [24] this
is the dominant channel) and KK̄ (according to Ref. [25] this
is the seen channel). In our approach, as a rule stated above,
we include only the process f0(980) → π . Similarly, a0(1450)
has three decay channels: η π (seen), π η′ (958) (seen), and
KK̄ (again seen). In this case we include all the three decay
channels with equal weight 0.33 (branching ratios). Of course,
this procedure is not unique and may vary from author to
author. Another problem that we face in this calculation is
that in some decay channels, the branching ratios are not
given exactly but a range of values are given and the sum of
the branching ratios may differ significantly from 1.0. In this
case we take the mean values of the branching ratios. Because
we require that their sum should be properly normalized, we
are forced to rescale all the mean values in such a way that
their sum is indeed 1.0. Because the experimental data on the
resonances involve a lot of uncertainties in the decay width as
well as in the branching ratios, we adopt the above procedure
in calculating the contributions of resonances toward a given
particle multiplicity. Unfortunately, a better and established
alternative for such calculation does not exist in the literature.

III. RESULTS AND DISCUSSIONS

To determine the energy dependence of particle ratios and
multiplicities we first find energy dependence of chemical
freeze-out temperature and baryon chemical potential by
fitting the different particle ratios from SIS to RHIC energies

TABLE I. List of particle ratios used to fit different
models [13].

√
s (GeV) Experiments Particle ratios

2.70 AGS K+/π+

p/π−

�/π−

3.32, 3.84, 4.30 AGS K−/K+

K+/π+

K−/π−

p/π−

�/π−

4.85 AGS K−/K+

K+/π+

K−/π−

p/π−

�/π−

p̄/p

�̄/�

8.76 SPS K−/K+

�̄/�

K+/π+

K−/π−

�̄/π−

�/π−

�/�

�/�

12.3 SPS K−/K+

�̄/�

K+/π+

K−/π−

�̄/π−

17.3 SPS K−/K+

�̄/�

�̄/�

�̄/�

K+/π+

K−/π−

�̄/π−

�/π−

�/π−

130, 200 RHIC K−/K+

�̄/�

�̄/�

�̄/�

K+/π+

K−/π−

p̄/p

p−/π−

�̄/π−

�/π−

�/π−

using ideal HG model, RGSG model as well as present model.
In Table I, we have given the list of particle ratios [13] that had
been used to calculate T ,µB values at freeze-out for different
energies. Table II summarizes the values of T and µB at
different center-of-mass energies in different models. We find
that T and µB obtained in our model can be parameterized
in terms of center-of-mass energy by using following
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TABLE II. (T , µB ) values in MeV obtained by fitting the particle ratios using different models.

√
sNN (GeV) Ideal gas model RGSG model Present model

T µB δ2 T µB δ2 T µB δ2

2.70 60.0 740.0 0.85 60.0 740.0 0.75 60.0 740.0 0.87
3.32 80.0 670.0 0.89 78.0 680.0 0.34 90.0 670.0 0.69
3.84 100.0 645.0 0.50 86.0 640.0 0.90 100.0 650.0 0.60
4.30 101.0 590.0 0.70 100.0 590.0 0.98 101.0 600.0 0.53
4.85 105.0 495.0 0.30 130.0 535.0 0.84 110.0 510.0 0.43
8.76 140.0 380.0 0.45 145.0 406.0 0.62 140.0 380.0 0.26
12.3 148.0 300.0 0.31 150.0 298.0 0.71 148.6 300.0 0.31
17.3 160.0 255.0 0.25 160.0 240.0 0.62 160.6 250.6 0.21
130.0 172.3 35.53 0.10 165.5 38.0 0.54 172.3 28.0 0.056
200.0 172.3 23.53 0.065 165.5 25.0 0.60 172.3 20.0 0.043

FIG. 1. (a), (b), and (c) Variations of the strange meson to nonstrange meson ratios 〈K+〉/〈π+〉, 〈K−〉/〈π−〉 and antikaon-to-kaon ratio
K−/K+ with respect to center-of-mass energy

√
sNN . Solid curve (C), dashed curve (D), and dash-dotted curve (E) show the predictions of

the present [11,12], ideal HG, and RGSG models [19], respectively. B represents experimental points [32].
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FIG. 2. (a), (b), (c), and (d) Variations of the antibaryon-to-baryon ratios p̄/p, �̄/�, �̄/�, and �̄/� with respect to center-of-mass energy.
B represents experimental data, whereas curves C, D, and E show the results from the present model, ideal HG model, and RGSG model,
respectively.

equations [26–29]:

µB = a

1 + b
√

sNN

,

(9)
T = c − d e−f

√
sNN .

Here the values of the parameters as arising from the best
fit are a = 1.254 ± 0.086 GeV, b = 0.261 ± 0.034 GeV−1

and c = 168.49 ± 4.4 MeV, d = 171.63 ± 21.75 MeV, f =
0.21 ± 0.039 GeV. We compare our values of the above
parameters with the values of the parameters a = 1.308 ±
0.028 GeV, b = 0.273 ± 0.008 GeV−1 and c = 172.3 ±
2.8 MeV, d = 149.5 ± 5.7 MeV, f = 0.20 ± 0.03 GeV ob-
tained by Cleymans et al., in ideal HG prescription [28,29].
We find that the difference in the values of the parameters as
obtained by us as well as other authors does not appear to

differ very significantly. Recently it has become abundantly
clear that the heavy-ion collision energy plays an important
role in determining the properties of the final-state hadrons. We
find that the extracted temperature generally increases rapidly,
whereas baryon chemical potential monotonically decreases
with the collision energy. In general, extracted freeze-out
values of these parameters in our model lie close to the
ideal gas values. The parameter values in RGSG model are,
however, found to differ in comparison to our values. Particle
multiplicities and ratios can then be calculated using T and
µB values presented in Table II.

In Figs. 1(a)–1(c), we show the center-of-mass energy
dependence of the ratio of strange meson to nonstrange meson
such as 〈K+〉/〈π+〉, 〈K−〉/〈π−〉, and K−/K+ in our present
model [11,12], in an ideal HG model, and in the RGSG
model [19]. Solid, dashed, and dash-dotted curves represent
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FIG. 3. (a), (b), (c), and (d) Variations of the strange baryon to nonstrange meson ratios 〈�〉/〈π〉, 〈�〉/〈π〉 and 〈� + �̄〉/〈π〉, 〈�〉/〈π〉
with the center-of-mass energy

√
SNN . In this figure curves B represents experimental data [33] and curves C, D, and E depict the predictions

of the present model, ideal HG model, and RGSG model, respectively.

predictions of our model, the ideal HG model, and the RGSG
model, respectively. The 〈K+〉/〈π+〉 ratio shows a peak at
around 8.0 GeV of center-of-mass energy, although the ratio
〈K−〉/〈π−〉 shows a monotonic increase with center-of-mass
energy

√
sNN and achieves a saturation at or around the

RHIC energy. Essentially the saturation arises as the freeze-out
temperatures that become almost constant at or around RHIC
energies. The peak in the 〈K+〉/〈π+〉 ratio is demonstrated in
all the thermal models [30,31] and this successful explanation
of the experimental data is one important feature of the thermal
models. However, the peak in these models is slightly broader
than that observed by the experiments. Our thermal model
shows a narrow peak at the same energy as given by the
experimental data. However, our theoretical points differ from
the experimental points at higher energies [32]. Other types of
models, like the transport model, etc., are not able to explain
the experimental features of the 〈K+〉/〈π+〉 ratio. However, all
types of thermal models provide a larger ratio for 〈K−〉/〈π−〉

than that observed in the experiments. Still, the main features
of the data showing a steady increase is also reproduced by
all thermal models. The ratio K−/K+ and its variation with
center-of-mass energy is shown in Fig. 1(c). The ratio K−/K+
shows much dependence on the center-of-mass energy. Our
thermal model prediction for the ratio K−/K+ shows a close
agreement with the predictions of other models. The feature
of the experimental curve is also in good agreement with our
thermal model calculation.

In Figs. 2(a)–2(d), we plot the energy dependence of the
antibaryon-to-baryon ratios like p̄/p, �̄/�, �̄/�, and �̄/�

as given by our present model, the ideal HG model, and the
RGSG model. Surprisingly, we find that our present model and
the ideal HG model reproduce the qualitative and quantitative
features of the experimental data for all these ratios. This
occurs because the freeze-out values of T and µB at different
energies do not differ much in these two models. However, the
predictions in the calculations of RGSG model do not show
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such agreement with the experimental data. As we pointed out
earlier [11], the ideal HG description does not provide a proper
EOS for hot and dense HG. The successful explanation of the
experimental results shows that a proper and realistic EOS for
HG is given by our model that also gives a thermodynamically
consistent description of the hot and dense HG.

Figures 3(a)–3(d) show the variation of the particle ratios
like 〈�〉/〈π〉, 〈�〉/〈π〉, and 〈� + �̄〉/〈π〉, 〈�〉/〈π〉 with the
center-of-mass energy

√
sNN in all the above three models.

We find that results in our present calculation, particularly
of 〈�〉/〈π〉, show agreement with the experimental data
[33] because our curve reproduces the main features of the
data. The ideal hadron gas model also gives a satisfactory
explanation but calculated results lie numerically above the
experimental points. The main problem comes when we
compare predictions from all these models for multistrange
particle ratios, e.g., 〈�〉/〈π〉, 〈� + �̄〉/〈π〉, and 〈�〉/〈π〉 as
shown by Figs. 3(b)–3(d). We find that in all these cases,
thermal models involving HG picture alone yield a large
difference with the experimental data and in fact theoretical
curves lie far above the curves given by the experimental data.
Here, � is ssu (or ssd), � is sss, and � is given by ss̄ quark
combinations. These results not only signify the failure of all
types of thermal models but also emphasize the need for going
beyond such approaches for the cases of multistrange hadrons.
The strangeness enhancement signals QGP formation but in
these cases, thermal models yield much larger strangeness
than that observed in the experiments. Usually one uses a
new parameter γs to get a fit to the whole data points. γs is
called the strangeness saturation factor and its value lies in the
range 0 < γs < 1. It allows us to parametrize the incomplete
chemical equilibration of the strange particles so all the ratios
can be fitted simultaneously with the same values of µB and
T . We define the effective fugacity of each strange quark as
γs λs and that of strange antiquark as γs λ−1

s . Obviously ratios
like �̄/� and �̄/� will not be affected but ratios like �/π

or �/π , etc., will be smaller because γs in HG is usually less
than 1 but close to 1. In the calculation λq = exp(µq/T ) and
λs = exp(µs/T ), where µB = 3µq and µs = −µS + µB/3. It
was found that experimental data at the CERN Super Proton
Synchrotron can be easily explained with the help of γs .
However, saturation of strangeness phase space should occur
within the time scale of Pb+Pb or Au+Au collisions and
therefore the need for additional parameters should not arise
in our calculation. So we still feel that ratios like 〈�〉/〈π〉, etc.,
can be explained if some modification of the model is done
properly. We want to emphasize that several authors have used
a quark coalescence model in the QGP picture [34–39] to
explain these anomalous results.

Here one must emphasize that we have used the freeze-
out volume obtained for K+ meson to deduce total particle
multiplicity for each type of hadron. We use experimental data
of multiplicity for K+ and divide it by the number density
of K+ that was obtained in our thermal model. This yields
the chemical freeze-out volume for K+ when emissions from
the fireball occurs. We have assumed that the fireball goes
through the stage of chemical equilibrium among its various
constituents and the freeze-out volume of the fireball for the
emissions of all types of hadrons remains the same. To test the

FIG. 4. Variations of total freeze-out volume V of K−, K+, and
π+ with respect to

√
sNN .

validity of this assumption, we have plotted the total freeze-out
volume for π+,K+,K−, respectively, in Fig. 4 and study its
variation with center-of-mass energy. We find that the freeze-
out volumes obtained for these particles do not overlap and a
constant difference in the curves exist at all energies. This is
again a significant result as it can also be used to explain the
experimental data of the ratio of unequal mass particles. In our
earlier article, we have demonstrated [12] how we can use the
freeze-out volume to explain the occurrence of a first-order
phase transition.

In Fig. 5, we show the center-of-mass energy dependence of
multiplicities of hadrons �̄, (� + �̄), �−, �, �,K−, K+,
and π+ as predicted by calculations in our present model.
Curves A, B, C, and D show the multiplicities of �̄,� +
�̄,�−, and � baryons scaled by factors of 0.02, 0.2, 0.1,
and 0.02, respectively. Curves E, F, G, and H depict the
multiplicities of �,K−,K+, and π+ mesons, respectively.
We have also shown here experimental results measured in
central Au+Au/Pb+Pb collisions [40–56] for comparison.
Here we extracted the freeze-out volume of the fireball from
the calculated number density of K+ and compared it with total
multiplicity of K+ experimental data. We use the same volume
for all other particles. We observe an excellent agreement
between the theoretical predictions by our present thermal
model and the experimental data for the total multiplicities
of π+, K+, K−, �, �̄, etc. However, the thermal model
calculation slightly differs for � + �̄, �, and � as compared
to experimentally measured values. Thermal values of the
multiplicities for all these particles are again larger than the
experimental values. This analysis again suggests a new and
different mechanism for the production of these particles. One
way out of this difficulty is to assume that these particles
achieve chemical equilibrium earlier in the fireball when the
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FIG. 5. Variations of total multiplicities of �̄, (� + �̄),
�−, �, �, K−, K+, and π+ with respect to center-of-mass energy
predicted by our present model. Experimental data measured in
central Au+Au/Pb+Pb collisions [40–56] have also been shown for
comparison. In this figure A represents multiplicity of �̄ (scaled
by a factor 0.02), B that of � + �̄ (scaled by 0.2), C that of �−

(scaled by 0.1), and D that of � (scaled by 0.02). Similarly, E, F, G,
and H represent the multiplicities of �, K−, K+, and π+ mesons,
respectively.

corresponding volume is much smaller. However, this is a
vexing problem that appears in the use of thermal models and
we have to find appropriate answers to these problems.

IV. SUMMARY AND CONCLUSIONS

We formulated an excluded-volume HG model and used it
to analyze the variations of multiplicity of various particles
with respect to the center-of-mass energy

√
sNN from SIS to

RHIC energies. We have also used the present model [11,12]
to explain the variations of some particle ratios again with
center-of-mass energy and compared our results with the
experimental data. A good agreement between our present
model results and experimental data supports the claim that
thermal model gives a satisfactory description of the data.

In the past we have witnessed the success of ideal gas
model in explaining the data, but we know that a correct
description of hot, dense hadron gas can be given by a model
where hard-core repulsive interactions are incorporated in
thermodynamically consistent way. Moreover, at GSI SIS and
Brookhaven National Laboratory AGS energies, the freeze-out
parameters involve a much larger values of baryon chemical
potentials and the predictions of all the excluded-volume
models are quite different from those obtained in the ideal
gas models. We have already shown the usefulness of the
present model in explaining various properties of hot, dense
hadron gas [11,12]. The analysis presented here lends further
support to our claim that the excluded-volume model obtained
by us properly explain the multiplicities and particle ratios of
various particles after chemical freeze-out. In conclusion, our
model provides a proper and realistic EOS for a hot, dense
hadron gas and it can successfully be used at extreme values
of the temperatures and/or densities.
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