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Jet broadening in unstable non-Abelian plasmas
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We perform numerical simulations of the SU(2) Boltzmann-Vlasov equation including both hard elastic particle
collisions and soft interactions mediated by classical Yang-Mills fields. Using this technique we calculate the
momentum-space broadening of high-energy jets in real time for both locally isotropic and anisotropic plasmas.
In both cases we introduce a separation scale that separates hard and soft interactions and demonstrate that our
results for jet broadening are independent of the precise separation scale chosen. For an isotropic plasma this
allows us to calculate the jet transport coefficient q̂ including hard and soft nonequilibrium dynamics. For an
anisotropic plasma the jet transport coefficient becomes a tensor with q̂L �= q̂⊥. We find that for weakly coupled
anisotropic plasmas the fields develop unstable modes, forming configurations where B⊥ > E⊥ and Ez > Bz,
which lead to q̂L > q̂⊥. We study whether the effect is strong enough to explain the experimental observation
that high-energy jets traversing the plasma perpendicular to the beam axis experience much stronger broadening
in rapidity, �η, than in azimuth, �φ.
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I. INTRODUCTION

High transverse momentum jets produced in heavy-ion
collisions represent a valuable tool for studies of the properties
of the hot parton plasma produced in the central rapidity region
[1]. This is due to the fact that jets couple to the plasma causing
the jet to broaden in momentum space and to lose energy.
The magnitude of momentum-space broadening and energy
loss experienced by a parton depends on whether or not one
assumes the matter to be hadronic or partonic in nature. Hence,
it is one of the primary observables to ascertain experimentally
whether or not the plasma has been produced. At very high
energies it is expected that hard bremsstrahlung processes
dominate the light quark or gluon energy loss [2]; however,
at intermediate energies the inclusion of both collisional and
radiative processes is necessary to make phenomenological
predictions. Here we present the first results from real-time
solution of the SU(2) Boltzmann-Vlasov equation for locally
isotropic and anisotropic plasmas that include both hard
(scattering) and soft (classical field) processes.

We first demonstrate that, in a locally isotropic plasma,
one can obtain a cutoff independent transport coefficient
q̂, which measures the square of the transverse momentum
transfer per mean free path. This measurement lays the
groundwork for determining other jet transport properties like
the energy-loss spectrum from real-time simulations. We then
perform a similar measurement in a locally anisotropic plasma
and demonstrate that for a non-Abelian plasma unstable
modes can cause asymmetric broadening of jets. This may
be relevant for recent measurements of dihadron correlations
that provide evidence for an asymmetric broadening of jet
profiles in the plane of pseudorapidity (η) and azimuthal angle
(φ), with �η > �φ, which has been called “the ridge” by
experimentalists [1,3]. Here we show that this asymmetry
could partly be caused by unstable plasma modes that are
induced by the longitudinal expansion of the plasma.

At the earliest times after an ultrarelativistic heavy-ion
collision, before thermalization and hydrodynamic expansion,
the plasma undergoes rapid longitudinal expansion. This
expansion can lead to an oblate anisotropic (〈p2

z 〉 � 〈p2
⊥〉)

momentum distribution in the local rest frame [4,5]. It has
been shown that instabilities develop [5] in such anisotropic
plasmas which lead to the formation of long-wavelength
chromomagnetic and chromoelectric fields. These fields can
then affect the propagation of hard jets and their induced hard
radiation field. In the Abelian case soft transverse magnetic
fields, B⊥, dominate all other field components and therefore
in this case one expects the longitudinal pressure induced
by unstable modes to be larger than the transverse pressure
[6,7]. This pressure asymmetry causes asymmetric broadening
of jets with larger broadening along the longitudinal or η

direction.
The situation is more complicated in non-Abelian plasmas

because, in addition to generating large coherent B⊥ and
E⊥ domains, one also generates large-amplitude longitudinal
fields Bz and Ez. It is, therefore, not obvious a priori that the
pressure generated by other field components will result in
an asymmetric broadening of the jet. Through our numerical
simulations we find that, for oblate parton momentum distri-
butions, at different times either Ez > Bz or B⊥ > E⊥, with
the net effect being a factor of 1.5 stronger longitudinal than
transverse broadening.

II. BOLTZMANN-VLASOV EQUATION FOR
NON-ABELIAN GAUGE THEORIES

We solve the classical transport equation for hard gluons
with SU(2) color charge q = qata [8], with the color genera-
tors ta , including hard binary collisions

pµ
[
∂µ + gqaF a

µν∂
ν
p + gf abcAb

µ(x)qc∂qa

]
f = C, (1)
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where f = f (x, p, q) denotes the single-particle phase-space
distribution. It is coupled self-consistently to the Yang-Mills
equation for the soft gluon fields,

DµFµν = jν = g

∫
d3p

(2π )3
dq q vν f (x, p, q), (2)

with vµ = (1, p/p). When the phase-space density is paramet-
rically small, f = O(1), the collision term is given by

C = 1

4E1

∫
p2

∫
p′

1

∫
p′

2

(2π )4δ(4)(p′
1 + p′

2 − p1 − p2)

× (f ′
1f

′
2|M1′2′→12|2 − f1f2|M12→1′2′ |2), (3)

with
∫

pi
= ∫

d3pi

(2π)32Ei
. The matrix element M includes all

gg → gg tree-level diagrams and color factors as appropriate
for the SU(2) gauge group.

We employ the test particle method to replace the continu-
ous distribution f (x, p, q) by a large number of test particles,
which leads to Wong’s equations [9]

ẋi(t) = vi(t), (4)

ṗi(t) = gqa
i (t)

(
Ea(t) + vi(t) × Ba(t)

)
, (5)

q̇i(t) = −igv
µ

i (t)[Aµ(t), qi(t)], (6)

for the ith test particle, whose coordinates are xi(t), pi(t), and
qa

i (t). The time evolution of the Yang-Mills field is determined
by the standard Hamiltonian method [10] in A0 = 0 gauge.
Our lattices have periodic boundary conditions and a lattice
spacing a, the physical value of which is fixed by the length
of the lattice L = aNs . Dimensionless lattice variables scale
such that when the number Ns of lattice sites is changed, L

remains fixed (see Refs. [11,12] for details).
The theory without collisions as given by Eqs. (4)–(6)

coupled to the lattice Yang-Mills equations was first solved in
Ref. [13] to study Chern-Simons number diffusion in non-
Abelian gauge theories at finite temperature. It was applied
later also to the problem of gauge-field instabilities in
anisotropic SU(2) plasmas [11,12]. Our numerical imple-
mentation is based on the improved formulation detailed in
Ref. [12], where the non-Abelian currents generated by the
hard particle modes on the lattice sites are “smeared” in time.
This technique makes simulations in three dimensions on large
lattices possible in practice.

In this article we go beyond those earlier simulations by
accounting also for hard (short-distance) collisions among par-
ticles. The collision term is incorporated using the stochastic
method [14]. Scattering processes are determined by sampling
possible transitions according to the collision rate in a lattice
cell:

dP2→2

dt
= ṽrel

σ2→2

a3Ntest
, (7)

with ṽrel = s/(2E1E2), where s is the invariant mass of a gluon
pair. The total cross section is given by

σ2→2 =
∫ s/2

k∗2

dσ

dq2
dq2. (8)

The momentum transfer is determined in the center of mass
frame of the two colliding particles from the probability

distribution

P(q2) = 1

σ2→2

dσ

dq2
. (9)

In Eq. (8) we have introduced an infrared cutoff k∗ for point-
like binary collisions. To avoid double-counting, this cutoff
should be on the order of the hardest field mode that can
be represented on the given lattice, k∗ 	 π/a. Momentum
transfers below k∗ are mediated by the classical Yang-Mills
field; a soft scattering corresponds to deflection of a particle
in the field of the other(s). Note that we use the color averaged
expression for the collision term. The color charge of a particle
is hence not affected by a hard collision.

Physically, the separation scale k∗ should be sufficiently
small so that the soft field modes below k∗ are highly occupied
[10]. On the other hand, k∗ should be sufficiently large to
ensure that hard modes can be represented by particles and
that collisions are described correctly by Eq. (3). Furthermore,
unstable modes arise in anisotropic plasmas (see below), all of
which should be located below k∗. Because g ∼ 1, in practice,
we choose k∗ = √

3π/a to be on the order of the temperature
for isotropic systems and on the order of the hard transverse
momentum scale for anisotropic plasmas. Independently, one
should have m∞L  1 and m∞a � 1: the first condition
ensures that the relevant soft modes actually fit on the lattice
while the latter corresponds to the continuum limit. Here, m∞
denotes the soft scale and is given by

m2
∞ = g2Nc

∫
d3p

(2π )3

f (p)

|p| ∼ g2Nc

ng

ph

, (10)

where Nc = 2 is the number of colors and ng denotes the
number density of hard gluons, summed over two helicities
and N2

c − 1 colors. Also, ph ≈ 3T is the typical momentum
of a hard particle from the medium.

As we have argued above, we shall choose the inverse
lattice spacing to be on the order of the temperature of
the medium. Thus, with Eq. (10) the continuum condition
m∞a � 1 roughly translates into

g2Nc

ng

T 3
� 1. (11)

To satisfy this relation with g ∼ 1, in our numerical simula-
tions below we shall assume an extremely hot medium, T 3 
ng . However, this should be viewed simply as a numerical
procedure, which ensures that the simulations are carried out
near the continuum (or weak-coupling) limit. We verify below
that transverse momentum broadening of a high-energy jet
passing through a thermal medium is independent of T if
the density and the ratio of jet momentum to temperature is
fixed [compare to Eq. (13) below]. One may therefore obtain a
useful “weak-coupling” estimate of 〈p2

⊥〉 (resp. for the related
transport coefficient q̂) by extrapolating our measurements
down to realistic temperatures.

III. JET BROADENING IN AN ISOTROPIC PLASMA

We first consider a heat bath of particles with a density
of ng = 10/fm3 and an average particle momentum of 3T =
12 GeV. The rather extreme “temperature” is chosen to satisfy
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FIG. 1. (Color online) Momentum diffusion caused by particle-
field interactions only. Additional high-momentum modes on larger
lattices cause stronger momentum broadening. T = 4 GeV, g =
2, Nc = 2, ng = 10/fm3, m∞ = 1.4/fm.

the above conditions on Ns = 32 · · · 128 lattices, assuming
L = 15 fm. For a given lattice (resp. k∗) we take the initial
energy density of the thermalized fields to be∫

d3k

(2π )3
kf̂Bose(k)	(k∗ − k), (12)

where f̂Bose(k) = ng/(2T 3ζ (3))/(ek/T − 1) is a Bose distribu-
tion normalized to the assumed particle density ng and ζ is the
Riemann ζ function. This is equivalent to the energy density of
Bose-distributed particles with momenta below the separation
momentum k∗. The initial spectrum is fixed to Coulomb gauge
and Ai ∼ 1/k (in continuum notation); also, for simplicity we
set Ei = 0 at the initial time but electric fields build up quickly
within just a few time steps.

We then measure the momentum broadening 〈p2
⊥〉(t) of

high-energy test particles (p/3T ≈ 5) passing through this
medium. Figure 1 shows that in the collisionless case, C = 0,
the broadening is stronger on larger lattices, which accom-
modate harder field modes. However, Fig. 2 demonstrates
that collisions with momentum exchange larger than k∗(a)
compensate for this growth and lead to approximately lattice-
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FIG. 2. (Color online) Momentum diffusion by both particle-field
and direct particle-particle interactions. The result is independent of
the separation scale k∗. Same parameters as in Fig. 1.

spacing independent results even when k∗ varies by a factor of
four.

Figures 1 and 2 show that the relative contributions to
〈p2

⊥〉 from soft and hard exchanges can depend significantly
on k∗, even for p/k∗ = O(10). It is clear, therefore, that
transport coefficients obtained in the leading logarithmic (LL)
approximation from the pure Boltzmann approach (without
soft fields) will be rather sensitive to the infrared cutoff k∗.
Fitting the difference of Fig. 2 and Fig. 1 (i.e., the hard
contribution) to the LL formula,

d〈p2
⊥〉

dt
= CA

CF

g4

8π
ng log

(
C2 p2

k∗2

)
, (13)

gives C 	 0.43, 0.41, 0.31 for k∗/T = 2
√

3,
√

3, 0.5
√

3,
respectively. For the full calculation C 	 0.61k∗/(

√
3T ).

A related and frequently used transport coefficient is q̂ [2].
It is the typical momentum transfer (squared) per collision
divided by the mean-free path, which is nothing but 〈p2

⊥〉(t)/t .
From Fig. 2, q̂ 	 2.2 GeV2/fm for Nc = 2, ng = 10/fm3 and
p/(3T ) ≈ 5. Our cutoff independent value for q̂ is in the range
extracted from phenomenological analyses of jet-quenching
data from BNL Relativistic Heavy Ion Collider (RHIC) [15].

In Fig. 3 we show that q̂ is indeed largely independent
of the separation scale k∗. In these simulations, test particles
were explicitly bunched into colorless jets, such that radiative
energy loss does not contribute. This explains why one does
not need bremsstrahlung processes in the collision term to
obtain a cutoff independent result. Note that the magnitude of
q̂ 	 1.3 GeV2/fm at ng = 5/fm3 and p/(3T ) = 16 is smaller
than the extrapolation obtained from Eq. (13) with the constant
under the logarithm fixed from the previous runs at ng =
10/fm3 and p/(3T ) = 5; hence, C effectively depends on the
density and the jet momentum.

In Fig. 4 we verify that q̂ does not depend on the
temperature T so long as the particle density ng and the
ratio of jet momentum to temperature, p/T , is fixed. Thus,
our measurement of q̂ 	 2.2 GeV2/fm may be considered
as a weak-coupling extrapolation to realistic temperatures of
T ≈ 300 MeV and jet momenta of about 4.5 GeV.
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FIG. 3. q̂ as a function of k∗ at fixed ng = 5/fm3 and p/(3T ) = 16.
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FIG. 4. q̂ as a function of T at fixed ng = 10/fm3 and p/(3T ) = 5.

IV. JET BROADENING IN AN UNSTABLE PLASMA

In heavy-ion collisions, locally anisotropic momentum
distributions can emerge due to the longitudinal expansion.
Such anisotropies generically give rise to instabilities [5];
see Refs. [11,12] for simulations of unstable non-Abelian
plasmas within the present “Wong-Yang-Mills” approach.
Here, we investigate their effect on the momentum broadening
of jets, including the effect of collisions. The initial momentum
distribution for the hard plasma gluons is taken to be

f (p) = ng

(
2π

ph

)2

δ(pz) exp(−p⊥/ph), (14)

with p⊥ =
√

p2
x + p2

y . This represents a quasithermal distri-
bution in two dimensions with average momentum = 2 ph.
We initialize small-amplitude fields sampled from a Gaussian
distribution and set k∗ ≈ ph, for the reasons alluded to above.
The band of unstable modes is located below k∗.

We find that binary collisions among hard particles reduce
the growth rate of unstable field modes, in agreement with
expectations [16]. However, for ph = 16 GeV, L = 5 fm, ng =
10/fm3, g = 2,m∞ 	 1/fm, and k∗ ≈ 1.7ph, the reduction of
the growth rate is only approximately 5%, increasing to about
15% when k∗ ≈ 0.9ph. This is due to fewer available field
modes and more randomizing collisions.

Next, we add additional high-momentum particles with
px = 12ph and px = 6ph, respectively, to investigate the
broadening in the y and z directions via the variances

q̂⊥(px) := d

dt
〈(�p⊥)2〉, q̂L(px) := d

dt
〈(�pz)

2〉. (15)

The quantity
√

q̂L/q̂⊥ can be roughly associated with the ratio
of jet correlation widths in azimuth and rapidity:

√
q̂L/q̂⊥ ≈

〈�η〉/〈�φ〉.
Figure 5 shows the time evolution of 〈p2

⊥〉 and of 〈p2
z 〉. The

strong growth of the soft fields sets in at about t 	 10 m−1
∞ and

saturates around t 	 25m−1
∞ due to the finite lattice spacing

(also see Ref. [12]). Outside the above time interval the ratio
q̂L/q̂⊥ ≈ 1. During the period of instability, however,

q̂L

q̂⊥
≈ 2.3, (16)
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FIG. 5. (Color online) Momentum broadening of a jet in the
directions transverse to its initial momentum. pz is directed along
the beam axis; p⊥ is transverse to the beam. Anisotropic plasma, 643

lattice.

for both jet energies shown in Fig. 5. We find approximately
the same ratio for denser plasmas (ng = 20/fm3 and ng =
40/fm3). Reducing the number of lattice sites and scaling ph

down to 8 GeV gives q̂L/q̂⊥ ≈ 2.1. However, these latter runs
are rather far from the continuum limit and lattice artifacts are
significant [12].

The explanation for the larger broadening along the beam
axis is as follows. In the Abelian case the instability generates
predominantly transverse magnetic fields that deflect the
particles in the z direction [7].

In the non-Abelian case, however, on three-dimensional
lattices transverse magnetic fields are much less dominant (see,
e.g., Fig. 5 in Ref. [12]) although they do form larger coherent
domains in the transverse plane at intermediate times than E⊥
(Fig. 6). Longitudinal fields and locally nonzero Chern-Simons
number ∼tr E · B emerge, also. Nevertheless, Fig. 7 shows that
Ez > Bz, aside from B⊥ > E⊥. Hence, the field configurations
are such that particles are deflected preferentially in the
longitudinal z direction (to restore isotropy).

A third contribution to pz broadening in an expanding
plasma, not considered explicitly here, is due to a longitudinal
collective flow field that “blows” the jet fragments to the
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side [17]. This mechanism is also available for collision domi-
nated plasmas with (nearly) isotropic momentum distribution.
However, rather strong flow gradients seem to be required to re-
produce the observed broadening of midrapidity jets (the flow
velocity has to vary substantially within the narrow jet cone).

In contrast, color fields will naturally deflect particles with
lower momentum by larger angles (�p ∼ E,B): the jet profile
broadens even if the induced radiation is exactly collinear. It is
therefore important to determine, experimentally, whether the
asymmetric broadening is related to the macroscopic collective
flow or to an anisotropy of the plasma in the local rest frame.
More detailed simulations should account, also, for the fact
that small-x gluons are already correlated over large rapidity
intervals at the initial time [18].
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