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Forward production of protons and pions in heavy-ion collisions
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The problem of forward production of hadrons in heavy-ion collisions at RHIC is revisited with a modification
of the theoretical treatment on the one hand and with the use of new data on the other. The basic formalism
for hadronization remains the same as before, namely, recombination, but the details of momentum degradation
and quark regeneration are improved. Recent data on the p/π and p̄/p ratios are used to constrain the value
of the degradation parameter. The transverse momentum (pT ) spectrum of the average charged particles is well
reproduced. A prediction on the pT dependence of the p̄/p ratio at η = 3.2 is made.
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I. INTRODUCTION

Theoretical study of hadron production in the forward
direction in heavy-ion collisions is a difficult problem for
several reasons. The empirical fact that the proton/pion ratio
is large at large rapidity implies that neither fragmentation nor
hydrodynamics can be successful in describing the process
of hadron production in that region. Recombination is the
natural hadronization mechanism for large baryon/meson
ratio, but the parton momentum distribution at low Q2 and
large momentum fraction x (contributing to hadronic Feynman
xF in the range 0.3 < xF < 1.0) in nuclear collisions is hard
to determine, especially when momentum degradation and
soft-parton regeneration cannot be ignored. The use of data
as input to constrain unknown parameters is unavoidable;
however, that is also where further complexity arises. Data
on forward production at η = 3.2 ± 0.2 depend on both the
longitudinal and transverse momenta, pL and pT , resulting in
a smearing of the x distributions of the partons that makes
phenomenology difficult owing to the interconnectedness of
all aspects of the dynamical problem. The problem was first
studied in the framework of the recombination model in
Refs. [1–3] with the effects of parton regeneration taken into
account [4,5]. The original data from PHOBOS show the
distribution of charged particles at large η, but without a
pT measurement the value of xF cannot be determined [6].
BRAHMS has measured both the η and pT dependencies
of charged hadrons [7], but without particle identification
the p/π ratio cannot be inferred. Very recently, there are
preliminary data that indicate the p/π ratio at η = 3.2 to be
very large, ∼4 at pT = 1.1 GeV/c and 0–10% centrality in
Au-Au collisions at

√
s = 62.4 GeV [8], about three times

higher than the prediction in Ref. [5]. The aim of this paper
is to reexamine the problem of forward production and show
that, with appropriate changes in the treatment of degradation,
regeneration, and transverse momentum, the large p/π ratio
in the fragmentation region can be understood.

In addition to the new data on the p/π ratio there is also
a new presentation of the p̄/p ratio by BRAHMS for

√
s =

62.4 GeV, where the value of Rp̄/p � 0.02 is given [9]. That
value differs from the value 0.05 inferred from the figure
presented in Ref. [10], which was the value used in Ref. [5].

The new values of Rp/π and Rp̄/p are consistent with the
implication that there are more quarks or less antiquarks than
what were obtained in Ref. [5]. This result provides a hint for
us to look for an area in the formalism where the treatment of
degradation and regeneration may be improved. Regeneration
is an effect that depends on momentum degradation in forward
propagation, which in turn depends on the degradation param-
eter κ , which is not known except by fitting the data. With
new data available, the whole procedure needs to be revised.
In this paper we change the strategy of our phenomenology to
take advantage of the additional constraints provided by the
particle ratios.

The formalism for forward production is basically the same
as discussed in Refs. [4,5]. We describe its essence in Sec. II,
but with special emphasis on changes that are necessary to
improve the treatment. In Sec. III momentum degradation and
quark regeneration are investigated with significant changes
from Refs. [4,5]. How the data on particle ratio can be used to
constrain κ is discussed in Sec. IV, followed by consideration
of the transverse momentum in Sec. V. Conclusions are given
in Sec. VI.

II. BASIC FORMALISM FOR FORWARD PRODUCTION

In the recombination model (RM) [1–3] hadron production
can be described by the basic equations

HAB
p (x) =

∫
dx1

x1

dx2

x2

dx3

x3
FAB

uud (x1, x2, x3)Rp(x1, x2, x3, x),

(1)

HAB
π (x) =

∫
dx1

x1

dx2

x2
FAB

qq̄ (x1, x2)Rπ (x1, x2, x) (2)

for protons and pions, respectively, where only a one-
dimensional consideration is needed for forward production,
with x ≡ xF = 2pL/

√
s for hadrons and xi being the momen-

tum fractions of partons [4,5]. The recombination functions
(RFs), Rp and Rπ , depend on the wave functions of the hadrons
and are summarized in Ref. [4]. The major task to render
Eqs. (1) and (2) useful is to determine the parton distributions
FAB

uud and FAB
qq̄ for the problem at hand. For forward production
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the largest contribution can be attained if the quarks arise from
different initial nucleons so that their momenta do not have to
be shared among the quarks originating from the same nucleon.
That means FAB

uud (x1, x2, x3) depends on a factorizable product
of independent quark distributions Fνi

q (xi) at momentum
fraction xi of an incident nucleon after νi collisions with the
target nucleus B; similarly, FAB

qq̄ (x1, x2) involves quark and
antiquark distributions. If only three or two nucleons in the
projectile A are considered in each collision, we can define
the p and π distributions from such sources as H (3)B

p and
H (2)B

π , which are then related to the overall distributions for
AB collisions by

HAB
p (x, b) =

∫
d2s

σ

[σTA(s)]3

3!
H (3)B

p (x, b, s), (3)

HAB
π (x, b) =

∫
d2s

σ

[σTA(s)]2

2!
H (2)B

π (x, b, s), (4)

where b is the impact parameter. These formulas are derived
in Ref. [4]. Clearly, to describe H (3)B

p and H (2)B
π is a simpler

problem than in Eqs. (1) and (2), since the corresponding par-
ton distributions are for three and two nucleons, respectively,
in the projectile. In Eqs. (3) and (4) σ denotes the inelastic
cross section of nucleon-nucleon collisions, and TA(s) is the
thickness function for a tube in A at impact parameter s.

The recombination equation for the reduced projectile
going through the target B is as in Eqs. (1) and (2)

H (3)B
p (x, b, s) =

∫
dx1

x1

dx2

x2

dx3

x3
F (3)B

qqq (x1, x2, x3; |�s − �b|)
×Rp(x1, x2, x3, x), (5)

H (2)B
π (x, b, s) =

∫
dx1

x1

dx2

x2
F

(2)B
qq̄ (x1, x2; |�s − �b|)

×Rπ (x1, x2, x), (6)

where F (3)B
qqq (x1, x2, x3; |�s − �b|) is the three-quark joint distri-

bution after three nucleons transverse the target nucleus at
impact parameter |�s − �b| in B. We shall neglect the minor
flavor dependence of nucleons and quarks in the following.
Similarly, F (2)B

qq̄ (x1, x2; |�s − �b|) is the qq̄ distribution after two
nucleons go through B. In Ref. [4]F (3)B

qqq is assumed to have a
factorizable form. We now give a derivation of that form and
in the process determine the appropriate average number of
collisions. The same follows for F

(2)B
qq̄ .

If each nucleon in the projectile nucleus A at �s makes on
average ν̄ collisions in B, where

ν̄ ≡ ν̄pB (|�s − �b|) = σTB(|�s − �b|)
1 − exp[−σTB(|�s − �b|)] , (7)

then three nucleons make on average 3ν̄ collisions. Assuming
a Poisson distribution in ν, we have

H (3)B
p (x; b, s) =

∑
ν

H (3)B
p (x; ν)P3ν̄(ν), (8)

where

Pν̄(ν) = ν̄ν

ν!
e−ν̄ . (9)

By applying Eq. (8) to Eq. (5) the sum over ν can be moved
past the integrals and we can write

F (3)B
qqq (x1, x2, x3; |�s − �b|) =

∑
ν

F (3)B
qqq (x1, x2, x3; ν)P3ν̄(ν).

(10)

Now, ν is the total number of wounded nucleons experienced
by the target nucleus B, irrespective of how it is distributed
among the incident nucleons. With three such nucleons that
are independent, we have

F (3)B
qqq (x1, x2, x3; ν)

= 1

3ν

∑
ν1,ν2,ν3

ν!

ν1!ν2!ν3!
Fν1

q (x1)Fν2
q (x2)Fν3

q (x3), (11)

where the summation over νi is constrained by
∑

i νi = ν, each
starting from νi = 0. Each term in the summand is a product
of single-quark distributions in a proton that has undergone
νi collisions with the target. They include the effects of
degradation and regeneration to be discussed in the following.

The use of 3ν̄ in the Poisson distribution in Eq. (10) is based
on the assumption that all three nucleons in the projectile
are lined up in the same tube at impact parameter |�s − �b|
in B, since otherwise the forward partons are not nearby in
the transverse plane and are unlikely to recombine to form
a proton. Thus the same ν̄pB applies to each of the three
nucleons. By substituting Eq. (11) into (10) and making use
of the implicit δν,ν1+ν2+ν3 contained in the summation in (11),
the sum over ν can readily be carried out, yielding

F (3)B
qqq (x1, x2, x3; |�s − �b|) =

3∏
i=1

F ν̄
q (xi), (12)

where

F ν̄
q (xi) =

∞∑
νi=0

Fνi

q (xi)Pν̄(νi), (13)

with ν̄ being defined in Eq. (7) for pB collisions. Using
Eq. (12) in Eq. (5) and then in Eq. (3) we have reduced
the proton production problem in AB collisions to the only
issue at hand [i.e., how the parton distribution F ν̄

q (xi) is to be
determined].

For forward production we ignore the production of reso-
nances and their decays. A proton is in the symmetric state in
SU(2) × SU(2) for (spin, isospin). In 2 × 2 × 2 = 4 + 2a + 2s

for qqq, the symmetric state (2s , 2s) + (2a, 2a) is 8 out of a
total of 64 states, so the statistical factor gst in Rp(x1, x2, x3, x)
is 1/8. For the pion there is no change in Rπ (x1, x2, x) from
that given in Ref. [4].

III. MOMENTUM DEGRADATION AND QUARK
REGENERATION

The problem of forward production in pB collisions has
been treated in the framework of the valon model, which
connects the bound-state problem of a static proton (in terms
of constituent quarks) with the structure problem of a proton
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in collision (in terms of partons) [2,3,11]. Without momentum
degradation the quark distribution in a free proton is given by

Fq(xi,Q
2) =

∫ 1

xi

dyG(y)K

(
xi

y
,Q2

)
, (14)

where G(y) is the valon distribution, with y being the
momentum fraction of the valon, and K(z,Q2) is the quark
distribution in a valon, both of which have been parametrized
and updated in Ref. [12]. With momentum degradation
in proton-nucleus collisions both G(y) and K(z,Q2) are
modified, as described in Refs. [4,5]. However, we have come
to the realization that Eq. (14) itself needs modification, a new
development that we now describe from the beginning.

A proton has three valons, which are the constituent quarks
in the bound-state problem. When a proton wounds ν nucleons
in the target nucleus, it does not matter which of the three
valons causes the wounding; they can act independently. It is
important to recognize the possibility that one of the valons
may not undergo any momentum degradation, while the other
two are responsible for causing ν wounded nucleons in the
target. Although the probability of that is low, the valence
quark in the undegraded valon would have higher momentum.
The point is that we should consider all possibilities, which
can be expressed in the form

Fν
q (xi) = 1

2ν

ν∑
µ=0

ν!

µ!(ν − µ)!

∫ κµ

xi

dy ′G
′
µ(y ′)K

(
xi

y ′

)
, (15)

where the Q2 dependence, shown explicitly in Eq. (14), is
suppressed because it is at some unspecified low value that is
not of central importance here. G

′
µ(y ′) is the modified valon

distribution due to degradation to be discussed in the following,
together with the upper limit of integration. The Poissonian
averaging of µ, the number of nucleons in B wounded by a
valon, allows µ to be zero, while the total number of wounded
nucleons is fixed at ν. Thus the way that the valons are treated
in a projectile nucleon is analogous to the way that the nucleons
are treated in a projectile nucleus.

If the momentum fraction that a valon retains after a
collision with a nucleon in B is κ , then after µ collisions
the modified valon distribution is

y ′G′
µ(y ′) =

∫ 1

y ′
dyG(y)κµδ

(
y ′

y
− κµ

)
, (16)

which satisfies the normalization condition∫
dy ′G′

µ(y ′) =
∫

dyG(y) = 1. (17)

The solution of Eq. (16) is

G′
µ(y ′) = κ−µG

(
κ−µy ′) . (18)

It is clear that the maximum value of y ′ is κµ because of the
µ-fold degradation, thus setting the upper limit of integration in
Eq. (15). Furthermore, the average momentum of the degraded
valon is

〈y ′〉µ =
∫

dy ′y ′G′
µ(y ′) = κµ〈y〉 = 1

3
κµ, (19)

where 〈y〉 is the average momentum fraction of a valon in a
free proton and is 1/3. Thus Eq. (19) expresses the effect of

degradation in this simple model of multiplicative momentum
loss of the sequential collision process.

The valence quark distribution in a proton after ν collision
is as expressed in Eq. (15), but with K(z) replaced by the
nonsinglet component KNS(z), which is specified in Ref. [12].
Owing to the µ dependence of G′

µ(y ′) in Eqs. (18) and (19),
the sum over µ in Eq. (15) acquires special significance at low
µ, as remarked earlier before that equation. It is the µ = 0 term
that renders the valence quark distribution at intermediate xi

insensitive to the value of κ . In this respect our treatment here
is an improvement over that in Refs. [4,5].

For the regenerated sea quark distributions the earlier
treatment can also be improved. In Ref. [5] the quark
distribution K(z) in a valon is written in the two-component
form

K(z) = KNS(z) + L′′(z), (20)

where L′′(z) represents the regenerated sea quark distribution
in a valon, including gluon conversion. The regenerated q̄

distribution, Fν
q̄ (xi), for a nucleon making ν collisions with the

target is then as given in Eq. (15), but with K(z) replaced by
L′′(z). We now realize that such a convolution equation gives
only a part of the total q̄ distribution because the momentum
lost by a nucleon after ν collisions is not totally accounted for
by that convolution equation. The average momentum loss of a
nucleon as a fraction of the initial momentum after ν collisions
is 1 − 〈x〉ν , where

〈x〉ν = 1

3ν

∑
µ1,µ2,µ3

ν!

µ1!µ2!µ3!
κµ1κµ2κµ3 = κν. (21)

We assume that the momentum loss is converted totally
to qq̄ pairs with q being u and d, but not s, which is
suppressed because of the higher mass of the strange quark.
Thus the regenerated q̄(ū or d̄) distribution for each nucleon
in the projectile, Fν

q̄ (x), should satisfy the sum rule (with the
subscript i on xi suppressed)∫

dxF ν
q̄ (x) = 1

4
(1 − κν). (22)

We adopt the approximate form for the x dependence:

Fν
q̄ (x) = fν(1 − x)n, (23)

so fν = (1 − κν)/4(n + 1). We shall use n = 7, since that is
suggested by the q̄ parton distribution of a free nucleon for x

not too small and at low Q2. For the values of κ and ν that we
encounter in the following, Eq. (23) gives values of Fν

q̄ (x), for
x > 0.2, far greater than those obtained by the convolution of
G′

ν(y ′) with L′′(x/y ′), as determined in Ref. [5]; the latter is
therefore neglected hereafter.

To summarize, for quark (u or d) distributions in pB

collisions after ν wounded nucleons in B, we have

Fν
q (x) = Fν

qv
(x) + Fν

q̄ (x), (24)

where Fν
qv

(x) is the valence quark distribution given by
Eq. (15) with KNS(z) in place of K(z), and Fν

q̄ (x) is the
regenerated quark distribution given by Eq. (23). The antiquark
distribution is, of course, just the second term in Eq. (24).
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FIG. 1. The x distributions of produced protons, pions, and
antiprotons in Au-Au collisions for b = 3.3 fm,

√
s = 62.4 GeV,

and κ = 0.7.

IV. PARTICLE RATIOS

Having obtained the modified quark distribution resulting
from degradation and regeneration, we can now use Eq. (24)
in Eq. (13) for the ith nucleon, and then in Eq. (12) for qqq

distribution emerging from three nucleons colliding with target
B at impact parameter |�s − �b|. That result can then be used in
Eqs. (3) and (5) to determine the x distribution of produced
protons in AB collisions. Exactly the same procedure can be
followed to obtain the spectra of π and p̄ with appropriate use
of the the q̄ distribution for qq̄ and q̄q̄q̄ recombination.

We show in Fig. 1 the results of our calculation of the x

distributions of p, π , and p̄ for κ = 0.7 and b = 3.3 fm at
0%–10% centrality in Au-Au collisions. The value of κ is
chosen for reasons to be given in the following. Evidently, the
p distribution is much higher than the other two for x > 0.5,
since it is due to the recombination of three valence quarks
from three different nucleons in the projectile A. Moreover,
it decreases more slowly with increasing x owing to the
slower decrease of valence quark distribution compared to
the sea quarks. Thus the p/π ratio is large and increases with
increasing x. The π distribution is much higher than the p̄

distribution, because of the effect of the valence quark in the
pion that is lacking in the antiproton. Similar plots can also be
made for other values of κ , but in the absence of any data on
the hadronic x distributions the comparison among different κ

values can better be presented in a different format, as shown
in the following. The general trend is that lower κ leads to a
higher level of q̄ and therefore a higher π and p̄ at low x.

Recently, data have become available on the particle ratios
of both p̄/p [9] and p/π [8]. It is then very revealing for
us to make parametric plots of those ratios for various values
of x and κ . We use Eqs. (1) and (2) to calculate HAB

h (x, κ)
for b = 3.3 fm and h = p, π, p̄ and show their ratios Hp̄/Hp

versus Hp/Hπ in Fig. 2, in which the grid lines are for constant
x (in solid lines) and constant κ (in dashed lines). It is clear
that all lines have negative slopes in that figure because q̄ is
involved in the numerator of Hp̄/Hp, but in the denominator
of Hp/Hπ . Large values of Hp/Hπ can be achieved only
when x > 0.4. That is the region where the valence quarks
dominate and the sea quarks are suppressed. At fixed x both

2 4 6 8
0.01

0.02

0.03

0.04

BRAHMS
η=3.2 0−10%

x=0.4

x=0.5 x=0.6

κ=0.60

κ=0.65

κ=0.70κ=0.75

|

p/π

p/
p

FIG. 2. A plot of the antiproton/proton ratio vs the proton/pion
ratio for various fixed values of x (solid lines) and κ (dashed lines)
for Au-Au collisions at 0%–10% centrality. The theoretical curves
are determined by calculating Hh′ (x, κ)/Hh(x, κ). The experimental
point is from the BRAHMS data on Rp̄/p [9] and Rp/π [8] at

√
s =

62.4 GeV and η = 3.2 ± 0.2.

ratios depend sensitively on κ , more so for Hp̄/Hp than for
Hp/Hπ , because of the number of q̄ involved. The smaller κ

is, the more degradation there is, and the regenerated q̄ boosts
Hp̄/Hp and suppresses Hp/Hπ .

The data on Rp̄/p and Rp/π depend on the values of pT

at which the hadrons are included in the determination of the
ratios. Rh′/h cannot be identified with Hh′/Hh until after the
pT distribution is considered, a topic to be discussed in the next
section. So far we have only treated the dynamical processes
that lead to the x distributions. At fixed η the longitudinal
and transverse momenta are, of course, not kinematically
independent. The range of x that is phenomenologically
relevant to our study should correspond to the range of pT

in which the experimental values of the particle ratios are
determined. Since the mismatch between Rh′/h and Hh′/Hh is
not large, as we shall discuss later, let us here mark on Fig. 2
the data point that corresponds to [8,9]

Rp/π = 4.08 ± 0.2,
(25)

η = 3.2 ± 0.2, 0.9 < pT < 1.3 GeV/c,

Rp̄/p = 0.0231 ± 0.0012,
(26)

y = 3.0 ± 0.1, 0.5 < pT < 1.4 GeV/c.

The grid lines in Fig. 2 then suggest that the relevant values of
x and κ are

x � 0.55 and κ � 0.67. (27)

For that reason the x distributions in Fig. 1 are shown for
κ = 0.7.

What we have done so far is essentially the first step of an
iteration process, in which the focus is on the x distribution.
The next step is to consider the transverse momentum based
on the result of the first step and to improve on the overall
phenomenology.
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V. TRANSVERSE MOMENTUM

The pT dependence of the produced particles has been
discussed in Ref. [5]. Let us first give a summary of that
discussion. Since hard scattering is suppressed in the frag-
mentation region, we ignore shower partons for x > 0.2. This
approximation is supported by the data on the pT distribution
of charged particles at η = 3.2 [7], which shows an exponential
behavior for pT up to 2 GeV/c without up-bending due to
power-law behavior. Thus we write the x and pT distributions
of a produced hadron h in the factorizable form

x

pT

dNh

dxdpT

= Hh(x, κ)Vh(pT ), (28)

where the transverse part is normalized by∫ ∞

0
dpT pT Vh(pT ) = 1, (29)

rendering

x
dNh

dx
= Hh(x, κ), (30)

which is our starting point in Eqs. (1) and (2).
The properties of Vh(pT ) described in Ref. [5] are adapted

from the treatment of pT distribution in central collisions
at mid-rapidity for which the only recombination process is
in the transverse plane [13]. Here, we have treated in detail
the degradation, regeneration, and recombination of partons
in the forward production, so it is inappropriate to append a
separate recombination of thermal partons with independent
recombination functions for the transverse component. Since
no shower partons are involved, we shall simply take a common
exponential form for all hadrons but allow the inverse slopes
Th to differ for hadrons with different masses, as suggested by
hydrodynamical flow. Thus we write

Vh(pT ) = 1

2T 2
h

e−pT /Th , (31)

with normalization chosen to satisfy Eq. (29). We parametrize
Th by

Th = T0 + mh〈vt 〉2, (32)

where the second term expresses the flow contribution. Since
at large x the dominant momentum direction is longitudinal,
the mass-dependent component of the transverse momentum
is expected to be small compared to the thermal component
characterized by T0.

Although x and pT appear to be independent in Eq. (28),
they are kinematically constrained when η is fixed. They are
related by

x = 2pT√
s

sinh η. (33)

At η = 3.2, the range 1 � pT � 1.5 GeV/c corresponds to
0.39 � x � 0.59. However, if the rapidity y is fixed, the
relationship depends on the particle mass. At y = 3.0, the
range 1 � pT � 1.5 GeV/c corresponds to 0.32 � xπ � 0.48
and 0.44 � xp � 0.57. The value x � 0.55 determined from
our theoretical grid lines in Fig. 2 lies within the range of x

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

2

4

6

8

10

BRAHMS

η=3.2  0−10%

H
p
/H

π

p
T
 (GeV/c)

R
p/

π

FIG. 3. The pT dependence of the proton/pion ratio in Au-Au
collisions at η = 3.2. The dashed line is obtained from the ratio
Hp[x(pT )]/Hπ [x(pT )] with κ = 0.67. The solid line includes the
factor Vp(pT )/Vπ (pT ). The data (preliminary) are from Ref. [8].

values above for the data on Rp/π at η = 3.2 in Eq. (25) and
also within the range of xp values above for the data on Rp̄/p

at y = 3.0 in Eq. (26). This is a nontrivial achievement, since
the formalism described in Sec. III makes no reference to pT ,
so the grid lines for the ratios of Hh′/h(x, κ) at constant κ and
x need not imply any pT values that correspond to the relevant
x and pT values of the experimental Rh′/h at fixed η.

The pT distribution given in Ref. [7] is to be identified with
our calculation as follows:

dN

2πpT dpT dη
= 1

2π
Hh(x)Vh(pT ), (34)

since upon integration over pT dpT dφ and by using Eq. (29) it
yields Hh(x). Strictly speaking, holding η fixed on the left-hand
side is not the same as holding x fixed on the right-hand side.
But the data are analyzed at η = 3.2 ± 0.2, so there are bands
of η and x values in which Eq. (34) is approximately valid.
The data on Rp/π (pT ) are then to be related to our calculation
by

Rp/π (pT ) = Hp[x(pT )]

Hπ [x(pT )]

Vp(pT )

Vπ (pT )
, (35)

where the ratio Hp/Hπ is to be determined by fixing η = 3.2
and κ = 0.67. In Fig. 3 we show that ratio by the dashed
line, which has a significant pT dependence. Furthermore,
the average magnitude of Hp/Hπ accounts for the major part
of Rp/π , and it cannot arise without a realistic treatment of
degradation and regeneration. The reason for the dashed line
to increase with pT is that at fixed η higher pT means higher
x, where q̄ is suppressed compared to q, resulting in π being
suppressed relative to p. The solid line in Fig. 3 includes the
effect of Vp/Vπ , which we get from Eqs. (31) and (32):

Vp(pT )

Vπ (pT )
=

(
Tπ

Tp

)2

exp

[
−pT

(
1

Tp

− 1

Tπ

)]
. (36)

Since the mh〈vt 〉2 term in Eq. (32) is small compared to T0, as
we shall show presently, this ratio is approximately exp[(mp −
mπ )pT 〈vt 〉2/T 2

0 ], which shows the effect of mass difference in
elevating the dashed line to the solid line. The result of fitting
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FIG. 4. The pT distribution of average charged hadrons in Au-Au
collisions at η = 3.2. The data are from Ref. [7]. The solid line is
obtained by use of Eq. (34) for h± = [p + p̄ + 1.2(π+ + π−)]/2
and κ = 0.67.

the data [8] gives

〈vt 〉2
/
T 2

0 = 0.7 (GeV/c)−2. (37)

This is consistent with mp〈vt 〉2 
 T0, when T0 is 0.2 GeV/c
(to be determined in the following).

The pT distribution itself is an additional test of our
model, since the absolute normalization is not canceled as
in a ratio. The data [7] are for all charged hadrons without
particle identification, for which we treat (h+ + h−)/2 as
h± = [p + p̄ + 1.2(π+ + π−)]/2, where a K/π ratio of �0.2
is used [9]. As the third step in our iteration process, we
calculate Hh±(x)Vh± (pT )/2π, holding x and κ fixed as in
Eq. (27), and adjust T0 to fit the data according to Eq. (34). The
result is shown in Fig. 4 for T0 = 200 MeV; it agrees with the
data very well. Since the normalization is fixed by the Hh(x, κ)
functions and is not adjustable, a good fit is remarkable.

Putting the obtained value of T0 in Eq. (37), we have

T0 = 0.2 GeV/c, 〈vt 〉2 = 0.028. (38)

The value of 〈vt 〉 � 0.17 seems reasonable in view of the
dominance of longitudinal expansion in the fragmentation
region. The significance of this work is, of course, not in
the transverse aspect of the problem, but in the longitudinal
momentum distributions of the forward particles, which affect
the pT distribution. The large p/π ratio found in the BRAHMS
data at η = 3.2 cannot be understood without a proper
treatment of the x distributions in the fragmentation region.

As a prediction of this work, we can calculate the pT

dependence of the p̄/p ratio at fixed η = 3.2. Since Vp̄/Vp =
1 for h = p̄, p, only Hh[x(pT )] contributes to the ratio
Rp̄/p(pT ). Using Eq. (33), we have

Rp̄/p(pT ) = Hp̄[x(pT )]

Hp[x(pT )]
. (39)

The result for
√

s = 62.4 GeV, b = 3.3 fm, and κ = 0.67 is
shown in Fig. 5. The range of pT values covered by the plot
corresponds to x roughly between 0.3 and 0.6 at η = 3.2. Note
that the result is for fixed η, not fixed y. The reason for the
decrease of Rp̄/p(pT ) with increasing pT is clearly the increase
of x, where q̄ at momentum fraction xi , approximately x/3,
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FIG. 5. The pT dependence of the antiproton/proton ratio at 0%–
10% centrality in Au-Au collisions for

√
s = 62.4 GeV, η = 3.2, and

κ = 0.67.

becomes more suppressed than q at the same xi . A verification
of this prediction would lend further support to our model.

VI. CONCLUSION

This work differs from the earlier attempt in Ref. [5] in
three important ways. First, new data are available that put
more stringent constraints on unknown parameters. Second,
significant modifications have been made in the treatment of
degradation, regeneration, and transverse momenta. Third, the
order that phenomenology is carried out is reversed owing to
the new empirical knowledge about the particle ratios. Using
p/π and p̄/p ratios as input, we are able to determine the
degradation parameter κ , which enables us to calculate the
x distributions of the hadrons. At fixed η that implies a pT

dependence of the p/π ratio arising from the x distributions;
that pT dependence accounts for a large part of the data on that
ratio, the balance being due to the exponential pT distributions
that are mass dependent. In fitting the particle ratio the
calculated result is insensitive to the absolute normalization
of the yield. The latter is shown to be correct when we succeed
in reproducing the pT spectrum of the average charged particle.
That is a significant achievement because the yields of protons,
pions, and antiprotons at large η depend strongly on the
dynamical process of momentum degradation and soft-parton
regeneration.

Although the degradation parameter κ is determined by
data fitting, to get the spectra correctly for all hadrons through
one such parameter relies on the validity of the treatment
of the various subprocesses. Our results suggest that our
model has captured the essence of the dynamics involved.
In particular, the large p/π ratio would not have emerged
from our calculation if recombination has not been used as the
mechanism for hadronization.

Since proton production at large x is due to the recom-
bination of three valence quarks from three nucleons in the
projectile, in which there are numerous other valence quarks
from other nucleons, we do not expect the events triggered by a
large-x proton would have correlated partners distinguishable
from the background. In that respect the hadronization problem
is similar to that at intermediate pT in heavy-ion collisions
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at LHC, where so many semihard jets are produced that
shower partons are dense and can recombine with large p/π
ratio [14]. For the same reason as at large x studied here,
it was also predicted that for triggers in the 10 < pT <
20 GeV/c range no correlation structure of associated particles
would be found. Thus to a certain extent what we can learn
about forward production at RHIC may reveal some aspects
of the characteristics of what may be observed at intermediate
pT at midrapidity at LHC.

ACKNOWLEDGMENTS

We are grateful to I. C. Arsene, P. Staszel, F. Videbaek,
and C. B. Yang for helpful communications. This work was
supported, in part, by the U. S. Department of Energy under
Grant No. DE-FG02-96ER40972 and by the National Science
Foundation in China under Grant No. 10775057 and by the
Ministry of Education of China under Grant No. 306022 and
Project No. IRT0624.

[1] K. P. Das and R. C. Hwa, Phys. Lett. B68, 459 (1977).
[2] R. C. Hwa, Phys. Rev. D 22, 759 (1980); 22, 1593 (1980).
[3] R. C. Hwa and C. B. Yang, Phys. Rev. C 66, 025205 (2002).
[4] R. C. Hwa and C. B. Yang, Phys. Rev. C 73, 044913 (2006).
[5] R. C. Hwa and C. B. Yang, Phys. Rev. C 76, 014901 (2007).
[6] B. B. Back et al. (PHOBOS Collaboration), Phys. Rev. Lett. 91,

052303 (2003); 87, 102303 (2001).
[7] I. C. Arsene et al. (BRAHMS Collaboration), nucl-ex/0602018.
[8] N. Katryska and P. Staszel (BRAHMS Collaboration), poster

presentation at Quark Matter 2008, Jaipur, India, 4–10 February
2008, arXiv: 0806.1162.

[9] I. C. Arsene (BRAHMS Collaboration), talk presented at
Quark Matter 2008, Jaipur, India, 4–10 February 2008, arXiv:
0806.0745.

[10] H. Yang (BRAHMS Collaboration), Czech. J. Phys. 56, A27
(2006).

[11] R. C. Hwa and C. B. Yang, Phys. Rev. C 65, 034905 (2002).
[12] R. C. Hwa and C. B. Yang, Phys. Rev. C 66, 025204 (2002).
[13] R. C. Hwa and C. B. Yang, Phys. Rev. C 70, 024905

(2004).
[14] R. C. Hwa and C. B. Yang, Phys. Rev. Lett. 97, 042301

(2006).

024907-7


