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Probing the low-x structure of nuclear matter with diffractive hadron production in pA collisions
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We argue that hadron production in coherent diffraction of protons on a heavy nucleus provides a very sensitive
probe of the low-x QCD dynamics. This process probes the BFKL dynamics in protons and the nonlinear gluon
evolution in nuclei. We calculate the diffractive hadron production cross sections in the BNL Relativistic Heavy
Ion Collider (RHIC) and CERN Large Hadron Collider (LHC) kinematic regions. To study the nuclear effects
we introduce the diffractive nuclear modification factor. We show that, unlike the nuclear modification factor for
inclusive hadron production that has very interesting dynamics at RHIC but is expected to be almost completely
saturated at the LHC, the nuclear modification factor for diffractive production exhibits a nontrivial behavior at
both RHIC and LHC.
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I. INTRODUCTION

Over the last decade we have witnessed a remarkable
success of models based on gluon saturation in description
of low-x data at HERA and BNL Relativistic Heavy Ion
Collider (RHIC). This allowed quantification of several key
features of the low-x dynamics of QCD. Still, there are many
open questions such as the size of the next-to-leading order
(NLO) corrections to the BK equation, the demarcation of the
boundary between the kinematic regions of gluon saturation
and the collinear factorization, etc. These problems can be
addressed by probing the nuclear structure at even smaller x

and/or by using a different set of measurements. In this article
we argue that diffractive hadron production in pA collisions
is a measurement that can provide a new handle on the low-x
nuclear dynamics. Our study is motivated by the possibility
of investigating the diffractive processes using the data on
deuteron-gold (D-Au) collisions collected at RHIC.

A detailed theoretical analysis of coherent diffractive
gluon production in onium–heavy nucleus (qq̄A) collisions
in the framework of the Color Glass Condensate [1–6] was
performed in our previous publications [7,8]. There we argued
that this process is sensitive to the low-x dynamics in both the
onium and the nucleus. It has been argued in Refs. [9–11] that
it is phenomenologically reasonable to approximate the proton
light-cone wave function (away from fragmentation regions)
by a system of color dipoles. Additionally, we demonstrate
in Sec. II that the qqqA propagator in the quasiclassical
approximation takes exactly the same form as the qq̄A one
if the emitted gluon transverse momentum is hard kT � Qs .
In this approximation we can directly adopt the results of our
theoretical analysis in Refs. [7] and [8]. The corresponding
phenomenological approach is developed in Sec. III. A similar
model has been used in Ref. [12] for the description of
diffraction in pA collisions.

There are several parameters that govern the behavior
of diffractive gluon production in pA collisions. These are
gluon transverse momentum kT and rapidity y, nucleus atomic
number A, and transverse distance between the valence quarks
rT in a proton. The main observation of Refs. [7,8] is that

the dependence of the diffractive hadron spectrum on these
parameters in various kinematic regions is quite different.
This provides a convenient handle on the behavior of the low-x
gluon densities in the three most interesting kinematic regions:
(i) the gluon saturation region kT < Qs , (ii) the geometric
scaling region kT < Qgeom, and (iii) the hard perturbative QCD
region kT > Qgeom.

The model that we use in this article is based on analysis
of diffractive hadron production in all available kinematic
regions. Equation (21) holds in the logarithmic approximation
in all those regions and is therefore a convenient interpolation
formula that we use to calculate the differential inclusive
cross section (15). The transverse vector I(r′, k, y) encodes
information about the gluon density in the nucleus. It is related
to an integral of the forward elastic gluon dipole scattering
amplitude NA(r′, b, y) over all intermediate dipole size [see
Eqs. (16) and (17)]. This amplitude is parametrized according
to the KKT model [13]. On the other hand, the dipole density
n(r, r′, Y − y) encodes the gluon density in the proton, which
is assumed to be dilute. Because the dipole density is a solution
to the BFKL equation, we model it by the Leading Order (LO)
BFKL amplitude in the diffusion approximation.

To compare the low-x dynamics in pA collisions to that
in pp ones, it is convenient to introduce the diffractive
nuclear modification factor R

pA

diff [see Eq. (31)]. We evaluate
the diffractive gluon production in pp collisions as a limit
A → 1 of that in pA ones. Theoretical expectations for
RpA are detailed in Sec. III B and Sec. III C. The results
of our numerical calculations performed using the KKT
model [13] are presented in Sec. IV. We observe that R

pA

diff
behavior is quite different from that of the nuclear modification
factor R

pA

incl for inclusive hadron production. In the RHIC
kinematic region, at moderately large kT there is a significant
enhancement of particle production in pA collisions [see
Fig. 3]. This happens because the diffractive cross section
at large kT is proportional to the higher twist contribution that
is enhanced in pA collisions by an additional factor of A1/3.
This enhancement gets increasingly compensated at forward
rapidities by a suppression stemming from two sources:
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(i) gluon saturation in the nucleus and (ii) shrinking of phase
space available for the BFKL evolution in a proton [7]. The
latter feature of the diffractive hadron production is apparent
in Eq. (34) and is illustrated in Fig. 5, where we compare
R

pA

diff for two different diffusion coefficients (switching the
BFKL evolution on and off). In Fig. 4 and Fig. 6 we show
R

pA

diff at CERN Large Hadron Collider (LHC). R
pA

diff exhibits
rather strong dependence on rapidity. In contrast, R

pA

incl is
not expected to change a lot at LHC [14]. This implies that
by comparing inclusive and diffractive hadron production in
the wide kinematic region of RHIC and LHC one will be
able to infer much useful information about the higher twist
contributions. Because different models of low-x dynamics
predict different dependence of higher twists on atomic num-
ber A and energy/rapidity, measurements of diffractive hadron
production will be instrumental in determining the valid
physical mechanism for hadron production at high energies.

II. A MODEL FOR DIFFRACTIVE GLUON PRODUCTION
IN pA COLLISIONS

A. Diffractive gluon production in qqq A collisions

Coherent diffraction of a proton on a nucleus is a process,
p + A → X + A, characterized by a large rapidity gap be-
tween the diffractive system X and the intact nucleus A. A
fraction of the coherent diffractive events increases with the
collision energy and is expected to reach its limiting value
of a half at asymptotically high energies. In the mean-field
approximation αs � 1 and A � 1, the incoherent diffractive
processes such as p + A → X + A∗, where A∗ is a diffractive
system of color-neutral nuclear debris, are parametrically

suppressed. Therefore, in the present article we consider only
the coherent diffraction.1 Coherent diffraction is possible only
if the coherence length lc of the emitted gluon with momentum
k is larger than the nucleus size RA (in the nucleus rest frame):

lc = k+
k2

� RA, (1)

where + indicates the light-cone direction of the incoming
proton. The invariant mass of the produced system is given
by M2 = k2/x, where x = k+/p+ and p is the proton
momentum. Substituting these equations in Eq. (1) yields the
following condition on the mass of the diffractive system:

M2 � p+
RA

= s

RAmp

, (2)

where
√

s is the center-of-mass energy of the proton–nucleon
collision and mp is proton mass.

A realistic model for diffractive gluon production in pA

collisions was discussed by Kovchegov in Ref. [15]. He
considered, in the quasiclassical approximation, emission of
a gluon by a color-neutral qqq system of valence quarks
with subsequent elastic interaction with a heavy nucleus. The
resulting expressions for the propagators of the qqq and qqqG

systems in the nucleus can be written in the form [15]

�ij = vT
i

(
e−M(z1) − e−(2/9)(χ12+χ13+χ23)

)
× (

e−M(z2) − e−(2/9)(χ12+χ13+χ23)
)
vj , (3)

where

vT
1 =

(
−1,− 1√

3

)
, vT

2 =
(

1,− 1√
3

)
, vT

3 =
(

0,
2√
3

)
,

(4)

the 2 × 2 matrix M(z) is given by

M(z) =
(

1
6ζ3 + 5

12 (ζ2 + ζ1) + 5
36 (χ23 + χ13) − 1

9χ12
1

4
√

3
(−ζ2 + ζ1 + χ23 − χ13)

1
4
√

3
(−ζ2 + ζ1 + χ23 − χ13) 1

2ζ3 + 1
4 (ζ2 + ζ1) − 1

36 (χ23 + χ13) + 2
9χ12

)
, (5)

and the scattering amplitudes of various dipoles on a nucleon
read2

ζi = 1
8 (z − xi)2Q2

s0 χij = 1
8 (xi − xj )2Q2

s0, (6)

where x1, x2, x3 are the valence quarks transverse coordinates
and z1 and z2 are the gluon transverse coordinates in the
amplitude and in the complex conjugated one, respectively
(see Fig. 1).

1The incoherent diffraction may be phenomenologically important
at RHIC and LHC energies [12,16].

2In this section only we adopted a shorthand notation where the
saturation scale is understood to include the logarithmic dependence
on the dipole size.

The cross section for the diffractive gluon production in the
quasiclassical approximation reads

dσqqqA

d2kT dy
= αs

(2π )2π2

∫
d2bd2z1d

2z2 e−ik·(z1−z2)

×
3∑

i=1

3∑
j=1

z1 − xi

|z1 − xi |2
z2 − xj

|z2 − xj |2 �ij . (7)

Assume that the distances between the valence quarks are
approximately the same: χij ≈ χ = 3

4R2
pQ2

s0, where Rp is the
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FIG. 1. Possible configurations formed by three valence quarks
at positions x1, x2, and x3 and a gluon at position zi . We assumed
that x12 ≈ x23 ≈ x31. In (a) the sizes of the daughter dipoles are much
bigger than the sizes of the parent dipoles. For small enough x12 this
corresponds to the pQCD regime. In (b) one of the daughter dipoles
is much smaller than the rest of the dipoles corresponding to the high
density regime (see Ref. [17] for more details).

proton radius. Then, matrix M from Eq. (5) reduces to

M(z)

=
(

1
6ζ3 + 5

12 (ζ2 + ζ1) + 1
6χ 1

4
√

3
(−ζ2 + ζ1)

1
4
√

3
(−ζ2 + ζ1) 1

2ζ3 + 1
4 (ζ2 + ζ1) + 1

6χ

)
.

(8)

In general, the propagators �ij are rather complicated objects.
However, in the perturbative regime depicted in Fig. 1(a) they
can be reduced to a simple sum of the corresponding qq̄G

propagators as we are going to demonstrate now. The leading
logarithmic contribution in the perturbative regime stems from
the configuration shown in Fig. 1(a). In this case ζi � χ and
we have ζ1 ≈ ζ2 ≈ ζ3 = ζ . Equation (8) becomes

M(z) =
(

ζ 0

0 ζ

)
. (9)

Using Eqs. (3) and (4) we derive the propagator

�ij = 4
3

(
e−ζ (z1) − e− 2

3 χ
)(

e−ζ (z2) − e− 2
3 χ
)(

δij − 1
2 (1 − δij )

)
.

(10)

The cross section (7) reads in this case

dσqqqA

d2kT dy
≈ αs

(2π )2π2

∫
d2bd2z1d

2z2e
−ik·(z1−z2)

× 1

2

3∑
i<j

(
z1 − xi

|z1 − xi |2 − z1 − xj

|z1 − xj |2
)

×
(

z2 − xi

|z2 − xi |2 − z2 − xj

|z2 − xj |2
)

�11. (11)

In the ’t Hooft’s limit, Eq. (11) can be related to the cross sec-
tion for diffractive gluon production in quarkonium–nucleus
collisions. To this end we introduce an effective color dipole
with a quark and antiquark at points x̃1 and x̃2, respectively.
Then, in the same approximation as in Fig. 1(a), we obtain

dσqq̄A

d2kT dy
≈ αsCF

π2

1

(2π )2

∫
d2bd2z1d

2z2

×
(

z1 − x̃1

|z1 − x̃1|2 − z1 − x̃2

|z1 − x̃2|2
)

×
(

z2 − x̃1

|z2 − x̃1|2 − z2 − x̃2

|z2 − x̃2|2
)

× e−ik·(z1−z2)
(
e− 1

4 (x̃1−z1)2Q̃2
s0 − e− 1

8 (x̃1−x̃2)2Q̃2
s0
)

× (
e− 1

4 (x̃1−z2)2Q̃2
s0 − e− 1

8 (x̃1−x̃2)2Q̃2
s0
)
. (12)

Hence,

dσqqqA

d2kT dy
≈ 2

CF

dσqq̄A

d2kT dy
= 3

2

dσqq̄A

d2kT dy
. (13)

Comparing arguments of exponents in Eq. (10) and in Eq. (12)
we identify Q̃2

s0 = 1
2Q2

s0 as an effective saturation scale and

R̃2 ≡ (x̃1 − x̃2)2 = 2 · 2
3 (x1 − x2)2 = 4

3 · 3R2
p = (2Rp)2 (14)

as the square of the dipole size.3 Expression (13) motivates a
model that we adopt in this article. We assume that the pA

cross section can be approximated by the qq̄A one with the
dipole size given by Eq. (14). This model correctly reproduces
the pQCD limit. It also satisfies the unitarity bound, which is
achieved in the saturation regime depicted in Fig. 1(b).

B. Gluon production in quarkonium–heavy nucleus collisions

Now, as we set up a model for the diffractive gluon
production in pA collisions in terms of the diffractive gluon
production in qq̄A collisions, we review the main results that
we derived for the latter case in our previous publications [7,8].
The cross section for the diffractive gluon production with
transverse momentum kT at rapidity y is given by

dσpA(kT , y)

d2kT dy
= αsCF

π2

1

(2π )2
SA

×
∫

d2r ′np(r, r′, Y − y)|I(r′, k, y)|2, (15)

where np(r, r′, Y − y) is the dipole density in the projectile
proton. It has the meaning of the number of dipoles of size r′ at
rapidity Y − y generated by evolution from the original dipole
r having rapidity Y [18]. It satisfies the BFKL equation [19,20]
with the initial condition (18). The two-dimensional vector
function I(r′, k, y) is defined as

I(r′, k, y) = −e−ik·r′
i∇kQ(r′, k, y) + i∇kQ

∗(r′, k, y), (16)

where

Q(r′, k, y) = −
∫

d2weik·w 1

w2
× [NA(r′, b, y) − NA

× (w − r′, b, y) − NA(w, b, y)

+NA(w − r′, b, y)NA(w, b, y)]. (17)

The vector function I(r′, k, y) incorporates information about
two physical processes: (i) gluon emission off the daughter
dipole r′ produced in the course of the BFKL evolution and
(ii) low-x gluon evolution in the nucleus through NA(r, b, y),
which is the dipole-nucleus forward elastic scattering ampli-
tude satisfying the BK equation [21,22]. In the quasiclassical
approximation the dipole density reads

np(r, r′, 0) = δ(r − r′), (18)

3In the following we are going to discuss only onium–nucleus
scattering. Therefore we will omit the tildes to simplify notations.
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while the scattering amplitude is given by the Glauber-Mueller
formula [23] (now we explicitly write down the logarithm in
the exponent)

NA(r, b, 0) = 1 − e− 1
8 r2Q2

s0 ln 1
r� , (19)

where Qs0 is the saturation scale at rapidity y = 0. In the case
of dipole–proton scattering we expand Eq. (19) and get

Np(r, b, 0) = 1

8
r2 �2 ln

1

r�
. (20)

In all limiting cases we can write [8]

|I(r′, k, y)|2 ≈ C
4 (2π )2

k2
N2

A(k−1k̂, b, y)

× [1 − NA(r′, b, y)]2 sin2

(
k · r′

2

)
, (21)

where C is a constant of order unity (its precise value, which
can be found in Ref. [8], is of little importance here). Let us
emphasize, that Eq. (21) holds asymptotically in all kinematic
regions. Due to the initial condition (18), the cross section
in the quasiclassical approximation is merely proportional to
|I(r′, k, y)|2. Accordingly, employing Eq. (21) we obtain

dσpA(R, kT , 0)

d2kT dy
≈ C

4 αsCF

π2

SA

k2
T

N2
A

(
k−1
T , b, 0

)
× [1 − NA(R, b, 0)]2 sin2

(
k · R

2

)
. (22)

At larger rapidities we integrate over r′ in Eq. (15) using
Eq. (21). In the case of hard gluons we get

dσpA(R, kT , y)

d2kT dy
= αsCF

π5/2
SA N2

A(k−1, b, y)

×
min

{
1
k2
T

, R2
}

(2ᾱs(Y − y)| ln(RkT )|)1/4

× e2
√

2ᾱs (Y−y)| ln(RkT )|, kT > Qs, (23)

where ᾱs = αsNc/π . The cross section for the soft gluon
production by a large dipole reads

dσpA(R, kT , y)

d2kT dy

= αsCF

8π5/2

SA

Q2
s

(2ᾱs(Y − y))1/4

ln3/4(RQs)

× e2
√

2ᾱs (Y−y) ln(RQs ), R,
1

kT

>
1

Qs

, (24)

while in the case of soft gluon emission by a small onium

dσpA(R, kT , y)

d2kT dy

= αsCF

4π5/2
SAR2 1(

2ᾱs(Y − y) ln 1
RQs

)1/4

× e
2
√

2ᾱs (Y−y) ln 1
RQs , R <

1

Qs

<
1

kT

. (25)

In all the reviewed cases, Eqs. (23)–(25), gluon multiplicity
arises from the cut Pomeron that is hooked up to the incoming
proton.

C. Forward dipole–nucleus scattering amplitude

The last required ingredient is the forward elastic scattering
amplitude NA(r, b, y). It can be evaluated in various kinematic
regions. In the double logarithmic approximation (DLA)

NA(r, b, y) =
√

π

16π

ln1/4
(

1
rQs0

)
(2ᾱsy)3/4

r2Q2
s0

×
(

1 +
√

2ᾱsy

ln 1
rQs0

ln
Qs0

�

)
e

2
√

2ᾱsy ln 1
rQs0 ,

r < 1/Qs0, ln
1

rQs0
� αsy. (26)

This limit coincides with the small x and small r limit
of the DGLAP equation. It obviously breaks the geometric
scaling. Consequently, the DLA holds in the transition region
between the gluon saturation and the hard perturbative QCD
characterized by a hard scale kH , i.e., when Qgeom < kT < kH ,
where Qgeom is the scale at which the geometric scaling breaks
down. It reads in the DLA

Qgeom ≈ Q2
s

Qs0
. (27)

The saturation scale is given by

Qs ≈ A1/3�2eλY , (28)

where λ ≈ 2ᾱs in the DLA. The hard scale kH can be related
to the invariant mass of the diffractively produced system as
discussed in Sec. II A in detail.

As we approach the saturation region by decreasing kT at
fixed rapidity we arrive at the diffusion approximation

NA(r,b,y) = rQs0

8π

√
π

14ζ (3)ᾱsy
ln

(
Qs0

�

)
e(αP −1)ye

− ln2(rQs0)
14ζ (3)ᾱs y ,

(29)

αsy � ln2

(
1

rQs0

)
,

where the BFKL Pomeron intercept is αP − 1 = 4ᾱs ln 2. We
observe that the amplitude geometrically scales modulo small
diffusive corrections. The diffusion approximation (29) holds
in the kinematic region Qs < kT < Qgeom.

Finally, deeply in the saturation region where kT < Qs , the
solution to the BK equation reads [17]

NA(r, b, y) = 1 − S0e
−τ 2/8 = 1 − S0e

− 1
8 ln2(r2Q2

s ),
(30)

r � 1

Qs

.
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III. NUCLEAR EFFECTS IN DIFFRACTIVE GLUON
PRODUCTION

A. Nuclear modification factor

A convenient way to study the nuclear dependence of
particle production is to consider the nuclear modification
factor defined as

R
pA

diff(kT , y) =
dσ

pA

diff (kT ,y)
d2kT dy

A
dσ

pp

diff (kT ,y)
d2kT dy

. (31)

If the production process is completely incoherent then
R

pA

diff(kT , y) = 1. In the case of inclusive gluon production,
the nuclear modification factor R

pA

incl was discussed in detail
in Ref. [24]. It has been demonstrated that in the extended
geometric scaling region Qs(y) <∼ kT <∼ Qgeom, the nuclear

modification factor is suppressed as R
pA

incl ∼ A−1/6, while in the
saturation region kT <∼ Qs(y) the suppression is R

pA

incl ∼ A−1/3.
The amount of suppression is closely related to the value
of the anomalous dimension γ in a given kinematic region.
At rapidity y � 0 at RHIC R

pA

incl exhibits slight enhancement
(Cronin effect), which serves as an indicator that the low-x
evolution in that process does not play an important role. We
argue below that the behavior of R

pA

diff is quite different from
that of the inclusive one which makes it a convenient tool for
the study of low-x gluon dynamics.

In the previous section we addressed in detail the diffractive
gluon production in pA collisions. To evaluate the R

pA

diff we
need to normalize it by that in pp collisions. The latter
is obtained by replacing the forward elastic dipole–nucleus
scattering amplitude given by Eq. (26) with the corresponding
forward elastic dipole–proton scattering amplitude

Np(r, b, y) =
√

π

16π

ln1/4
(

1
r�

)
(2ᾱsy)3/4

r2�2e2
√

2ᾱsy ln 1
r� . (32)

In Eq. (26) we replaced Qs0 by � and set A = 1. Because we
assume that the gluon saturation effects are negligible in the
proton, the cross section for the diffractive gluon production
in pp collisions in the case of large characteristic proton size
is obtained from Eq. (23) by setting A = 1 with the result

dσpp(R, kT , y)

d2kT dy
= αsCF

π5/2
min

{
1

k2
T

, R2

}
Sp N2

p

(
k−1
T k̂, b, y

)
× 1

(2ᾱs(Y − y)| ln(RkT )|)1/4

× e2
√

2ᾱs (Y−y)| ln(RkT )|. (33)

Similarly, we get in the quasiclassical approximation using
Eq. (22)

dσpp(R, kT , 0)

d2kT dy
≈ C

4 αsCF

π2

Sp

k2
T

�4

64 k4
T

ln2

(
kT

�

)

× e− 1
4 R2�2 1

2
(1 − J0(RkT )), (34)

where we averaged over the directions of the dipole R
according to

1

π

∫ π

0
dθ sin2

(
1

2
kT R cos θ

)
= 1

2
(1 − J0(RkT )). (35)

Gluon saturation effects in protons may be important at back-
ward rapidities at LHC. Taking them into account constitutes
a difficult and not yet solved problem. Fortunately, effects
associated with the gluon saturation in protons are not expected
to significantly alter the nuclear dependence of our results
because they are likely to cancel between the numerator and
denominator of Eq. (31).

B. Quasiclassical approximation

The nuclear modification factor in the quasiclassical ap-
proximation and at high transverse momenta is derived by
substitution of Eqs. (22) and (34) into Eq. (31) and deducing

R
pA

diff(kT , 0) = A1/3

(
1 − 1

8
A1/3 �2

2 k2
T

ln
kT

�

)

× e− 1
4 R2Q2

s0 , kT � Qs0, (36)

where we take into account that SA = A2/3Sp and Q2
s0 =

A1/3�2. According to Eq. (36) at very large kT and fixed
A the nuclear modification factor approaches a constant,

R
pA

diff(kT , 0) → A1/3e− 1
4 A1/3 ln A1/3

, kT → ∞. (37)

Equation (36) implies that R
pA

diff(kT , 0) approaches unity from
below as kT → ∞. In contrast to R

pA

diff(kT , 0), the nuclear
modification factor for inclusive gluon production receives
a positive power correction that is a source of the Cronin
enhancement observed in inclusive gluon production in pA

collisions.
In the saturation region we derive

R
pA

diff(kT , 0) = 64k4
T

A1/3�4 ln2 1
R�

e− 1
4 R2Q2

s0 , kT � Qs0. (38)

That is, the nuclear modification factor vanishes at small
momenta as k4

T . Actually, if we neglect the slow logarithmic
dependence of the initial saturation scale Qs0 on r in Eq. (19),
the integral appearing in Eq. (17) can be taken analytically.
The corresponding result can be found in Ref. [15]. In Fig. 2
we use this analytical result to plot the nuclear modification
factor R

pA

diff as a function of transverse momentum kT .
We observe that, unlike in the inclusive gluon production

case, the size of the incoming projectile plays a very important
role in the diffractive production. What is important is the
relationship between the quarkonium size R and the inverse
saturation scale 1/Qs . In the quasiclassical approximation,
that is, neglecting the low-x evolution, the diffractive gluon
production is exponentially suppressed for heavy nuclei if R >

1/Qs as compared to light nuclei. If R < 1/Qs , suppression
gives way to enhancement at high transverse momenta. Both
effects come about as the result of the coherent scattering of
protons off nucleus.
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FIG. 2. (Color online) Nuclear modification factor R
pA

diff as a func-
tion of transverse momentum kT in the quasiclassical approximation.
� is a nonperturbative momentum scale.

C. Low-x evolution: Hard gluons

1. Double logarithmic approximation

The low-x evolution has a dramatic effect on the diffractive
gluon production. We would like to start our analyses with the
case of moderately large transverse momentum such that the
geometric scaling is broken, but the interaction is still coherent.
Substituting Eqs. (23) and (33) into Eq. (31) we derive that, in
general,

R
pA

diff(R, kT , y) = 1

A1/3

N2
A

(
k−1
T , b, y

)
N2

p

(
k−1
T , b, y

) , kT � Qs. (39)

In the double logarithmic approximation, the BFKL equation
coincides with the DGLAP equation. Therefore, in this region
we can observe crossover from the coherent small-x dynamics
to incoherent hard perturbative QCD. Using Eqs. (26) and (32)
in Eq. (39) we derive

R
pA

diff(kT , y) = SA

ASp

√√√√ ln kT

Qs0

ln kT

�

Q4
s0

�4

(
1 +

√
2ᾱsy

ln kT

Qs0

ln
Qs0

�

)2

× e
4
√

2ᾱsy(
√

ln kT
Qs0

−
√

ln kT
�

)
, kT � Qgeom.

(40)

Introducing a new variable [24]

ζ =
(

ln kT

Qs0

ln kT

�

)1/4

, (41)

we reduce Eq. (40) to

R
pA

diff(kT , y) = A1/3ζ 2

(
1 +

√
2ᾱsy ln

Qs0

�

√
1 − ζ 4

ζ 2

)2

× exp


−4

√
2ᾱsy ln

Qs0

�

√
1 − ζ 2

1 + ζ 2


 . (42)

The DLA approximation is valid when kT � Qs(y) > Qs0. In
this case Eq. (42) becomes

R
pA

diff(kT , y) ≈ A1/3


1 −

√
2ᾱsy

ln Qs0
�√

ln kT

�


 , kT � Qgeom.

(43)

The remarkable feature of this result is enhancement of the
nuclear modification factor by A1/3. Unlike the quasiclassical
case, Eq. (37), this enhancement is not overrun at large A by
a small exponential factor. The reason is that in the course of
low-x BFKL evolution dipoles with small size r < 1/Qs are
produced and these dominate the cross section. Let us also
mention that an enhancement similar to Eq. (43) has already
been discussed in the context of the J/ψ production off the
nuclear targets [25] as well as in the breakdown of the collinear
factorization of the fragmentation functions [26].

It is important to emphasize that the result (43) holds only
as long as the coherence length lc ≈ 1

2MN x
is much larger

than the nuclear size. Because in the center-of-mass frame
kinematics x = kT√

s
e−y , at large enough transverse momentum

kT and fixed rapidity y and energy s the coherence is lost and
the nuclear modification factor approaches unity. Therefore,
the region where R

pA

diff ∼ A1/3 scaling gives way to R
pA

diff ∼ 1
is the transition region between the semihard nuclear fields and
the hard perturbative QCD. Needless to say that identification
of this region is crucial for understanding the interplay between
the dense and dilute high energy QCD regimes.

2. Extended geometric scaling region

Next, we analyze the extended geometric scaling region
Qs(y) < kT < Qgeom. Here the evolution is still linear and
is well approximated by the leading twist approximation.
However, the anomalous dimension of the gluon distribution
significantly departs from unity and approaches the value it
has at the critical line kT = Qs(y). It is therefore appropriate
to use the leading logarithmic approximation for the function
NA(r, b, y). Substituting Eqs. (29) and (32) in Eq. (39), we
derive

R
pA

diff(kT , y) = 4

7ζ (3)

k2
T

�2

ln2
(

Qs0
�

)√
2ᾱsy√

ln kT

�

exp

{
2(αP − 1)y

− 4

√
2ᾱsy ln

kT

�
− 2 ln2

(
Qs0
kT

)
14ζ (3)ᾱsy

}
,

×Qs < kT < Qgeom. (44)

This equation clearly demonstrates that the A dependence of
the nuclear modification factor arises only through the slow-
varying logarithmic factors. As far as the rapidity dependence
is concerned, we can estimate it at the scale kT = Qgeom(y).
Because NA(r, b, y) is constant on the critical line, we derive

R
pA

diff(Qgeom(y), y) ∼ A1/3e−4
√

ᾱsλ y . (45)

That is, the nuclear modification factor is getting progres-
sively suppressed in the forward direction. This suppression
is much stronger than that in inclusive gluon production.
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Approximately we can write

R
pA

diff(kT , y) ∼ A1/3
(
R

pA

incl(kT , y)
)2

, Qs < kT < Qgeom.

(46)

Equation (46) clearly exhibits the higher twist nature of
the diffractive gluon production. The peculiar properties of
diffractive cross sections due to the higher twist contributions
in nuclear and hadronic DIS have been discussed in Refs. [27]
and [28].

3. Saturation region

In the saturation region we utilize Eq. (33) and one of
either Eq. (24) or Eq. (25) in Eq. (31) and arrive at a rather
involved expression. Keeping only the parametric dependence
and omitting the logarithmic factors, we obtain

R
pA

diff(R, kT , y) ∼ 1

A1/3

k4
T

R2�4Q2
s

e2
√

2ᾱs (Y−y) ln(RQs )

× e−2
√

2ᾱs (Y−y) ln(RkT )e
−4

√
2ᾱsy ln kT

� ,

kT ,
1

R
< Qs. (47)

There is a very strong suppression of diffractive gluon
production in the saturation region in the case of low-x
evolution. This suppression, however, is still milder than that in
the quasiclassical case (38). On the critical line kT = Qs(y) we
get for forward rapidities (Y − y � y) and central collisions
[employing Eq. (28)]

R
pA

diff(Qs(y), y) ∼ e−4
√

ᾱsλ y, (48)

which implies a strong suppression in the forward direction.

IV. NUMERICAL CALCULATIONS

All the features that we discussed in the previous section
can be visualized using a simple model for the forward
elastic dipole–nucleus scattering amplitude NA(r, b, y). We
parametrize it as [13]

NA(r, b, y) = 1 − exp
{
− 1

4

(
r2Q2

s

)γ (r,y)
}

. (49)

The anomalous dimension is parametrized in such a way that
it satisfies the analytically well-known limits of (i) r → 0, y

fixed and (ii) y → ∞, r fixed:

γ (r, y) =
{ 1

2

(
1 + ξ (r,y)

|ξ (r,y)|+√
2|ξ (r,y)|+28ζ (3)

)
y � y0,

1 y < y0,
(50)

where

ξ (r, y) = ln
[
1
/(

r2Q2
s0

)]
(λ/2)(y − y0)

. (51)

In the double logarithmic approximation we can replace r2 ≈
1/(4k2

T ). The gluon saturation scale is given by

Q2
s (y) = �2A1/3eλy

( √
s

200 GeV

)λ

, (52)

where parameters � = 0.6 GeV and λ = 0.3 are fixed by DIS
data [29]. The initial saturation scale used in Eq. (51) is defined
by Q2

s0 = Q2
s (y0), with y0 the value of rapidity at which the

small-x quantum evolution effects set in. Fit to the RHIC data
yields y0 = 0.5 [13].

Numerical calculations of the cross section (15) are
performed after substitution of Eq. (21) with Eq. (49) and
the following formula for the dipole density in diffusion
approximation [cp. Eq. (29)]:

np(r, r ′, Y − y) = 1

2π2

1

rr ′

√
π

14ζ (3)ᾱs d(Y − y)

× e(αP −1)(Y−y)e
− ln2 r

r′
14ζ (3)ᾱs d(Y−y) . (53)

Parameter d is equal to unity in the LO BFKL. To obtain the
hadron diffractive cross section we convoluted the obtained
result with the LO pion fragmentation function given in
Ref. [30]. Diffractive gluon production in pp collisions, which
is required as a baseline for the calculation of the nuclear
modification factor (31), is obtained by setting A = 1 in the
formula for the corresponding cross section in pA collisions.

The results of numerical calculations are exhibited in
Figs. 3–6. In Fig. 3 one can see that at RHIC RpA ∼ 2 − 2.5
at y � 0 and kT > 2 GeV. This enhancement is a signature
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FIG. 3. (Color online) Nuclear modification factor for diffractive pion production in pA collisions at RHIC as a function of transverse
momentum for two characteristic sizes of protons: (a) 0.2 fm and (b) 1 fm. The effects of finite coherence length are neglected.
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FIG. 4. (Color online) Nuclear modification factor for diffractive pion production in pA collisions at LHC as a function of transverse
momentum for two characteristic sizes of protons: (a) 0.2 fm and (b) 1 fm. The effects of finite coherence length are neglected.
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FIG. 5. (Color online) Effect of diffusion in the dipole sizes on the diffractive pion production at RHIC for two characteristic sizes of
protons: (a) 0.2 fm and (b) 1 fm. The upper line of the same type corresponds to d = 1; the lower one corresponds to d = 0.1. Lines of different
types correspond to different rapidities (notations are the same as those in Fig. 3). The effects of finite coherence length are neglected.
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FIG. 6. (Color online) Effect of diffusion in the dipole sizes on the diffractive pion production at LHC for two characteristic sizes of protons:
(a) 0.2 fm and (b) 1 fm. The upper line of the same type corresponds to d = 1; the lower one corresponds to d = 0.1. Lines of different types
correspond to different rapidities (notations are the same as those in Fig. 4). The effects of finite coherence length are neglected.
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of a leading power correction [see Eq. (43)]. As rapidity
increases there are two important effects that take place in
the proton and nucleus wave functions: (i) the spectrum of
intermediate dipoles in a projectile proton shrinks as the
rapidity interval available for the low-x evolution in proton
becomes narrower; (ii) as y increases, x of gluon decreases
causing stronger gluon saturation effect in the nucleus. Both
effects lead to suppression of the nuclear modification factor.
Gluon saturation in protons leads to the suppression law
(45). Of course, the effect of diffusion in a proton is more
pronounced for a proton with larger characteristic size, because
in the absence of the evolution effects (i.e., in the quasiclassical
approximation) the cross section would be exponentially
suppressed [see Eq. (38)].

We further investigated the effect of diffusion by intro-
ducing the parameter d in Eq. (53). As has been repeatedly
pointed out in this article, it is the BFKL diffusion that
makes the diffractive gluon production possible by generating
intermediate dipoles of small size. Gluon saturation effects
in proton may tame the BFKL diffusion [31] leading to
smaller effective diffusion coefficient. This effect is taken
into account in Fig. 5 for RHIC and in Fig. 6 for LHC. The
shadow region in all figures demonstrates the difference in

the nuclear modification factor between the cases of d = 1
and d = 0.1. Switching off the diffusion severely impacts the
nuclear modification factor at low energies/rapidities and for
larger distances between the valence quarks in proton.

Unlike the nuclear modification factor for inclusive hadron
production, which decreases as a function of rapidity and
centrality at RHIC and reaches almost maximal possible
suppression so that no significant additional suppression is
expected at LHC, the diffractive hadron production shows a
very interesting behavior even at LHC. This makes this process
suitable for exploration of different kinematic regions at the
high energy frontier. We believe that it will be instrumental in
unraveling the structure and dynamics of strong gluon fields.

ACKNOWLEDGMENTS

We thank Dima Kharzeev, Yuri Kovchegov, and J.-W.
Qiu for many informative discussions. The work of K.T.
was supported in part by the U.S. Department of Energy
under Grant DE-FG02-87ER40371. He would like to thank
RIKEN, BNL, and the U.S. Department of Energy (Contract
DE-AC02-98CH10886) for providing facilities essential for
the completion of this work.

[1] L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rep. 100, 1
(1983).

[2] A. H. Mueller and J. W. Qiu, Nucl. Phys. B268, 427 (1986).
[3] L. McLerran and R. Venugopalan, Phys. Rev. D 49, 2233

(1994); Phys. Rev. D 49, 3352 (1994); Phys. Rev. D 50, 2225
(1994).

[4] J. Jalilian-Marian, A. Kovner, and H. Weigert, Phys. Rev. D 59,
014015 (1998).

[5] A. Kovner, J. G. Milhano, and H. Weigert, Phys. Rev. D 62,
114005 (2000); H. Weigert, Nucl. Phys. A703, 823 (2002).

[6] E. Iancu and L. D. McLerran, Phys. Lett. B510, 145
(2001).

[7] Y. Li and K. Tuchin, Phys. Rev. D 77, 114012 (2008).
[8] Y. Li and K. Tuchin, Nucl. Phys. A 807, 190 (2008).
[9] E. Avsar, G. Gustafson, and L. Lonnblad, J. High Energy Phys.

07 (2005) 062.
[10] E. Avsar, G. Gustafson, and L. Lonnblad, J. High Energy Phys.

01 (2007) 012.
[11] E. Avsar, G. Gustafson, and L. Lonnblad, J. High Energy Phys.

12 (2007) 012.
[12] B. Z. Kopeliovich, I. K. Potashnikova, and I. Schmidt, Phys.

Rev. C 73, 034901 (2006).
[13] D. Kharzeev, Y. V. Kovchegov, and K. Tuchin, Phys. Lett. B599,

23 (2004).
[14] K. Tuchin, Nucl. Phys. A798, 61 (2008).
[15] Y. V. Kovchegov, Phys. Rev. D 64, 114016 (2001); 68(E),

039901 (2003).

[16] A. B. Kaidalov, V. A. Khoze, A. D. Martin, and M. G. Ryskin,
Acta Phys. Pol. B 34, 3163 (2003).

[17] E. Levin and K. Tuchin, Nucl. Phys. B573, 833 (2000).
[18] A. H. Mueller, Nucl. Phys. B415, 373 (1994); A. H. Mueller

and B. Patel, ibid. B425, 471 (1994); A. H. Mueller, ibid. B437,
107 (1995).

[19] E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Sov. Phys. JETP
45, 199 (1977) [Zh. Eksp. Teor. Fiz. 72, 377 (1977)].

[20] I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822
(1978) [Yad. Fiz. 28 1597 (1978)].

[21] I. Balitsky, Nucl. Phys. B463, 99 (1996).
[22] Y. V. Kovchegov, Phys. Rev. D 60, 034008 (1999).
[23] A. H. Mueller, Nucl. Phys. B335, 115 (1990).
[24] D. Kharzeev, Y. V. Kovchegov, and K. Tuchin, Phys. Rev. D 68,

094013 (2003).
[25] D. Kharzeev and K. Tuchin, Nucl. Phys. A770, 40 (2006).
[26] Y. Li and K. Tuchin, Phys. Rev. D 75, 074022 (2007).
[27] E. Gotsman, E. Levin, U. Maor, L. D. McLerran, and K. Tuchin,

Phys. Lett. B506, 289 (2001).
[28] E. Gotsman, E. Levin, U. Maor, L. D. McLerran, and K. Tuchin,

Nucl. Phys. A683, 383 (2001).
[29] K. Golec-Biernat and M. Wusthoff, Phys. Rev. D 59, 014017

(1999).
[30] B. A. Kniehl, G. Kramer, and B. Potter, Nucl. Phys. B597, 337

(2001).
[31] A. H. Mueller and D. N. Triantafyllopoulos, Nucl. Phys. B640,

331 (2002).

024905-9


