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The properties of kaons and antikaons and their modifications in isospin asymmetric nuclear matter are
investigated using a chiral SU(3) model. These isospin-dependent medium effects are important for asymmetric
heavy-ion collision experiments and will be especially relevant for the neutron-rich heavy-ion collision
experiments in the future accelerator facility GSI Facility for Antiproton and Ion Research (GSI-FAIR). In
the present work, the medium modifications of the energies of the kaons and antikaons, within the asymmetric
nuclear matter, arise because of the interactions of kaons and antikaons with the nucleons and scalar mesons.
The values of the parameters in the model are obtained by fitting the saturation properties of nuclear matter
and kaon-nucleon scattering lengths for I = 0 and I = 1 channels. Furthermore, the isovector and isoscalar
pion-nucleon scattering lengths are calculated within the chiral effective model and compared with earlier results
from the literature. The kaon-nucleon and pion-nucleon � coefficients are also calculated within the present
chiral SU(3) model.
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I. INTRODUCTION

The study of the properties of hadrons at finite densities
and temperatures is an important and challenging topic in
strong interaction physics. This topic has direct implications
for high-energy heavy-ion collision experiments in the study
of astrophysical compact objects (like neutron stars) as well as
in the early universe. The in-medium properties of kaons have
been investigated particularly because of their relevance for
neutron star phenomenology as well as for relativistic heavy-
ion collisions. The drop in the mass of the antikaon in the
nuclear medium arising from the attractive antikaon-nucleon
interaction might lead to antikaon condensation in the interior
of a neutron star as was first suggested by Kaplan and Nelson
[1]. However, recent experimental observations on neutron star
phenomenology impose constraints on the nuclear equation of
state (EOS). The EOS for the nuclear matter obtained using
an effective model should be consistent with the astrophysical
bounds to be acceptable as an EOS for neutron star matter
[2,3]. Recently, the nuclear matter EOS has been investigated
consistent with the neutron star phenomenology as well as
data for collective flow in heavy-ion collision experiments [4].
The in-medium modification of kaon/antikaon properties can
be observed experimentally primarily in relativistic nuclear
collisions. The experimental [5–9] and theoretical studies [10–
19] of K± production in A + A collisions at GSI Schwerionen
Synchrotron (SIS) energies of 1–2 A GeV show that the in-
medium properties of kaons can be connected to the collective
flow pattern of K+ mesons as well as to the abundance and
spectra of antikaons.
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The topic of medium modifications of hadron properties
was initiated by Brown and Rho [20] who suggested that
the modifications of hadron masses should scale with the
scalar quark condensate 〈qq̄〉 at finite baryon density. The
mass modifications of the hadrons like nucleons and vector
mesons in dense nuclear matter have been extensively studied
using an effective hadronic model within the framework of
quantum hadrodynamics [21]. The first attempts to extract the
antikaon-nucleus potential from the analysis of kaonic-atom
data were in favor of very strong attractive potentials of the
order of −150 to −200 MeV at normal nuclear matter density
ρ0 [22,23]. However, more recent self-consistent calculations
based on a chiral Lagrangian [24–27] or coupled-channel G

matrix theory (within meson-exchange potentials) [28] only
predicted moderate attraction with potential depths of −50 to
−80 MeV at density ρ0.

The problem with the antikaon potential at finite baryon
density is that the antikaon-nucleon amplitude in the isospin
channel I = 0 is dominated by the �(1405) resonant structure,
which in free space is only 27 MeV below the K̄N threshold.
It is presently not clear if this physical resonance is an excited
state of a “strange” baryon or some short-lived molecular
state that, for instance, can be modeled in a coupled channel
T -matrix scattering equation using a suitable meson-baryon
potential. Additionally, the coupling between the K̄N and πY

(Y = �,�) channels is essential to get the proper dynamical
behavior in free space. Correspondingly, the in-medium
properties of the �(1405), such as its pole position and its
width, which in turn strongly influence the antikaon-nucleus
optical potential, are very sensitive to the many-body treatment
of the medium effects. Previous works have shown that a self-
consistent treatment of the K̄ self-energy has a strong impact
on the scattering amplitudes [17,24,26–29] and thus on the in-
medium properties of the antikaons. Because of the complexity
of this many-body problem, the actual kaon and antikaon
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self-energies (or potentials) are still a matter of debate. In
Ref. [30] it is pointed out that one has to take into account
the effect of the Haar measure in mean-field approximations
of nonlinear chiral models, which is especially relevant in
the high-temperature regime. An extended discussion of the
model presented here, including this contribution, should be
performed in future studies.

The isospin effects in hot and dense hadronic matter [31]
are important in isospin asymmetric heavy-ion collision ex-
periments. Within the UrQMD model the density dependence
of the symmetry potential has been studied by investigating
observables like the π−/π+ ratio, the n/p ratio [32], and the
�−/�++ ratio as well as the effects on the production of K0

and K+ [33] and on pion flow [34] for neutron-rich heavy-ion
collisions. Recently, the isospin dependence of the in-medium
NN cross section [35] has also been studied.

In the present investigation we use a chiral SU(3) model
for the description of hadrons in the medium [36,37]. The
properties of vector mesons [37,38] in the nuclear medium
within this model have also been examined and were seen to
have significant contributions from the Dirac sea polarization
effects. The chiral SU(3)flavor model was generalized to
SU(4)flavor to study the mass modification of D mesons arising
from their interactions with the light hadrons in hot hadronic
matter in Ref. [39]. The energies of kaons (antikaons), as
modified in the medium because of their interaction with
nucleons, consistent with the low-energy KN scattering data
[40,41], were also studied within this framework [42,43]. In the
present work, we investigate the effect of isospin asymmetry
on the kaon and antikaon optical potentials in the asymmetric
nuclear matter, consistent with the low-energy kaon-nucleon
scattering lengths for channels I = 0 and I = 1. Furthermore,
the isovector and isoscalar pion-nucleon scattering lengths are
also calculated and compared with the earlier literature. In
addition, the kaon-nucleon and pion-nucleon � coefficients,
�πN and �KN , are determined within the present effective
chiral model.

The outline of the article is as follows: In Sec. II we briefly
review the SU(3) model used in the present investigation.
Section III describes the medium modification of the K(K̄)
mesons in this effective model. In Sec. IV, we discuss
the results obtained for the optical potentials of the kaons
and antikaons and the isospin-dependent effects on these
optical potentials in asymmetric nuclear matter. Section V
summarizes our results and discusses possible extensions of
the calculations.

II. THE HADRONIC CHIRAL SU(3) × SU(3) MODEL

In this section the various terms of the effective hadronic
Lagrangian used,

L = Lkin +
∑

W=X,Y,V,A,u

LBW + Lvec + L0 + LSB, (1)

are discussed. Equation (1) corresponds to a relativistic
quantum field theoretical model of baryons and mesons
adopting a nonlinear realization of chiral symmetry [44–46]
and broken scale invariance (for details see Refs. [36–38])

to describe strongly interacting nuclear matter. The model
was used successfully to describe nuclear matter, finite nuclei,
hypernuclei, and neutron stars. The Lagrangian contains the
baryon octet, the spin-0, and spin-1 meson multiplets as the
elementary degrees of freedom. In Eq. (1), Lkin is the kinetic
energy term, LBW contains the baryon-meson interactions in
which the baryon-spin-0 meson interaction terms generate the
baryon masses. Lvec describes the dynamical mass generation
of the vector mesons via couplings to the scalar fields and con-
tains additionally quartic self-interactions of the vector fields.
L0 contains the meson-meson interaction terms inducing the
spontaneous breaking of chiral symmetry as well as a scale
invariance breaking logarithmic potential. LSB describes the
explicit chiral symmetry breaking.

The baryon-scalar meson interactions generate the baryon
masses through coupling of the baryons to the nonstrange
σ (∼ 〈ūu + d̄d〉) and the strange ζ (∼ 〈s̄s〉) scalar quark con-
densates. The parameters corresponding to these interactions
are adjusted to fix the baryon masses to their experimentally
measured vacuum values. It should be emphasized that the
nucleon mass also depends on the strange condensate ζ . For
the special case of ideal mixing, however, the nucleon mass
depends only on the nonstrange quark condensate.

In analogy to the baryon-scalar meson coupling there
exist two independent baryon-vector meson interaction terms
corresponding to the F -type (antisymmetric) and D-type
(symmetric) couplings. Here we use the antisymmetric cou-
pling [36,43] because, following the universality principle [47]
and the vector meson dominance model, one can conclude
that the symmetric coupling should be small. Additionally we
choose the parameters [36,43] so as to decouple the strange
vector field φµ ∼ s̄γµs from the nucleon, corresponding to an
ideal mixing between ω and φ. A small deviation of the mixing
angle from the ideal mixing [48–50] has not been taken into
account in the present investigation.

The Lagrangian densities corresponding to the interaction
for the vector meson, Lvec, the meson-meson interaction
L0, and that corresponding to the explicit chiral symmetry
breaking LSB have been described in detail in Refs. [36,43].

To investigate the hadronic properties in the medium, we
write the Lagrangian density within the chiral SU(3) model in
the mean-field approximation and determine the expectation
values of the meson fields by minimizing the thermodynamical
potential [37,38].

III. KAON (ANTIKAON) INTERACTIONS IN THE CHIRAL
SU(3) MODEL

In this section, we derive the dispersion relations for the
K(K̄) [51] and calculate their optical potentials in asymmetric
nuclear matter [43]. In the present model, the interactions of
the kaons and antikaons with the scalar fields (nonstrange, σ,

and strange, ζ ) and scalar-isovector field δ, as well as a vec-
torial interaction with the nucleons (the so-called Weinberg-
Tomozawa interaction), modify the energies for K(K̄) mesons
in the medium. It might be noted here that the interaction of
the pseudoscalar mesons to the vector mesons, in addition to
the pseudoscalar meson-nucleon vectorial interaction, leads
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to a double counting in the linear realization of the chiral
effective theory [52]. Within the nonlinear realization of the
chiral effective theories, such an interaction does not arise
in the leading or subleading order, but only as a higher
order contribution [52]. Hence the vector meson-pesudoscalar
interaction is not considered within the present investigation.
In the following, we derive the dispersion relations for the
kaons and antikaons and study the dependence of the kaon
and antikaon optical potentials on the isospin asymmetric
parameter, η = 1

2 (ρn − ρp)/ρB . For this, we include the effects
from isospin asymmetry originating from the scalar-isovector
δ field as well as vectorial interaction with the nucleons
[43]. In addition, in the present investigation, we consider an
isospin-dependent range term arising from the interaction with
the nucleons, which was not taken into account in Ref. [43].

The interaction Lagrangian modifying the energies of the
K(K̄) mesons is given as

LKN = − i

8f 2
K

[3(N̄γ µN )(K̄(∂µK) − (∂µK̄)K)

+ (N̄γ µτ aN )(K̄τ a(∂µK) − (∂µK̄)τ aK)]

+ m2
K

2fK

[(σ +
√

2ζ )(K̄K) + δa(K̄τ aK)]

− 1

fK

[(σ +
√

2ζ )(∂µK̄)(∂µK) + (∂µK̄)τ a(∂µK)δa]

+ d1

2f 2
K

(N̄N )(∂µK̄)(∂µK)

+ d2

2f 2
K

[(p̄p)(∂µK+)(∂µK−) + (n̄n)(∂µK0)(∂µK̄0)

+ (p̄n)(∂µK+)(∂µK̄0) + (n̄p)(∂µK0)(∂µK̄−).] (2)

In the above, K and K̄ are the kaon (K+,K0) and antikaon
(K−, K̄0) doublets. In Eq. (2) the first line is the vectorial
interaction term (Weinberg-Tomozawa term) obtained from
the kinetic term of the Lagrangian [43]. The second term,
which gives an attractive interaction for the K mesons, is
obtained from the explicit symmetry breaking term [42,43].
The third term arises within the present chiral model from the
kinetic term of the pseudoscalar mesons [43]. The fourth and
fifth terms in Eq. (2) for the KN interactions arise from the
terms

LBM
(d1) = (d1)/2 T r(uµuµ) T r(B̄B) (3)

and

LBM
(d2) = d2T r(B̄uµuµB) (4)

in the SU(3) chiral model [42,43]. The last three terms in
Eq. (2) represent the range term in the chiral model, with
the last term being an isospin asymmetric interaction. The
Fourier transformation of the equation-of-motion for kaons
(antikaons) leads to the dispersion relations

−ω2 + �k2 + m2
K − �(ω, |�k|, ρ) = 0,

where � denotes the kaon (antikaon) self-energy in the
medium.

Explicitly, the self-energy �(ω, |�k|) for the kaon doublet
arising from the interaction (2) is given as

�(ω, |�k|) = − 1

4f 2
K

[3(ρp + ρn) ± (ρp − ρn)]ω

+ m2
K

2fK

(σ ′ +
√

2ζ ′ ± δ′)

+
[
− 1

fK

(σ ′ +
√

2ζ ′ ± δ′) + d1

2f 2
K

(
ρp

s + ρn
s

)
+ d2

4f 2
K

((
ρp

s + ρn
s

) ± (
ρp

s − ρn
s

))]
(ω2 − �k2),

(5)

where the ± signs refer to the K+ and K0, respectively. In
the above, σ ′(= σ − σ0), ζ ′(= ζ − ζ0), and δ′(= δ − δ0) are
the fluctuations of the scalar-isoscalar fields σ and ζ and the
third component of the scalar-isovector field, δ, from their
vacuum expectation values. The vacuum expectation value of
δ is zero (δ0 = 0), because a nonzero value for it will break the
isospin symmetry of the vacuum (the small isospin breaking
effect coming from the mass and charge difference of the up
and down quarks has been neglected here). ρp and ρn are the
number densities for the proton and the neutron, and ρ

p
s and

ρn
s are their scalar densities.

Similarly, for the antikaon doublet, the self-energy is
calculated as

�(ω, |�k|) = 1

4f 2
K

[3(ρp + ρn) ± (ρp − ρn)]ω

+ m2
K

2fK

(σ ′ +
√

2ζ ′ ± δ′)

+
[
− 1

fK

(σ ′ +
√

2ζ ′ ± δ′) + d1

2f 2
K

(
ρp

s + ρn
s

)
+ d2

4f 2
K

((
ρp

s + ρn
s

) ± (
ρp

s − ρn
s

))]
(ω2 − �k2),

(6)

where the ± signs refer to the K− and K̄0, respectively.
The optical potentials are calculated from the energies of

the kaons and antikaons using

U (ω, k) = ω(k) −
√

k2 + m2
K, (7)

where mK is the vacuum mass for the kaon (antikaon).
The parameters d1 and d2 are calculated from the empirical

values of the KN scattering lengths for I = 0 and I = 1
channels, given by

aKN (I = 0) = mK

4πfK
2(1 + mK/mN )

×
[

− mKfK

2

(
gσN

mσ
2

+
√

2
gζN

mζ
2

− 3
gδN

mδ
2

)

+ (d1 − d2)mK

2

]
(8)
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and

aKN (I = 1) = mK

4πfK
2(1 + mK/mN )

×
[

− 1 − mKfK

2

(
gσN

mσ
2

+
√

2
gζN

mζ
2

+ gδN

mδ
2

)

+ (d1 + d2)mK

2

]
. (9)

These are taken to be [40,53,54]

aKN (I = 0) ≈ −0.09 fm, aKN (I = 1) ≈ −0.31 fm, (10)

leading to the isospin averaged KN scattering length as

āKN = 1
4aKN (I = 0) + 3

4aKN (I = 1) ≈ −0.255 fm. (11)

The pion-nucleon scattering lengths given by

aπN

(
I = 3

2

)
= mπ

4πfπ
2(1 + (mπ/mN ))

×
[
−1

2
− gσN

mσ
2
mπfπ + (d1 + d2)mπ

2

]
(12)

and

aπN

(
I = 1

2

)
= mπ

4πfπ
2(1 + (mπ/mN ))

×
[

1−gσN

mσ
2
mπfπ + (d1 + d2)mπ

2

]
(13)

are also calculated in the present work.
The pion-nucleon and kaon-nucleon � coefficients, �πN

and �KN , are also calculated within the present chiral effective
model using the coupling constants for the interactions of
nucleons and pseudoscalar mesons with the scalar mesons.

IV. RESULTS AND DISCUSSIONS

The present calculations use the following model param-
eters. The values gσN = 10.6 and gζN = −0.47 are deter-
mined by fitting vacuum baryon masses. The other parameters
as fitted to the asymmetric nuclear matter saturation properties
in the mean-field approximation are gωN = 13.3, gρN = 5.5,
g4 = 79.7, gNδ = 2.5, mζ = 1024.5 MeV, mσ = 466.5 MeV,
and mδ = 899.5 MeV. The value of gρN

2/4π ≈ 2.4 of the
present work, may be compared with the value of 2.6 [55]
and a range of values of 2.1 to 3.4 [56] in the literature. The
value of the ω meson-nucleon coupling, gωN

2/4π ≈ 14 in the
present investigation, is the same as that in Ref. [48], whereas
this coupling was taken to be around 24 in Ref. [50]. The
coefficients d1 and d2, calculated from the empirical values
of the KN scattering lengths for I = 0 and I = 1 channels
(10), are 5.5/mK and 0.66/mK , respectively. Using these
parameters, the symmetry energy defined as

a4 = 2
d2E

dη2
|η=0 (14)

has a value of a4 = 31.7 MeV at a saturation nuclear matter
density of ρ0 = 0.15 fm−3. Figure 1 shows the density
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FIG. 1. The symmetry energy, a4, plotted as a function of the
baryon density, ρB/ρ0.

dependence of the symmetry energy, which increases with
density similar to previous calculations [57].

The values of the pion-nucleon scattering lengths [58–63]
are calculated in the present model, with the values of d1

and d2 as obtained by fitting the kaon-nucleon scattering
lengths. Their values for I = 3/2 and I = 1/2, given by
Eqs. (12) and (13) are obtained as aπN (I = 3

2 ) = −0.1474 fm
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FIG. 2. (Color online) The kaon energies [for K+ in (a) and for
K0 in (b)] in MeV plotted as functions of the baryon density, ρB/ρ0,
for different values of the isospin asymmetry parameter, η = 1

2 (ρn −
ρp)/ρB .
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FIG. 3. (Color online) The energies of the antikaons [for K−

in (a) and for K̄0 in (b)], at zero momentum as functions of the
baryon density (ρB/ρ0), are plotted for different values of the isospin
asymmetry parameter, η.

and aπN (I = 1
2 ) = 0.1823 fm, respectively. This determines

the isoscalar and isovector scattering lengths for πN

scattering (a+ = (aπN (I = 1
2 ) + 2aπN (I = 3

2 ))/3 and a− =
(aπN (I = 1

2 ) − aπN (I = 3
2 ))/3) to be a+ = −0.0266/mπ and

a− = 0.078/mπ . These may be compared with the results
of a+ = −0.0029/mπ and a− = 0.0936/mπ derived from
pionic atoms [61], the values a+ = −0.0012/mπ and a− =
0.0895/mπ using the empirical values of the π−p and π−d

scattering lengths [62], and the values a+ = −0.0001/mπ and
a− = 0.0885/mπ from pionic deuterium shift as quoted in
Ref. [63].

The πN and KN sigma coefficients, �πN and �KN, are
also calculated within the model. They turn out to be 44 and
725 MeV for the set of parameters used in the present
calculations.

The kaon and antikaon properties were studied in the
isospin symmetric hadronic matter within the chiral SU(3)
model in Ref. [42]. The contribution from the vector interaction
(Weinberg-Tomozawa term) leads to a drop in the antikaon
energy, whereas they are repulsive for the kaons. The scalar
meson exchange term arising from the scalar-isoscalar fields
(σ and ζ ) is attractive for both K and K̄ . The first term of the
range term of Eq. (2) is repulsive whereas the second term has
an attractive contribution for the isospin symmetric matter [42]
for both kaons and antikaons. The third term of the range term
has an isospin asymmetric contribution.

The contributions from (i) the last term of the Weinberg-
Tomozawa term, (ii) the scalar-isovector δ field, and (iii) the d2

term in the interaction Lagrangian given by Eq. (2) introduce an
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FIG. 4. (Color online) The kaon energies [for K+ in (a), (c),
and (e) and for K0 in (b), (d), and (f)], as compared to the isospin
symmetric case, plotted as functions of the momentum for various
values of the baryon density, ρB , and for different values of the isospin
asymmetry parameter, η.

isotopic asymmetry in the K and K̄ energies. For ρn > ρp, in
the kaon sector, K+ (K0) has negative (positive) contributions
from δ. The δ contribution from the scalar exchange term is
positive (negative) for K+ (K0), whereas that arising from
the range term has the opposite sign and dominates over the
former contribution.

In Fig. 2, the energies of the K+ and K0 at zero momentum
are plotted for different values of the isospin asymmetry
parameter, η, at various densities. For ρB = ρ0 the energy
of K+ is seen to drop by about 7 MeV at zero momentum
when η changes from 0 to 0.5. On the other hand, the K0

energy is seen to increase by about 27 MeV for η = 0.5
from the isospin symmetric case of η = 0. The reason for this
opposite behavior for the K+ and K0 on the isospin asymmetry
originates from the vectorial (Weinberg-Tomozawa) δ meson
contribution as well as from the isospin-dependent range term
(d2 term) contributions. For K+, the η dependence of the
energy is seen to be less sensitive at higher densities, whereas
the energy of K0 is seen to have a larger drop from the η = 0
case as we increase the density.

For the antikaons, the K−(K̄0) energy at zero momentum
is seen to increase (drop) with η as we increase the density
as seen in Fig. 3. The sensitivity of the isospin asymmetry
dependence of the energies is seen to be larger for K− with
density, whereas it becomes smaller for K̄0 at high densities.
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FIG. 5. (Color online) The antikaon energies [for K− in (a), (c),
and (e) and for K̄0 in (b), (d), and (f)], as compared to the isospin
symmetric case, plotted as functions of the momentum for different
values of the isospin asymmetry parameter, η, and for various values
of the baryon density, ρB .

The mass drop as modified in the isospin asymmetry in neutron
star matter will have relevance for the onset of antikaon (K−
and K̄0) condensation.

The energies of the kaons and antikaons, with respect
to the isospin symmetric case, for different values of the
isospin asymmetric parameter η are plotted as functions of
the momentum in Figs. 4 and 5. The energies of the kaons
and antikaons are plotted for densities ρB = ρ0, 2ρ0, and 4ρ0

in the same figures. These are seen to be more sensitive
to momentum as we increase the isospin parameter. The
momentum dependence turns out to be stronger for higher
densities, and in particular, the effect seems to be more
significant for K0 (as compared to K+) and K− (as compared
to K̄0).

The qualitative behavior of the isospin asymmetry depen-
dencies of the energies of the kaons and antikaons are also
reflected in their optical potentials plotted in Fig. 6 for the
kaons and in Fig. 7 for the antikaons at selected densities.
The different behavior of the K+ and K0, as well as for
the K− and K̄0 optical potentials in the dense asymmetric
nuclear matter, should be observed in their production as well
as propagation in isospin asymmetric heavy-ion collisions. In
particular an experimental study of the K−/K̄0 ratio (and its
dependence on the kaon momenta) might be a promising tool to
investigate the isospin effects discussed here. The effects of the
isospin asymmetric optical potentials could thus be observed in
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FIG. 6. (Color online) The kaon optical potentials [for K+ in (a),
(c), and (e) and for K0 in (b), (d), and (f)] in MeV, plotted as functions
of the momentum for various baryon densities, ρB , and for different
values of the isospin asymmetry parameter, η.

nuclear collisions at the Compressed Baryonic Matter (CBM)
experiment at the GSI Facility for Antiproton and Ion Research
(GSI-FAIR), where experiments with neutron-rich beams are
planned to be carried out.

V. SUMMARY

To summarize, within a chiral SU(3) model we have
investigated the density dependence of the K, K̄-meson
optical potentials in asymmetric nuclear matter, arising from
the interactions with nucleons (originating from a vectorial
Weinberg-Tomozawa interaction, an isospin symmetric range
term, and an isospin asymmetric range term) and scalar mesons
(from a scalar exchange as well as a range term). The properties
of the light hadrons—as studied in this model—modify the
K(K̄)-meson properties in the hadronic medium. The model
with parameters fitted to reproduce the properties of hadron
masses in vacuum, nuclear matter saturation properties and
low-energy KN scattering data, takes into account all terms
up to the next to leading order arising in chiral perturbative
expansion for the interactions of K(K̄) mesons with baryons.
The πN scattering lengths are also calculated for the fitted
set of model parameters as a+ = −0.0266/mπ and a− =
0.078/mπ and have been compared with the other results in
the literature [61–63]. The πN and KN � coefficients are
calculated within the present chiral effective model and have
values of �πN = 44 MeV and �KN = 725 MeV.
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FIG. 7. (Color online) The antikaon optical potentials [for K− in
(a), (c), and (e) and for K̄0 in (b), (d), and (f)] in MeV, plotted as
functions of the momentum for various baryon densities, ρB , and for
different values of the isospin asymmetry parameter, η.

There is a significant density dependence of the isospin
asymmetry on the optical potentials of the kaons and antikaons.
The results can be used in heavy-ion simulations that include
mean fields for the propagation of mesons [51]. The different
potentials of kaons and antikaons can be particularly relevant
for neutron-rich heavy-ion beams at the CBM experiment at
GSI-FAIR, Germany, as well as at the experiments at the
proposed Rare Isotope Accelerator (RIA) laboratory, USA.
The K−/K̄0 ratio for different isospin of projectile and target is
a promising observable to study these effects. Furthermore, the
medium modification of antikaons due to isospin asymmetry
in dense matter can have important consequences, for example,
on the onset of antikaon condensation in the bulk charge neutral
matter in neutron stars. The effects of hyperons as well as finite
temperatures on optical potentials of kaons and antikaons and
their possible implications on the neutron star phenomenology
as well as heavy-ion collision experiments are the intended
topics of future investigation.
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