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Straight line trajectories are commonly used in semiclassical calculations of the first-order Coulomb excitation
cross section at intermediate energies, and simple corrections are often made for the distortion of the trajectories
that is caused by the Coulomb field. These approximations are tested by comparing to numerical calculations that
use exact Coulomb trajectories. In this paper a model is devised for including relativistic effects in the calculations.
It converges at high energies toward the relativistic straight-line trajectory approximation and approaches the non-
relativistic Coulomb trajectory calculation at low energies. The model is tested against a number of measurements
and analyses that have been performed at beam energies between 30 and 70 MeV/nucleon, primarily of quadrupole
excitations. Remarkably good agreement is achieved with the previous analyses, and good agreement is also
achieved in the few cases, where the B(Eλ) value is known from other methods. The magnitudes of the
relativistic and Coulomb distortion effects are discussed.
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I. INTRODUCTION

The first-order excitation of a nucleus, induced by the
Coulomb field from another nucleus, has been discussed
in detail in Ref. [1]. The semiclassical perturbation theory
developed there was based on a classical, nonrelativistic
Coulomb orbit for the relative motion of the projectile and
target nuclei. A relativistic description was later developed but
it was restricted to straight-line trajectories [2]. This leaves
a gap in the theoretical description at intermediate energies
(say, at 20–200 MeV/nucleon), where both relativistic effects
and Coulomb distortions of the trajectory can be important.
This is very unfortunate because many experiments have been
performed in recent years at intermediate-energy, radioactive
beam facilities. These include Coulomb dissociation exper-
iments, for example, of 8B, 11Be and 11Li, and Coulomb
excitation measurements in inverse kinematics, mostly of the
lowest 2+ state in light and medium heavy nuclei [3].

The purpose of this paper is to devise a model that
interpolates smoothly between the nonrelativistic description
of the Coulomb excitation which is based on Coulomb
trajectories [1] and the relativistic description which is based
on straight-line trajectories [2]. To develop an exact theory that
contains the two extreme descriptions as limits is in general a
difficult task. It has been studied by Bertulani et al. [4,5], who
considered the effects of retardation explicitly for a Coulomb
trajectory. The method proposed here is much simpler but
it is sufficiently accurate for analyzing the data that have
been obtained at intermediate energies. The point is that the
experimental uncertainties are often large, typically of the
order of 10%, and there are also theoretical uncertainties,
which can distort the analysis of data, for example, the
influence of nuclear and higher-order processes.

The accuracy of the proposed model of the intermediate-
energy Coulomb excitation is tested by analyzing the re-
sults obtained with the commonly used ‘Coulomb corrected’
straight-line trajectory method, which originally was proposed
by Winther and Alder [2]. Another test is to use B(E2)
values that are known from other measurements (for example,

of the lifetime) and compare the calculated cross sections
to measurements that have been performed at intermediate
energies.

There has recently been a debate in the literature [6,7]
about the validity of the analyses of Coulomb excitation
experiments that have been performed in the past. It turned
out to be caused by a misunderstanding of the experimental
conditions, as pointed out in Ref. [7]. However, independent
of the controversy, it was claimed that corrections to the
low-energy and high-energy theories of Coulomb excitation
could be as large as 20% or 30% at intermediate energies [5,6].
In this paper it will be shown how this large uncertainty can
be brought under control and reduced to only a few percent.

The semiclassical theory of the nonrelativistic Coulomb
excitation is summarized in Secs. II to III. The expressions
that are obtained from straight-line and Coulomb trajectories,
respectively, are compared in Sec. IV. The analytic expression
for the relativistic Coulomb excitation in the straight line
trajectory approximation is quoted in Sec. V, and it is used
to devise a model which includes the combined effect of
relativity and Coulomb trajectories. The model is tested in
Sec. VI against measurements and other calculations, and
Sec. VII contains the conclusions.

II. NONRELATIVISTIC COULOMB EXCITATION

The semiclassical, nonrelativistic description of Coulomb
excitation [1] is summarized in the following. Thus we
consider a target nucleus with atomic number Z2 which is
being excited by the Coulomb field from a projectile nucleus
with atomic number Z1. It is assumed that the projectile and
target do not overlap during the collision. We can therefore
use the so-called far-field approximation which assumes that
the intrinsic coordinate r of the target nucleus is smaller that
the distance R(t) between projectile and target. The first-order
amplitude for the electric excitation of the target nucleus, from
an initial state |i〉 to a final state |f 〉, is given by the multipole
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expansion [1]

af i = Z1e
2

ih̄

∑
λµ

√
4π

2λ + 1
Sλµ(ω)〈f |M∗

λµ|i〉, (1)

where h̄ω = �Ef i is the excitation energy, Mλµ is the
multipole operator rλYλµ(r̂), and

Sλµ(ω) =
√

4π

2λ + 1

∫ ∞

−∞
dteiωt Yλµ(R̂(t))

R(t)λ+1

=
∫ ∞

−∞
dt eiωt

dλ
µ0(β)eiµφ

(R(t))λ+1
(2)

is the so-called orbital integral. It depends on the orbit �R(t) of
the projectile with respect to the target nucleus. The unit vector
R̂ = �R/R is expressed in terms of the spherical coordinates
(β, φ) in the last expression. It is noted that this definition of
the orbital integral, Eq. (2), differs by the factor

√
4π/(2λ + 1)

from the convention used in Ref. [1].
The calculation of the orbital integrals is discussed in

the following sections for two choices of the coordinate
system. The first choice, system A, is the most convenient
for numerical calculations that are based on a Coulomb orbit
[1]. The second choice, referred to as system H, is more
convenient at high energies, where a straight line trajectory
becomes an accurate approximation and relativistic effects
can be treated exactly [2]. The transformation between the
two representations will be discussed in order to be able to
compare the two extreme methods and devise a model that
interpolates smoothly between them.

A. Cross sections

The Coulomb excitation cross section is calculated as the
product of the first-order excitation probability Pf i and the
elastic Rutherford cross section (dσ/d�)R ,(

dσ

d�

)
f i

= Pf i

(
dσ

d�

)
R

. (3)

The Rutherford cross section can be obtained from the
Rutherford scattering formula, tan(θ/2) = a/b, where b is the
impact parameter and

a = Z1Z2e
2

M0v2
, (4)

is half the of distance of closest approach in a head-on collision,
and M0 is the reduced mass, M0 = M1M2/(M1 + M2). The
Rutherford cross section is(

dσ

d�

)
R

= 2πbdb

d�
= πa2 d

d�

(
1

sin2(θ/2)

)
. (5)

The average excitation probability obtained from Eq. (1) is
the average over the initial magnetic substates Mi and the sum
over the final m-substates Mf ,

Pf i = 4πZ2
1e

4

(2λ + 1)h̄2

∑
µ

|Sλµ|2 1

2Ii + 1

×
∑

MiMf

|〈If Mf |M∗
λµ|IiMi〉|2.

The last sum divided by (2Ii + 1) is equal to (2λ + 1)−1 times
the multipole strength (or reduced transition probability) for
the excitation, i.e.,

Pf i = 4π

(
Z1e

2

(2λ + 1)h̄

)2

B(Eλ)
∑

µ

|Sλµ|2. (6)

III. ORBITAL INTEGRALS IN COORDINATE SYSTEM A

In the coordinate system denoted by A (c.f. Ref. [1]), the
z-axis is perpendicular to the scattering plane so the orbit has
the form �R(t) = (x(t), y(t), 0). The angle β is fixed at π/2,
and the orbital integral (2) can be written as

SA
λµ = dλ

µ0

(π

2

) ∫ ∞

−∞
dt eiωt (x(t) + iy(t))µ

(R(t))λ+µ+1
. (7)

The factor dλ
µ0(π/2) ensures that the orbital integral is nonzero

only when λ + µ is even.
In the coordinate system A one chooses the x-axis as the

symmetry axis of the Coulomb orbit so that x(−t) = x(t) and
y(−t) = −y(t). From this it follows that SA

λµ = (SA
λµ)∗ is a

real quantity. To calculate SA
λ−µ when µ > 0 one can use the

expression

SA
λ−µ = dλ

µ0

(π

2

) ∫ ∞

−∞
dt eiωt (x(t) − iy(t))µ

(R(t))λ+µ+1
. (8)

Below we discuss the calculation for a Coulomb trajectory and
compare it to the result of the straight-line approximation.

A. Coulomb trajectories

To evaluate the orbital integrals numerically for a Coulomb
orbit one makes use of a dimensionless time-variable w (see
Ref. [1]) so that

R(t) = a[ε cosh(w) + 1], t = a

v
[ε sinh(w) + w], (9)

where a is defined in Eq. (4) and ε is the eccentricity of the
orbit, which can be expressed in terms of the impact parameter
b or the scattering angle θ in the center of mass system as
follows:

ε =
√

1 + (b/a)2 = 1

sin(θ/2)
. (10)

Inserting the Cartesian coordinates of the orbit (see [1]):

x = a[cosh(w) + ε], y = a
√

ε2 − 1 sinh(w), z = 0,

(11)

into Eq. (7) one obtains

SA
λµ = 1

vaλ
dλ

µ0

(π

2

)
Iλµ, (12)
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where

Iλµ =
∫ ∞

−∞
dw exp[iξa(ε sinh(w) + w)]

× [cosh(w) + ε + i
√

ε2 − 1 sinh(w)]µ

(ε cosh(w) + 1)λ+µ
, (13)

and ξa = ωa/v. Properties and even tabulations of Iλµ are
given in Ref. [8]. It will be calculated using a simple numerical
integration with respect to w over the finite interval [−5 : 5],
and using just a few thousand steps. The accuracy of the
numerical integration can be tested in the case of a straight-line
trajectory against the analytic expressions, which are discussed
in Appendix A.

IV. COORDINATE SYSTEM H

At high energies it is more convenient to use the coordinates
system H where the z-axis is along the beam direction and
the x-axis is along the impact parameter so that the y-axis is
perpendicular to the scattering plane. The coordinates of the
trajectory are therefore �R(t) = (x(t), 0, z(t)), which implies
that Yλµ(R̂) is real. Since Y ∗

λµ = (−1)µYλ−µ, it follows directly
from the definition (2) that the orbital integral in coordinate
system H must have the property

SH
λ−µ(ω) = (−1)µSH

λµ(ω). (14)

The coordinate system H is convenient at high energies
because the analytic expressions for the orbital integrals
that exist for straight-line trajectories are relatively simple
in this representation even when the relativistic effects
are included [2]. This feature will be exploited in Sec. V to
devise an expression that contains the effects of relativity and
the Coulomb distortion of the trajectory. To do that, we will
need to transform the orbital integrals in coordinate system A
to the new coordinate system H.

To go from the H to the A coordinate system consists of
a rotation of π/2 around the z-axis, followed by a rotation
of −π/2 around the new y-axis, and finally a rotation of
−π/2 around the final z-axis. The required transformation
is therefore

SH
λµ =

∑
µ′

iµ−µ′
dλ

µµ′

(
−π

2

)
SA

λµ′ . (15)

Inserting Eq. (12) into this transformation we can write that

SH
λµ = iλ+µ

vaλ
IH
λµ,

where

IH
λµ =

∑
µ′

i−(λ+µ′)dλ
µ′µ

(π

2

)
dλ

µ′0

(π

2

)
Iλµ′ . (16)

Values of dλ
µ′µ(π/2) can be obtained from appendix D of

Ref. [1]. The explicit expressions one obtains for dipole and

quadrupole excitations are

IH
10 = I1−1 − I11

2
, IH

11 = I1−1 + I11

2
√

2
, (17)

IH
20 = 3

8

[
I22 + I2−2 − 2

3
I20

]
, IH

21 = 1

2

√
3

8
[I2−2 − I22],

(18)

IH
22 = 1

4

√
3

8
[I22 + I2−2 + 2I20].

A. Straight-line trajectories

In the straight-line trajectory approximation, the projectile
moves with constant velocity v along the z-axis at an impact
parameter b with respect to the target, �R(t) = (b, 0, vt). The
nonrelativistic orbital integrals have the analytic form [2]

S̃H
λµ = 2

v

iλ+µ

√
(λ + µ)!(λ − µ)!

(ω

v

)λ

Kµ(ξb), (19)

where ξb = ωb/v is the adiabaticity parameter associated with
the impact parameter b. The tilde on S̃H

λµ is a reminder of
the straight-line trajectory approximation, and the superscript
H refers to the coordinate system used here. It should be
emphasized that the expression Eq. (19) can be derived by
inserting the straight-line approximation, Eq. (A3), into the
transformation, Eq. (16).

B. Coulomb trajectories

In order to test the accuracy of Eq. (19) it is useful to write
the general Coulomb trajectory result, Eq. (16), in a similar
form,

SH
λµ = 2

v

iλ+µ

√
(λ + µ)!(λ − µ)!

(ω

v

)λ

Keff
λµ(b/a, ξa), (20)

where

Keff
λµ(b/a, ξa) = 1

2

(
1

ξa

)λ √
(λ + µ)!(λ − µ)!IH

λµ, (21)

and IH
λµ are the orbital integrals defined in coordinate system

H according to Eq. (16). They are given explicitly by Eqs. (17)
and (18) for dipole and quadrupole excitations.

One can check that Keff
λµ gives the correct modified Bessel

function Kµ(ξ ) when one inserts the straight-line trajectory
results in coordinate system A, Eqs. (A4)–(A6) of Appendix A,
into the definition (16) of IH

λµ. In the limit: ξa � 1
and b/a 	 1, i.e., at high energies and large impact param-
eters, one should recover the result for a straight line, i.e.
Keff

λµ(b/a, ξa) → Kµ(ξb). This convergence will be illustrated
in the next section.

To evaluate the excitation probability (6), we need the
expression ∑

µ

∣∣SH
λµ

∣∣2 = 4

v2b2λ
Fλ(b/a, ξa),

where

Fλ(b/a, ξa) =
∑

µ

ξ 2λ
b

(λ + µ)!(λ − µ)!

(
Keff

λµ(b/a, ξa)
)2

. (22)
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In the straight-line trajectory approximation, where
Keff

λµ(b/a, ξa) → Kµ(ξb), one obtains

F1(ξb) = ξ 2
b (K2

0 (ξb) + K2
1 (ξb)),

and

F2(ξb) = ξ 4
b

12

(
3K2

0 (ξb) + 4K2
1 (ξb) + K2

2 (ξb)
)
. (23)

for dipole and quadrupole excitations, respectively. For
ξb → 0 these functions approach the constant values F1 → 1
and F2 → 1/3.

C. Comparison of results

Here the convergence of the Coulomb trajectory cal-
culations toward the straight-line trajectory calculation is
illustrated by comparing the functions Fλ(b/a, ξa) defined in
Eq. (22) to the analytic expressions (23) for dipole and
quadrupole excitations. The solid curves in Fig. 1 show
the results of the straight-line trajectory approximation,
Eq. (23), for dipole (λ = 1) and quadrupole (λ = 2) excita-
tions, respectively, as functions of the adiabaticity parameter
ξb = ωb/v. The results of the Coulomb trajectory calculations
defined in Eq. (22) are shown by dashed curves for three values
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FIG. 1. The adiabaticity functions Fλ(b/a, ξ ) are illustrated for
λ = 1 and 2. The top solid curves are the results for a straight line
trajectory, Eq. (23). The dashed curves are obtained from Coulomb
trajectories, Eq. (22), using the indicated values of b/a. The solid
points were obtained by multiplying the straight line trajectory with
exp(−πξa) = exp(−π a

b
ξb) for a/b = 5.

of b/a. It is seen that the Coulomb trajectory results approach
the straight-line result in a smooth manner for increasing values
of b/a.

The solid circles in Fig. 1 are the results one obtains by
multiplying the straight-line trajectory expressions, Eq. (23),
with the factor exp(−πξa) = exp(−πξba/b) for b/a = 5. This
correction factor was suggested by Winther and Alder [2]
and it is seen to reproduce the dipole results (λ = 1) for
the Coulomb trajectory with b/a = 5 fairly well. However,
it does not work so well for quadrupole excitations (λ = 2).
The problem is that the Coulomb trajectory results depend
on b/a for ξb → 0, whereas the simple correction factor
exp(−πξa) = exp(−πξba/b) is 1 in this limit.

The nonrelativistic cross sections one obtains for the dipole
excitation of the 11Be 1/2+ ground state to the 1/2− excited
state and for the quadrupole excitation of 42S to the 2+ state
are illustrated in Fig. 2. The cross sections were calculated
for a gold target with a minimum impact parameter of 14 fm
and they are shown as functions of the beam energy. Although
these cross sections are referred to as nonrelativistic, it should
be emphasized that the velocity that has been used here was
actually obtained from the relativistic expression, Eq. (B1), in
terms of the beam energy.

The excitation energies and B(Eλ) values that have been
used for 11Be and 42S are shown in Table I, which will be
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FIG. 2. Energy dependence of the nonrelativistic cross sections
for the dipole excitation of 11Be and the quadrupole excitation of 42S
discussed in the text. The target is gold, and the minimum impact
parameter was set to 14 fm in both cases. The upper thick dashed
curves show the straight-line trajectory approximation, whereas the
thin dashed curves have been corrected with the factor exp(−πξa).
The solid curves are the results for Coulomb trajectories.
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TABLE I. Cross sections for the quadrupole excitation (λ = 2) of different nuclei on a Au or Bi target, and the dipole excitation (λ = 1)
of 11Be (last row). The experimental conditions are from the quoted references. The T is the beam energy per nucleon at midtarget and φLab

max

(θ c.m.
max ) is the maximum laboratory (center-of-mass) acceptance angle. The adopted B(E2) values [10] for 24Mg and 26Mg are also shown. The

the last two columns show the calculated cross sections for the relativistic Coulomb (σCoul) and straight-line (σStrl) trajectories.

Run no. Nucleus Ex (MeV) B(Eλ)
(e2fm2λ)

T

(MeV/nucleon)
φLab

max (deg) σexp (mb) σCoul (mb) σStrl (mb)

0 24Mg + Au [9] 1.3687 467(28) 36 θ c.m.
max � 4.48 78.7(48) 81.7 88.0

adopted [10] 436(10) 76.3(18) 82.2
0 26Si + Au [9] 1.7959 336(33) 41.8 θ c.m.

max � 4.48 55.8(55) 56.3 61.0
1 26Mg + Bi [11] 1.8087 315 67 2.38 44(2) 45.9 47.8

adopted [10] 307(9) 44.7(13) 46.6
2 32Mg + Au [11] 0.885 447 71.2 2.26 91(10) 92.7 95.9
3 34Mg + Bi [11] 0.659 541 67 2.38 126(22) 130.1 134.9
4 38S + Au [12] 1.292 235 34.6 4.10 59(7) 60.1 64.7
5 40S + Au [12] 0.891 334 35.3 4.10 94(9) 96.9 103.4
6 42S + Au [12] 0.890 397 36.6 4.10 128(19) 131.1 139.9
7 44Ar + Au [12] 1.144 345 30.9 4.10 81(9) 83.0 89.6
8 46Ar + Au [12] 1.554 196 32.8 4.10 53(10) 53.6 58.3
9 46Ar + Au [13] 1.554 212 73.2 2.90 68(8) 68.6 71.9

11Be + Au [14] 0.32 0.079 57.6 3.80 244(31) 246.1 247.2

discussed later. The top dashed curves in Fig. 2 show the
straight-line trajectory calculations, and the thin dashed curves
are the same results multiplied by the factor exp(−πξa). The
solid curves are based on Coulomb trajectories. They approach
the straight-line trajectory approximation fairly quickly for
the dipole excitation but somewhat slower for the quadrupole
excitation. It is also seen that the approximation of multiplying
the straight line calculation with the factor exp(−πξa) works
quite well for the dipole excitation when compared with the
Coulomb trajectory calculation, whereas this approximation
is poorer for quadrupole excitations. Other approximations
have been applied to correct the straight line trajectory
approximation for the distortion that is caused by a Coulomb
trajectory and some of them will be discussed in Sec. VI D.

V. RELATIVISTIC EXPRESSION

The relativistic expressions for the orbital integrals in the
straight-line trajectory approximation are [2]

S̃H
λµ(rel) = 2

γ v

iλ+µḠλµ√
(λ + µ)!(λ − µ)!

(ω

v

)λ

Kµ

(
ξb = ωb

γ v

)
,

(24)

where Ḡλµ can be extracted from Ref. [2]. The notation used
here is such that Ḡλµ = 1 in the nonrelativistic limit, whereas
Ref. [2] uses a different normalization. For electric dipole and
quadrupole excitations one finds that

Ḡ10 = Ḡ20 = Ḡ2±2 = 1

γ
, Ḡ1±1 = 1,

(25)

Ḡ2±1 = 1

2

(
1 + 1

γ 2

)
.

It is seen that the relativistic effects on the Coulomb excitation
enter into Eq. (24) through the factor γ −1G̃λµ, and in the
adiabatic distance γ v/ω of the adiabaticity parameter ξb =
ωb/(γ v), which is the argument of the modified Bessel
functions.

To complete the discussion of relativistic effects one
should also specify the kinematics of Coulomb scattering at
relativistic energies. This is done in Appendix B. One of the
reasons large relativistic effects have been observed is actually
due to the difference between relativistic and nonrelativistic
kinematics, the main one being the determination of the
velocity from the beam energy, Eq. (B1). A relativistic effect
in Coulomb scattering is the γ -factor which appears in the
definition (B3) of half the distance of closest approach.
This effect is commonly agreed upon [2,5]. There is also a
relativistic correction to the reduced mass, Eq. (B2), which
is less significant at intermediate energies, and it is usually
ignored [2,5]. However, for completeness, it is better to
keep it in the case of really high energies. Finally, there are
also relativistic effects in the transformation (B4) from the
center-of-mass to laboratory scattering angles.

A. Interpolating model

To accurately calculate the Coulomb excitation at inter-
mediate beam energies it is important to include relativistic
effects and the effect of the Coulomb distortion on the relative
trajectory of projectile and target. It may be difficult to
derive in a general expression for the Coulomb excitation
amplitude because of the acceleration in a Coulomb orbit.
However, one can devise a formula which gives the correct
expression in the nonrelativistic regime for a Coulomb orbit,
and which reproduces the relativistic expressions for a straight-
line trajectory in the high-energy regime. We shall see that the
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following expression:

SH
λµ(rel) = 2

γ v

iλ+µḠλµ√
(λ + µ)!(λ − µ)!

(ω

v

)λ

×Keff
λµ

(
b/a, ξa = ωa

γ v

)
, (26)

serves the purpose of interpolating between the two energy
regimes.

It is first noted that Eq. (26) is identical to Eq. (20) if we
insert γ = 1. The low-energy regime is therefore correctly
described. In the high-energy regime, we can assume that
b/a 	 1 and ξa � 1, which implies that the straight-line
trajectory limit will be reached,

Keff
λµ(b/a, ξa) → Kµ(ξb), where ξb = b

a
ξa,

according to the discussions in Secs. IV B and IV C. Since the
value of ξa in Eq. (26) is chosen as ξa = ωa/(γ v) we obtain

ξb = b

a
× ωa

γ v
= ωb

γ v
,

which is the correct adiabaticity parameter for a straight-line
trajectory in the relativistic regime, according to Eq. (24), so
the high-energy regime will also be described correctly.

B. Total cross sections

A great advantage of the straight-line trajectory approxi-
mation is that one can obtain analytic expressions for the total
cross section, evaluated for all impact parameters larger that a
certain minimum impact parameter b0. Thus one obtains [2]

σλ = 4π

(
Z1e

2

(2λ + 1)h̄v

)2

B(Eλ)

×
∑

µ

4Ḡ2
λµ

(λ + µ)!(λ − µ)!

(ω

v

)2(λ−1)
gµ

(
ωb0

γ v

)
, (27)

where

gµ(ξ ) = 2π

∫ ∞

ξ

ξdξK2
µ(ξ )

= πξ 2
[
Kµ+1(ξ )Kµ−1(ξ ) − K2

µ(ξ )
]
, (28)

according to Eq. (3.4) of Ref. [2]. For dipole and quadrupole
excitations this yields

σλ=1 = 16π

(
Z1e

2

3h̄v

)2

B(E1)

[
1

γ 2
g0(ξ ) + g1(ξ )

]
, (29)

σλ=2 = 4π

3

(
Z1e

2

5h̄v

)2

B(E2)

(
ω

γ v

)2

× [
3g0(ξ ) + g1(ξ )γ 2(1 + γ −2)2 + g2(ξ )

]
. (30)

At intermediate and high energies, where one can assume
that ξb � 1, one obtains the following simple asymptotic
expression for the quadrupole excitation cross section:

σλ=2 = 1

3

(
4πZ1e

2

5h̄vb0

)2

B(E2). (31)

This expression gives a surprisingly good estimate of the
cross section at high energies and it provides a sim-
ple way of testing more elaborate numerical calculations.
The expression (31) shows that the high-energy cross section is
insensitive to the excitation energy. One can also conclude that
relativistic effects are not dramatic for E2 transitions because
all of the γ factors that appear in Eq. (30) disappear when one
takes the limit ξb → 0.

We shall see in the next section that the large relativistic
effects, which have been pointed out in the literature, are
primarily caused by plotting the cross sections as a function
of the beam energy T per nucleon. The cross section (31),
which is proportional to v−2, will therefore be very sensitive to
whether one uses nonrelativistic (v = √

2T/m) or relativistic
kinematics [Eq. (B1)] to determine the velocity.

For completeness it is noted that some relativistic effects do
survive in the dipole cross section, Eq. (29), when one takes
the limit ξb → 0 in the dipole cross section, Eq. (29),

σλ=1 =
(

4πZ1e
2

3h̄v

)2

B(E1)

[
2 ln

(
1.123γ v

ωb0

)
−

(v

c

)2
]

.

(32)

This expression shows the well-known logarithmic depen-
dence on γ .

VI. APPLICATIONS

Two examples of calculated cross sections are shown in
Fig. 3, namely, for the dipole excitation of 11Be to the low-
lying 1/2− state, and the quadrupole excitation of 42S to the
lowest 2+ state, respectively. The cross sections are shown
as functions of the beam energy. In both cases the minimum
impact parameter was set to b0 = 14 fm and the target was
Au. The excitation energy and multipole strength of the two
transitions are given in Table I, which will be discussed below.

The upper thick dashed curves in Fig. 3 show the relativistic
Coulomb excitation cross section for straight-line trajectories.
The solid curves are based on Coulomb trajectories and make
use of the expression, Eq. (26), for the interpolating model.
The lower, thin dashed curves in Fig. 3 are the cross sections
one obtains by inserting ξa = ωa/v into the expression,
Eq. (26), for the interpolating model. This is seen to be
a poor approximation. Inserting instead ξa = ωa/(γ v) (the
thick solid curves) one obtains a smooth transition from the
low-energy to the high-energy theory.

A. Comparison to experiments

A number of Coulomb excitation experiments have been
performed at intermediate energies and some of them are
quoted in Table I. Those considered here are of interest because
sufficient experimental information was provided to repeat the
analysis. The measured cross sections, σexp, can be compared
to the straight-line trajectory approximation, σStrl, and to the
cross section, σCoul, obtained from the interpolating model,
Eq. (26). It is seen that the latter model performs very well in
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FIG. 3. Energy dependence of the relativistic cross sections for
the dipole excitation of 11Be and the quadrupole excitation of 42S
discussed in the text. The target is Au, and the minimum impact
parameter was set to 14 fm in both cases. The thick dashed curves
show the straight-line trajectory approximation, Eqs. (29),(30). The
solid curves show the interpolating, relativistic Coulomb excitation
cross section, Eq. (26). The thin dashed curves are also based on
Eq. (26) but use ξa = ωa/v in the second argument of Keff

λµ(b/a, ξa).

comparison to the measured cross sections. The deviations are
insignificant in comparison to the experimental uncertainty.

It should be emphasized that most of the B(E2) values
quoted in Table I were extracted from the data using the
relativistic straight-line trajectory approximation with some
corrections included for the Coulomb distortion of the trajec-
tory. The good agreement between σCoul and the measured
cross sections therefore shows that the previous analyses were
very reasonable. The results of the straight-line trajectory
approximation, σStrl, are quoted in the last column. They are
typically 5 to 10% higher than the measured values.

The ratio of measured and calculated cross sections is
illustrated in Fig. 4. The solid circles show the ratio σexp/σCoul

with respect to the interpolating relativistic Coulomb excita-
tion cross section. The average ratio is about 2% less than 1.
The triangles in Fig. 4 show the experimental ratio σexp/σStrl

to the relativistic straight-line trajectory calculation. Here the
deviation from 1 is much larger. The deviation from the solid
points reflects the significance of the Coulomb distortion of the
trajectory. It amounts to about 3–9%. The largest deviations
from the solid points occur in the low energy experiments, run
nos. 4–8 (see Table I).

There are two examples in Table I where the B(E2) values
are known from other sources, namely, 24Mg and 26Mg.

 1

 0.95

 0.9
 9 8 7 6 5 4 3 2 1

σ e
xp

/σ
ca

lc

run no.

Exp/Coul
Exp/Strl

FIG. 4. Ratio of measured and calculated Coulomb excitation
cross sections for the different runs shown in Table I. Shown are
the results for the interpolated relativistic Coulomb excitation (solid
points) and the straight-line trajectory calculations (triangles).

The calculated cross sections, σCoul, are also in these cases
consistent with the measured cross sections. This is very
fortunate because the uncertainties are small [about 5% on
the measured cross sections and 3% on the B(E2) values].
These two measurements therefore provide an independent
test of the interpolating model, Eq. (26).

The last example on a comparison with data is the Coulomb
excitation of 46Ar [13], which was measured for a range of
maximum acceptance angles. The measurements are compared
to two calculations in Fig. 5, namely, the straight-line and the
‘interpolated’ Coulomb trajectory calculation, Eq. (26). Both
calculations are in good agreement with the data because the
experimental uncertainties are much larger than the difference
between the two calculations.

B. Comparison to other methods

The relativistic description for straight-line trajectories
developed by Winther and Alder [2] was based on the Liénard-
Wiechert potential. A different method was used by Aleixo and

 100

 80

 60

 40

 30

 20
 3 2.5 2 1.5

σ 
(m

b)

φmax (deg)

46Ar on Au

Straight line
Coulomb traj.

FIG. 5. Cross section for the Coulomb excitation of the 2+ state
in 46Ar on a Au target at 73.2 MeV/nucleon as a function of the
maximum laboratory acceptance angle φmax. The relativistic straight-
line and Coulomb trajectory calculations are compared to the data
[13].
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Bertulani [4] who calculated the retardation effects explicitly
for Coulomb trajectories. The latter approach was used by
Bertulani et al. [5,6] to investigate the effects of relativity
and Coulomb distortions at intermediate energies in much
the same way it is done here. It is therefore of interest to
compare Eq. (26) to the predictions of the more elaborate
theory.

An example of a comparison of calculated cross sections is
shown in Fig. 6 for the Coulomb excitation of 46Ar to the 2+ on
a Pb target. The input is the same as used in producing table 2
of Ref. [6], and it was assumed [15] that the distance of closest
approach for a Coulomb trajectory, r0(b) = a + √

a2 + b2

according to Eqs. (10) and (11), has the minimum value
rmin = R1 + R2 = 1.2(A1/3

1 + A
1/3
2 ). The solid line is the cross

section obtained from the interpolating model, Eq. (26). The
upper dashed curve is the result for straight line trajectories
with minimum impact parameter bmin = √

rmin(rmin − 2a).
The lower dashed curve is the nonrelativistic cross section
for Coulomb trajectories. It is seen that the solid curve
interpolates smoothly between the nonrelativistic Coulomb
trajectory calculation at low energy and the relativistic straight-
line trajectory calculation at high energy.
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FIG. 6. (A): cross sections for the 2+ excitation of 46Ar on a
Pb target. The minimum distance of closest approach was set to
11.41 fm. The relativistic straight-line (upper dashed curve) and
Coulomb trajectory calculations (solid curve) are compared to the
nonrelativistic Coulomb trajectory calculation (lower dashed curve),
and to the results of Ref. [6] (solid points) which have been multiplied
by 1.44. (B): ratios of the cross sections in (A) to the relativistic
Coulomb trajectory calculation. The triangles show the estimate,
Eq. (33).

The solid points in Fig. 6(a) are based on the cross sections
published in table 2 of Ref. [6]. They have here been multiplied
by the factor 1.44 because a factor of e2 was unfortunately
omitted [15] in the calculations of Ref. [6]. The results are
presented in Fig. 6(b) in terms of the ratio to the interpolating
relativistic Coulomb trajectory calculation, Eq. (26). The
average value of the solid points is close to one (actually 1.005
± 0.002, to be precise) which shows that the two theories are
in excellent agreement. This may not be so surprising because
both theories approach the relativistic straight-line trajectory
approximation at high energy and the nonrelativistic Coulomb
trajectory calculation at low energy.

The lower dashed curve in Fig. 6(b) shows that relativistic
effects are enormous at 500 MeV/nucleon. It is interesting that
the large relativistic effects have a very simple explanation.
Thus, according to the asymptotic expression, Eq. (31), the
quadrupole excitation cross section is proportional to v−2 at
high energies. In the nonrelativistic calculation this implies
σ NR

2 ∝ m/(2T ). In the relativistic calculation one obtains
instead σ rel

2 ∝ (m + T )2/[T (2m + T )], according to Eq. (B1)
of Appendix B. The ratio of the two cross sections is therefore

σ NR
2

σ rel
2

≈ m(2m + T )

2(m + T )2
. (33)

(There is also a difference in the minimum impact parameter
in the relativistic and nonrelativistic calculations but the effect
is small.) The expression (33) is illustrated in Fig. 6(b) by the
triangles which explain quite accurately the behavior of the
nonrelativistic calculation at high energy.

C. Significance of relativistic effects

Another way to illustrate the effects of relativity is to
recalculate the cross sections shown in Fig. 3 assuming that
γ = 1 everywhere in the underlying equations, Eqs. (24)–(26).
The velocity v, which appears explicitly in these equations,
will be determined from the relativistic expression, Eq. (B1),
in order to avoid the trivial relativistic effect described by
Eq. (33). The results of such calculations show that the cross
sections for the excitation of the 2+ state in 42S, which
were shown in Fig. 3, change by less than 0.5%, both for
the straight-line trajectory calculation (24) and also for the
interpolated Coulomb trajectory model, Eq. (26).

Similar calculations performed for the dipole excitation of
11Be (which were shown in Fig. 3) change the cross section by
less than 1% at energies below 200 MeV/nucleon. The change
is about 10% at 1 GeV/nucleon but that is not so surprising
because the asymptotic dipole cross section, Eq. (32), does
contain a γ factor, whereas the asymptotic quadrupole cross
section, Eq. (31), does not.

It is concluded that the relativistic effects in the Coulomb
excitation of nuclei are large at intermediate and high
energies but most of the effect is trivial and can easily
be avoided by using the correct relativistic expression to
determine the velocity from the beam energy. In the analysis of
measurements it is also important to use relativistic kinematics
when converting scattering angles into impact parameters.
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The nontrivial relativistic effects on the Coulomb quadrupole
excitation, on the other hand, are surprisingly small.

D. Significance of Coulomb distortion

Let us finally take a look at how the straight-line trajectory
approximation can be corrected for Coulomb distortions.
Two examples are shown in Fig. 7, namely, the Coulomb
excitation to the 2+ state of 16N with excitation energy
Ex = 0.12 MeV(A), and also to the 2+ state of 54Ni with
excitation energy Ex = 1.4 MeV(B). The B(E2) values were
taken from table 2 of Ref. [6]. The results are shown in
terms of the ratio to the interpolating, relativistic Coulomb
excitation cross section, Eq. (26). The calculations were again
performed with the minimum distance of closest approach
rmin = 1.2(A1/3

1 + A
1/3
2 ).

The comparison with Ref. [6] is illustrated in Fig. 7 by the
solid points. The cross sections from table 2 of Ref. [6] were
again multiplied with the factor 1.44. It is seen that the solid
points are very close to 1 for the excitation of 54Ni. There
are some discrepancies for 16N, where the average ratio is
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FIG. 7. Ratios of different cross sections to the relativistic
Coulomb trajectory calculation. Results are shown for the excitation
of the 2+ state in 16N and 54Ni, respectively, on a Pb target. The
thick solid curves are the ratios for the straight line trajectory
approximation. The dashed curves show various ways of correcting
the straight-line approximation, such as multiplying with the factor
exp(−πξa), or using the effective minimum impact parameters
discussed in the text. The solid points are the ratios for the cross
sections given in table 2 of Ref. [6] multiplied by 1.44.

1.028 ± 0.012. It is therefore concluded that the two theories
of relativistic Coulomb excitation agree within a few percent.

The thick solid curves in Fig. 7 show the ratio for the
relativistic straight-line trajectory approximation, and the
dashed curves show the results of various ways to correct
this approximation for Coulomb distortions. The top dashed
curves show the straight-line approximation multiplied by the
factor exp(−πξa). This factor has a large effect for the heavier
nucleus 54Ni with the relatively large excitation energy but it
has essentially no effect for the lighter nucleus 16N with the
small excitation energy.

The lowest dashed curves in Fig. 7 show the straight-line
trajectory result one obtains by replacing the minimum impact
parameter bmin by the effective value beff = bmin + πa/2.
This approximation was justified in Ref. [2] for large impact
parameters, where the excitation probability falls off exponen-
tially as exp(−2ωb/(γ v)). Thus by multiplying the excitation
probability for a straight line trajectory, PStrl, with the factor
exp(−πξa) one obtains approximately

PStrl exp(−πξa) ∝ exp

(
−2ωb

γ v

)
exp

(
−π

ωa

γ v

)

= exp

[
−2ω

γ v

(
b + πa

2

)]
.

This argument does not always apply to the Coulomb ex-
citation of low-lying states at intermediate energies because
the minimum impact parameter is usually much smaller than
the adiabatic distance γ v/ω. Using the effective minimum
impact parameter has a very large effect on the calculated cross
section. It produces a ratio in Fig. 7 that is almost as far below
1 as the ratio for the pure straight line trajectory calculation
is above 1. The approximation is therefore not very useful for
quadrupole excitations. It works apparently better for dipole
excitations, as discussed in connection with Figs. 2 and 3, but
that will not be discussed here.

The second lowest curves in Figs. 7(a) and 7(b) are the
results one obtains by choosing the effective minimum impact
parameter, beff = rmin, which is the minimum distance of
closest approach that is used in the relativistic Coulomb
trajectory calculation. This approximation was recommended
by Goldberg [16], and it is evidently the best choice out of the
four examples of approximations shown in Fig. 7.

In the analysis of an actual experiment the cross section
ratio discussed above would usually be closer to one because
one would always choose a small acceptance angle (i.e., a large
minimum impact parameter) in order to avoid the influence of
nuclear and higher-order processes.

VII. CONCLUSIONS

A model has been devised for including relativistic effects
in calculations of the Coulomb excitation cross section at inter-
mediate energies. The model interpolates smoothly between
the theory of nonrelativistic Coulomb excitation at low energy
and the relativistic, straight-line trajectory approximation high
energy. The results that were obtained with this model compare
very well with the calculations performed by Bertulani et al.,
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who included the relativistic retardation effects explicitly for
Coulomb trajectories.

It was demonstrated that the large relativistic effects, which
have been pointed out in the literature, are mainly caused by
comparing calculations that are based on a relativistic and a
nonrelativistic velocity, respectively. The nontrivial relativistic
effects, which are beyond the simple relativistic kinematics
of two-body scattering, are surprisingly small for quadrupole
excitations.

The Coulomb distortion, which is responsible for the
deviation between the straight line trajectory approximation
and calculations that are based on a Coulomb trajectory, can
also have a very large effect. However, the effects of the
Coulomb distortion are usually suppressed by the experimental
conditions and simple corrections can be made to improve the
accuracy of the straight line trajectory approximation.

The proposed interpolating model reproduces fairly well
the analyses that have been performed previously, primarily
of quadrupole excitation experiments, at beam energies in the
range of 30 to 70 MeV/nucleon. The average deviation is
only a few percent. The model also reproduces the measured
cross sections in the few cases where the quadrupole excitation
strength is known accurately from other sources.

The good agreement with the previous analyses is partly
due to the experimental conditions, which suppress the effects
of the Coulomb distortion, and partly to the fact that some
corrections for the distortion were made in the analyses.
However, if high precision Coulomb excitation experiments
were pursued, it would be necessary to treat the Coulomb
distortion more accurately in the analysis. It is believed that the
interpolating Coulomb excitation model proposed here would
provide a sufficiently accurate description.
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APPENDIX A: STRAIGHT-LINE TRAJECTORY

In coordinate system A, a straight line trajectory has
the coordinates x(t) = b, where b is the (constant) impact
parameter, and y(t) = vt . Using the dimensionless integration
variable s = vt/b, the orbital integral, Eq. (7), is therefore

S̃A
λµ = dλ

µ0

(π

2

) 1

vbλ

∫ ∞

−∞
ds eiξbs

(1 + is)µ

(1 + s2)(λ+µ+1)/2

= dλ
µ0

(π

2

) 1

vbλ

(
1 + d

dξb

)µ ∫ ∞

−∞
ds

cos(ξbs)

(1 + s2)(λ+µ+1)/2
,

(A1)

where ξb = ωb/v is the adiabaticity parameter. The tilde
on S̃A

λµ is a reminder that we are using the straight-line
approximation. An analytic expression for the integral is given
in the book by Gragshteyn and Ryzhik [17], Eqs. 8.432 no. 5,

and one obtains

S̃A
λµ = dλ

µ0

(π

2

) 2

vbλ

1

(2n − 1)!!

(
1 + d

dξb

)µ

ξn
b Kn(ξb),

(A2)

which is expressed in terms of modified Bessel functions of
order n = (λ + µ)/2. Here λ + µ is even as mentioned earlier
so n is an integer. We can express the result in a form similar
to Eq. (12) with

Ĩλ,±µ = 2

(2n − 1)!!

(a

b

)λ
(

1 ± d

dξb

)µ

ξn
b Kn(ξb). (A3)

To evaluate this expression one can make use of the relations:
d
dx

(xnKn(x)) = −xnKn−1(x). For dipole and quadrupole ex-
citations one obtains

Ĩ1,±1 = 2ξa[K1(ξb) ∓ K0(ξb)], (A4)

Ĩ20 = ξ 2
a [K2(ξb) − K0(ξb)] = 2

(a

b

)2
ξbK1(ξb), (A5)

Ĩ2±2 = 1

3
ξ 2
a [K2(ξb) ∓ 4K1(ξb) + 3K0(ξb)], (A6)

where the relation K2(x) = K0(x) + 2/xK1(x) has been used
in Eq. (A5).

To improve the straight-line approximation, one can mul-
tiply the results, Eqs. (A4)–(A6), by the factor exp(−πξa/2),
according to Winther and Alder [2]. In fact, the exact analytic
expression, which has been obtained for a Coulomb trajectory
in the case of dipole excitations, supports this suggestion; see
Eq. (12) in appendix H of Ref. [1]. We will later on investigate
how good this improvement and other approximations are for
quadrupole excitations.

APPENDIX B: RELATIVISTIC KINEMATICS

Here we specify the expressions that are used to calculate
the relativistic Coulomb scattering. Most of them are taken
from Jackson’s book [18]. First of all, the kinetic energy T of
the projectile is commonly given in units of MeV/nucleon so
the γ factor and the beam velocity v can be obtained from

γm = m + T , β = v/c =
√

T (2m + T )

m + T
, (B1)

where m = 931.5 MeV is the nucleon mass (using the notation
c = 1).

The masses of projectile and target are denoted by M1

and M2, and the total energy in the center of mass system is
[Jackson (12.31)]

E′ =
√

M2
1 + M2

2 + 2γM1M2.

where γM1 is the laboratory energy of the projectile. More-
over, the energy and momentum of the projectile in the center
of mass system are [Jackson, Eqs. (12.31–34)]

E′
1 = M2

1 + E1M2

E′ = M1(M1 + γM2)

E′ ,

p′
1 = M2

E′ p = M1M2

E′ γ v,
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where p = γM1v is the momentum of the projectile in the
laboratory frame. Note that the nonrelativistic reduced mass
M1M2/(M1 + M2) has been replaced in the last expression by
the relativistic reduced mass,

M0 = M1M2

E′ = M1M2√
M2

1 + M2
2 + 2γM1M2

. (B2)

Rutherford’s scattering formula in the center-of-mass sys-
tem is derived from the transverse momentum transfer in
elastic Coulomb scattering, estimated in the straight line
approximation by

�p⊥ = p′
1 sin(θ ) = 2Z1Z2e

2

vb
.

This is a reasonable approximation in high-energy forward-
angle scattering but to match the nonrelativistic expression,
tan(θ/2) = a/b, one should consider the Coulomb distortion
of the trajectory. This would give a factor of cos2(θ/2) on the
right-hand side, so we obtain

tan(θ/2) = Z1Z2e
2

p′
1vb

= Z1Z2e
2

γM0v2b
.

Thus we recover the usual scattering formula, tan(θ/2) =
a/b, but the definition of a, Eq. (4), must be replaced
by

a = Z1Z2e
2

γM0β2
. (B3)

There are two corrections compared to Eq. (4). One is the
factor 1/γ , which is commonly considered. The other is
the relativistic reduced mass M0, which is often replaced by
the nonrelativistic value.

The scattering angle in the laboratory frame is determined
by [see Jackson (12.50)]

tan(φ) = sin(θ )

γc.m.(cos(θ ) + α)
, (B4)

where γc.m. = (γM1 + M2)/E′ [Jackson (12.35)], and

α = M1

M2

M1 + γM2

γM1 + M2
, (B5)

according to Jackson (12.54) for elastic scattering. It is seen
that the transformation from the c.m. to the laboratory system
reduces to the usual nonrelativistic expression for γ → 1.
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