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Proton gap due to the necking potential
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A smooth necking region between fission fragments is obtained by rolling a sphere around the symmetry axis
of the nuclear shape formed by two intersected spheroids. The potential generated by the necking nucleons is
obtained from potential theory, imposing the condition of equipotentiality on the nuclear surface. The final result
is a two-Nilsson type potential linked by the necking potential. The proton and neutron level scheme is calculated
for 236Pu along the 92Se + 144Nd fission channel, and a gap is obtained for a certain neck geometry, leading to a
negative proton shell correction energy able to accommodate a shape isomer.

DOI: 10.1103/PhysRevC.78.024604 PACS number(s): 25.70.Jj, 21.60.Ev, 21.60.Cs

I. INTRODUCTION

The influence of deformation parameters upon the fission
process is always taken into account to lower the height of
the barrier. One of these parameters appears as a smooth
necking region that develops between the nascent fragments
when fission takes place [1,2]. Necked fission configuration
parametrized with Cassini ovaloids [3] or in a dumbbell
shape [4], though describing correctly the neck, do not reach
separated daughter and emitted fragment level schemes. A
simulation of the two-center nuclear shape with a neck is
made in Ref. [5] and a first attempt to introduce the neck
microscopically by means of a smoothing function appears in
Ref. [6]. The goal of the present work is to use a microscopic
neck potential based on potential theory as part of the deformed
two-center shell model. A particular result appears for the
numerical application on the fission channel 92Se + 144Nd from
236Pu, where an energy gap is emphasized within a certain
necked fission configuration.

II. NECK POTENTIAL

The calculations are based on the deformed two-center shell
model presented in Ref. [7]. The binary shape describing a
fission configuration with a neck region between the spheroidal
fragments is displayed in Fig. 1. The geometrical quantities
that are used further on are explained: zH and zL are the
centers of the heavy (H ) and light (L) spheroid, R3 is the
radius of the sphere tangent to the fragments and shaping
the neck region, (z3, ρ3) are the coordinates of the necking
sphere center, and R is the distance between the two centers.
The initial configuration corresponds to the parent nucleus
shape with semiaxes (a0, b0). At the beginning the emitting
fragment is entirely enclosed in the parent and tangent to
its inner surface. Therefore the starting point of the process
coincides with the configuration where the distance between
centers is Ri = a0 − aL. At the end of the process, the
distance between centers equals Rf = aH + aL + 2R3, the
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two spheroids are completely separated, and the neck sphere is
aligned with the fragments. The Nilsson potentials generating
the mean field of nucleons confined within two spheroids are
described by

VH (ρ, z) = 1
2m0ω

2
ρH

ρ2 + 1
2m0ω

2
zH

(z + zH )2

(1)
VL(ρ, z) = 1

2m0ω
2
ρL

ρ2 + 1
2m0ω

2
zL

(z − zL)2,

where H and L stand for heavy and light, ωρH
and ωρL

are
the frequencies on the Oρ axis, and ωzH

and ωzL
are the

corresponding frequencies on the symmetry axis. The value
zH and zL are the centers of the heavy and light fragments,
respectively, on the Oz axis.

As one rolls an outside sphere around the symmetry axis, by
keeping it tangent to the two spheroidal intersected fragments,
the necking region is generated as a spherical curve from one
tangent point to the other. If the force is considered central in
the necking region,

�F (�r) = −C�r, (2)

one obtains, by integrating up to the nuclear surface �r(ρ, z),

Vg1(r) = Vc − Cr2

2
, (3)

where the constant Vc is determined from the equipotentiality
condition. If one considers an oscillator type force, it is
reasonable to have C = m0ω

2
g; hence, the force in the necking

region will be

�F (�r) = −m0ω
2
g�r. (4)

To recover the tangent sphere, one replaces r(ρ, z) by the
corresponding spherical neck generating function r2 = (ρ −
ρ3)2 + (z − z3)2, where (ρ3, z3) is the center of the sphere. It
results the outer neck potential as

Vg1(r) = 2V0 − m0ω
2
g

2
[(ρ − ρ3)2 + (z − z3)2], (5)

where V0 is the constant value on the nuclear surface. There
is also the inside region of the nuclear shape, between the two
spheroid surfaces and the neck, where the potential is constant
Vg2(ρ, z) = V0 (no potential gradient). The value of V0 is
obtained from two well-known relations: h̄ω = 41 A−1/3, which
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FIG. 1. Fission configuration and deformation coordinates within
the necked two-center shell model.

relates the assigned frequency to the corresponding nuclear
mass A, and R = r0 A1/3, where R is the radius of the nucleus
of mass A. By multiplying the first relation with m0c

2 (the
nucleon mass in MeV) and accounting for m0ω

2R2/2 = V0

(the potential value at the surface of the nucleus with radius R)
we obtain, for r0=1.16, the value V0 = 27.14 MeV. One must
observe that the A dependence is canceled, so the value of V0

is the same for all nuclei. Within the same reasoning, the neck
frequency ωg is obtained from the value of the neck potential at
a radius R = R3 (the distance from the sphere center down to
the surface of the neck region), namely, m0ω

2
gR

2
3 = V0, which

numerically relates the neck potential to the geometry of the
neck. The complete expression of the microscopic potential
complies with the condition of equipotentiality on the nuclear
surface.

Finally one obtains the potential that generates a binary
fission necked type shape:

Vosc(ρ, z) =




VH (ρ, z), vH

Vg(ρ, z) =
{

Vg1(ρ, z), vg1

Vg2(ρ, z), vg2

VL(ρ, z), vL,

(6)

where vH and vL are the space regions where the potentials
VH (ρ, z) and VL(ρ, z) are active and, similarly, vg1 and vg2

are the regions where the two neck-related potentials Vg1 and
Vg2 intervene in the calculations of the corresponding matrix
elements to obtain the single particle energies. These regions
are also visualized in Ref. [7].

To obtain the total Hamiltonian, one must add the spin-
orbit and the �2 term, where � is the deformation-dependent
angular momentum operator:

[
− h̄2

2m0
� + Vosc(ρ, z) + V� s + V 2

�

]
� = E�. (7)

The Schroedinger equation for this binary potential is
solved following the procedure described in Ref. [7]. The
form of the angular momentum operator for the neck re-
gion is adapted to the binary configuration. One uses the
anticommutator to ensure the hermicity of the spin-orbit

operator:

V�s = −
{

h̄

m0ω0i

κi(ρ, z), (∇Vosc × p) s
}

, Ai − region,

(8)

where i = H (heavy) or L (light), and the strength of the
interaction κi(ρ, z) varies with the nuclear mass region. The
potential Vosc is replaced successively with VH , Vg1, and VL in
the previous formula. One uses for the spin-orbit operator the
usual expression:

�s = 1
2 (�+s− + �−s+) + �zsz, (9)

where the subscripts + and − hold for the creation and
anihilation operators, respectively. As a consequence one
obtains for the creation, anihilation, and z terms of the angular
momentum operators in the neck region vg1
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The final step in the calculation is the diagonalization of
the remaining neck potential VgH,L and spin-orbit operators
[Eq. (10)], resulting in the level scheme for protons and
neutrons. Then the Strutinsky method [8] yields the proton and
neutron shell corrections. Calculations have been performed
for a range of the neck-generating sphere radii spanning from
R3 = 0 (no neck, fusion-like shapes) to 10 fm, applied to
the fission of 236Pu along the fission channel 92Se + 144Nd.
This channel has been chosen following the reported mass
yield in Ref. [9], where a peak around the heavy mass of
MH = 141 corresponding to ηA = (Ah − AL)/A ≈ 0.2 was
obtained.

III. FISSION DYNAMICS

The dynamics of the process involves three main stages:
(1) the calculation of the total deformation energy as the
sum of the shell corrections and the liquid drop energies,
(2) the inertia tensor computation with emphasis on the neck
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FIG. 2. Five proton level schemes at five different neck radii R3

(upper plot). Corresponding proton Eshp, neutron Eshn, and total Eshell

shell corrections as functions of the reduced distance between centers
(lower plot).

coupling influence, and (3) the construction of the action
integral followed by the minimization in the multidimensional
space of deformation to obtain the fission path.

A. The shell corrections

The proton Eshp and neutron Eshn shell corrections are
calculated separately due to the difference in the spin-orbit
strength interactions. The final results are summed and the
total shell corrections are obtained as

Eshell = Eshp + Eshn. (11)

In the upper part of Fig. 2, five of the calculated proton
level schemes are drawn for neck radii R3 = 0, 2, 4, 6, 8 fm,
as a function of the reduced distance between centers. Ri and
Rf are the initial (emitted fragment totally embedded in the
parent nucleus) and final (daughter and emitted nucleus totally
separated) distance between centers.

The proton Fermi level is emphasized with a bold line.
As a general trend one observes an increase of the energy
levels with increasing R3, especially in the last part of the
splitting process. This behavior is due to the fact that the
neck potential has values higher than those of the two Nilsson
ones for the fragments in the inner neck region. One observes
the development of a gap between the Fermi and the first
nonoccupied proton level for a neck radius value around R3 =
6 fm. The gap is located at a reduced distance between centers
of (R − Ri)/(R − Rf ) ≈ 0.3 or at a distance between centers

of R = 8.94 fm. The semiaxis ratios are χH = bH/aH = 0.98
for the heavy fragment (corresponding to β

(H )
2 ≈ 0.014) and

χL = bL/aL = 0.74 for the light fragment (corresponding
to β

(L)
2 ≈ 0.22). The total length of the shape is found as

L = 20.13 fm, which roughly corresponds to a one-nucleus
deformation of β2 = 0.4 and having the same mass. The
total length of the shape at the isomer energy minimum is
L = a

(i)
H + a

(i)
L + R, where a

(i)
H and a

(i)
L are the intermediary

semiaxes along Oz and R is the distance between centers at
this point (R = 8.94 fm). For the semiaxis ratios χH = 0.98
and χL = 0.74, the volume conservation condition yields
a

(i)
H = 6.21 fm and a

(i)
L = 4.98 fm. The z coordinate of the

center of the necking sphere is between zH and zL, and its
radius is R3 = 6 fm for this configuration (see Fig. 1). A
gap is already observed in other studies. In Ref. [10], self-
consistent Hartree–Fock calculations result in the development
and reduction of the neutron gap between the Fermi level
and the first unoccupied one, at half of the final elongation
value. In the macroscopic-microscopic work on 240Pu [1], with
another type of binary potential, a proton gap has been found
at β2 ≈ 0.3 for 98 protons. The first work which introduced
the neck in a two-center shell model [6] obtained a second
minimum in the shell corrections due to a proton gap, but for a
much lighter nucleus. The proton gap obtained in the present
work exerts its influence upon the shell corrections, presented
in the lower part of Fig. 2, where the proton Eshp, neutron
Eshn, and total shell correction energy Eshell = Eshp + Eshn

are plotted. The minimum in Eshp for R3 ≈ 6 fm will lower
the total deformation energy, i.e., the fission barrier. The
fission channel will follow the path calculated by minimization
of the action integral, which is mostly influenced by the
deformation energy value. Though the inertia tensor will also
have its importance, minima within the total deformation
energy will strongly influence the fission path. Because such
a gap is formed, the corresponding configuration becomes
(quasi-) stable at this point. The necking potential expressions
[Eqs. (5) and (6)] have been obtained using the potential theory
with a starting hypothesis of an oscillator type force [Eq. (2)].
This first part of the reasoning ended up with Eq. (4) for
the force and consequently with Eq. (5) for the potential. At
this stage the only arbitrary assumption is to consider the
necking region between the fragments as a concave spherical
one, tangent to the two spheroids. But the R3 value, though
treated as a free parameter, increases the multidimensionality
of the deformation space (which is one of the main purposes
of this work) and induces the exact microscopic potential
expressed by Eq. (5). The neck radius R3 increases the number
of degrees of freedom in the fission shape description similar
to adding the β4 parameter to the (β2, β3) coordinate space
and applying the Woods-Saxon potential for a one-center shell
model to simulate the neck. R3 is fixed arbitrary as a free
coordinate, but it generates a new microscopic potential Vg

that changes the way the level scheme transits from the parent
to two separated fragments. The total deformation energy has
been obtained using the macroscopic-microscopic method.
The Yukawa-plus-exponential model provided the liquid drop
part ELDM, and the shell corrections Eshell were obtained from
the Strutinsky method, as mentioned above. One obtains the
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total deformation energy Edef ,

Edef(q) = ELDM(q) + Eshell(q), (12)

as a local function of all four deformation parameters q.

B. The inertia tensor and the fission path

This work uses the Werner-Wheeler method to calculate the
inertia tensor. It assumes the motion of an irrotational flow and
no microscopic effects are included. All possible couplings
between the four degrees of freedom (χH , χL,R3, R) are
taken into account. Because (i) R3 changes the nuclear shape
at every R and (ii) the change of the shape is reflected in
the variation of the shell corrections via proton and neutron
level schemes, R3 is part of the collective coordinates and its
change affects the way the others degrees of freedom vary.
Consequently R3 generates new couplings with χH , χL, and
R. These couplings express their influence through the inertia
tensor components: BR3R3 , BχH R3 , BχLR3 , BRR3 . The dynamics
involves the whole tensor of inertia B, which, when contracted
along R, is expressed as

B(R) = BRR + 2BRR3

dR3

dR
+ 2BRχH

dχH

dR
+ 2BRχL

dχL

dR

+ 2BχH χL

dχH

dR

dχL

dR
+ BR3R3

(
dR3

dR

)2

+ 2BR3χL

dR3

dR

dχL

dR
+ 2BR3χH

dR3

dR

dχH

dR
, (13)

where the laws of variation (not unique) of other degrees of
freedom with R are explained further on in the text.

A fission isomer is possible, like the one revealed in
Ref. [11] for 236Pu, where an axis ratio of 2 and a lifetime of
about 40 ps are estimated. The gap obtained for (AL,AH ) =
(92, 144) is very close to the experiment [9]. The minimum
generated at a certain neck radius is able to sustain a quasistable
state for a fission isomer. Evidently, the macroscopic part must
be added, but one should account for the fact that its behavior is
rather smooth. Consequently, either a short-life shape isomer
or a favorable fission path will benefit from the appearance of
the energy gap at the Fermi level. Such a gap is the result of
the new microscopically introduced neck parameter. The gap is
shallower for the neighboring fission channels, but still exists
for (AL,AH ) = (94, 142) and (90, 146). Beyond these values,
even when the neck is varied from R3 = 0 to 8 fm, there is no
gap at the proton Fermi level. From the experimental results
published in Ref. [9], the proton gap still influences the next
pairs, especially (94,142), according to the utilized theoretical
model.

The action integral is minimized within the whole space
of deformation. The deformation energy and the inertia tensor
are calculated in the four-dimensional space of deformation
with the components Bij (i, j = χH , χL,R3, R). The first two
variables, χH and χL, are the semiaxis ratios of the heavy (H )
and light (L) fragment, respectively. These quantities are free
to vary between the initial parent (236Pu) and the final fragment
(144Nd and 92Se) values. This work chose different exponential

laws of variation of the form

χH = χfinal
H + (

χparent − χfinal
H

)
exp

[
−

(
R − Rk

R − Rf

)2
]

(14)

for the heavy fragment, where Rk is a free parameter (it decides
the distance whence χH starts to vary), and

χL = χfinal
L + (

χL0 − χfinal
L

)
exp

[
−

(
R − Rk

R − Rf

)2
]

(15)

for the light fragment, where χL0 is a free variable between
χ (236Pu) and the final value χL(92Se).

The procedure for obtaining the tensor components implies
the free variable differentials; so the law of variation for χH

and χL permits us to calculate dχi as a function of the distance
between centers R. One has to stress here that complying with
these laws does not restrict in any way the freedom of variation
for χH and χL. It is only an analytical means to cover all the
points in the deformation space between their initial and final
values. The R3-dependent components are obtained from the
volume conservation and the variation of the heavy and light
spheroidal parts and the neck region volumes. The coupling
components are expressed as

Bij (q) = πσm

∫ zM

zm

Tij (z; q)dz, (16)

with

Tij (z; q) = ρ2
s (z; q)

[
Xi(z)Xj (z) + 1

8
ρ2

s (z; q)
∂Xi

∂z

∂Xj

∂z

]
,

(17)

where σm is the mass density and ρs is the ρ value on the
nuclear surface as a function of all free variables q. The
couplings between different degrees of freedom are included
in the Tij term of the above equation. The quantities X

(k)
i

express the change of an infinitesimally thin slice of volume
(∂V ) with the change of the free parameter, like R3 in the
following Eq. (17). The idea of Wheeler was to divide the
nuclear shape in thin circular disks that change their radius and
position in conjunction with the deformation change, i.e., with
the variation of every degree of freedom independently. The
term Tij is in fact the infinitesimal change of the shape-volume
of the thin slice with respect to the volume conservation and
irrotational motion. Every change in the i deformation variable
induces a change in the j deformation variable. The total
number of permutations i-j between the degrees of freedom
describing the deformation defines the components of the
inertia tensor. The influence of the fragment deformations on
the inertia tensor, and hence on the dynamics, is included in
the couplings that involve χH and χL. The neck component
depends on

X
(k)
R3

(z) = 1

ρ
(k)2
s (z; q)

∂V (k)

∂R3
, (18)

where V (k) is the volume of k = H (heavy), L (light), and
(neck)-region successively. As the volumes vary with the
distance between centers R, the χR3 components can be
calculated numerically. A correction term is also added to each
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FIG. 3. The deformation energy Edef , shell corrections Eshell, and
liquid drop energy Emacro along the fission path projected on the
R direction.

Bij to account for the center of mass displacement [12], and the
whole tensor is contracted along the R direction. Finally one
calculates the action integral S within the multidimensional
space of deformation as

S(L(fis)) = 2

h̄

∫
L(fis)

[2Edef(R, q(R))B(R, q(R))]1/2dR, (19)

where

B(R, q(R)) =
∑
i,j

Bij

dqi

dR

dqj

dR
(20)

and Lfis is the multitude of all possible fission paths. In the
expression of the action integral B(R, q(R)) stands for the
contracted tensor along R, and q takes the place of all other
free coordinates. The fact that one considers the deformation
parameters as depending on R does not restrict their freedom of
variation. Their change with R according to Eqs. (13) and (14)
is just a means to populate every point of the multidimensional
grid of the deformation space. When the minimization of the
action integral is performed, the system is free to move between
every two existing points in the integrand value mesh of the
action S.

IV. RESULTS AND DISCUSSION

The dynamic barrier obtained by the minimization of
the action integral within the multidimensional space of
deformation [13] is presented in Fig. 3. The large deep gap
displayed by the shell corrections Eshell (pointed line) lowers
the barrier (solid line) in the range of R = 6 to 10 fm between
centers. The gap influence appears at R3 = 6 fm and is very
strong, so that the nuclear configuration preserves this neck
value from thereon up to the exit point from the barrier
(R = 13.7 fm). The deformed minimum is marked with a full
circle at 8.2 fm with a deformation energy Edef = 0.9 MeV
against the 236Pu ground state.

As a result of the multidimensional minimization of the ac-
tion integral, the penetrability ln (P ) has been calculated using
the WKB formula, along the distance between centers. The
variation of the tensor of inertia along the fission path projected
on the (R − Ri) plane (where Ri is the initial distance between
centers) in units of m0 (proton mass) is displayed in the upper
part of Fig. 4. The sudden increase of the neck radius R3 is
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/m
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R 3=6 fm
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 (

P
)

ln(Pisomer )
ln(P)

FIG. 4. The penetrabilities along the dynamical path for the fis-
sion channel 144Nd + 92Se. The solid line represents the penetrability
from the ground state, whereas the dotted line is the penetrability
from the deformed isomer minimum in Fig. 3.

observed on B(q) as a bump around R − Ri = 6 fm. From the
inertial point of view, the system opposes the change toward a
large neck. After R − Ri ≈ 8 fm, the tensor does not change
very much, approaching the reduced mass value. In the lower
part of Fig. 4, the variation of the logarithmic penetrability
ln (P ) is traced along the distance between centers, for the
mass and charge asymmetry channel 144Nd + 92Se. The solid
line represents the penetrability variation from the ground
state of 236Pu, whereas the dotted line shows the variation
starting from the deformed minima isomeric state, marked in
Fig. 3. The difference is about 20 orders of magnitude, but
to reach the isomeric state the system must achieve around
1 MeV excitation energy against the ground state.

V. CONCLUSION

The neck potential is derived from the potential theory
starting with an oscillator type force between nucleons. The
neck potential smoothly links the spheroidally deformed
oscillators of the two fission fragments. The spin-orbit term
is added and the transition level scheme for protons and
neutrons is obtained for binary necked configuration. The
calculations for the fission of 236Pu show that at a value
of the neck radius R3 = 6 fm a gap at the proton Fermi
level develops and its effect is a minimum in the total shell
correction energy that could accommodate a shape isomer
state along the 92Se + 144Nd fission channel. The gap appears
only when the neck parameter varies around R3 = 6 fm and
the corresponding minimum in the proton shell correction is
deep enough to produce a pocket in the total deformation
energy. The penetrability is obtained by minimization of the
action integral along this particular fission channel. Its value
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calculated from the ground state up to the exit point of the
barrier is about 20 orders of magnitude smaller than the one
obtained when starting from the deformed isomeric minimum
configuration.
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