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The bare nucleon-nucleon interaction is essential for the production of pair correlations in nuclei, but an
important contribution also arises from the induced interaction resulting from the exchange of collective vibrations
between nucleons moving in time reversal states close to the Fermi energy. The pairing field resulting from
the summed interaction is strongly peaked at the nuclear surface. It is possible to reproduce the detailed spatial
dependence of this field by using either a local approximation, which fully takes into account finite size effects, or a
contact interaction, with parameters that are quite different from those commonly used in more phenomenological
approaches.

DOI: 10.1103/PhysRevC.78.024315 PACS number(s): 21.10.−k, 21.30.Fe, 21.60.Jz

I. INTRODUCTION

Pairing correlations influence the basic properties of atomic
nuclei in an essential way [1]. A consistent approach for
describing these correlations employs a bare nucleon-nucleon
interaction whose parameters are fitted to reproduce the
experimental phase shifts (such as the v14 Argonne potential)
and includes medium polarization effects. The exchange of
vibrations between nucleons moving in time reversal states
lying close to the Fermi energy has been shown to account
in both stable and halo nuclei for a consistent fraction of
the pairing gap and of the two-nucleon separation energy
[2–8]. The coupling of nucleons and vibrations renormalizes
in an important way the single-particle properties of atomic
nuclei, leading to changes in the level densities at the Fermi
energy and to a breaking of single-particle strength (dynamical
shell model [9]). As a rule, the dynamical shell model
phenomena are simply parametrized in terms of an effective
mass and spectroscopic factors. In this paper we follow the
rule and concentrate on the detailed study of the spatial
dependence of the pairing field, without pretending to achieve
a precise estimate of the values of the pairing gap and of
the condensation energy. We plan to return to the issue in a
future publication, taking the variety of medium polarization
effects into account in a self-consistent and unified way
within the framework of the approach employed in Ref. [2],
based on the solution of the Nambu-Gorkov equations and
using renormalized quasiparticle random phase approximation
phonons to describe the collective modes.

The main subject of the present work is the spatial
dependence of the neutron pairing field and pairing density in
120Sn associated with the bare and induced pairing interaction.

In atomic nuclei, the coherence length is a few times larger
than the nuclear radius. Consequently, a simple local density
approximation, based on the results obtained in uniform
matter, is not expected to lead to accurate results in the case
of the finite system. The fact that the wave function of the
Cooper pair is largely independent of the nuclear interaction,

being dominated by the spatial dependence of a few orbitals
lying around the Fermi surface, testifies to this expectation.
We shall instead parametrize our results in terms of a local
approximation that reproduces the spatial dependence of the
pairing field resulting from the microscopic calculations. In
this way, the presence of the nuclear surface is taken into
account in an effective way. This will allow us to make a
detailed comparison with effective forces commonly used to
calculate pairing correlations, such as the Gogny force and
zero-range, density-dependent interactions.

II. SOLUTION OF HFB EQUATIONS AND THE SPATIAL
DEPENDENCE OF THE PAIRING FIELD

We start by performing a Hartree-Fock (HF) calculation
with the two-body interaction SLy4 [10] (associated with
a k-mass mk � 0.7m at saturation density), obtaining a set
of single-particle energy levels enlj . Using different pairing
interactions, which will be discussed in the following, we then
solve in the calculated HF basis the Hartree-Fock-Bogoliubov
(HFB) equations in the pairing channel,

(enlj − eF )Uq

nlj +
∑
n′

�nn′ljV
q

n′lj = E
q

ljU
q

nlj ,

(1)∑
n′

�nn′ljU
q

n′lj − (enlj − eF )V q

nlj = E
q

ljV
q

nlj ,

where E
q

lj denotes the quasiparticle energy, U
q

nlj and V
q

nlj are
the associated amplitudes, enlj denote the HF single-particle
energies, and eF is the Fermi energy. The calculation are
performed in a spherical box of radius Rbox = 15 fm. From
the quasiparticle amplitudes one can construct the abnormal
density, also referred to as the Cooper pair wave function:

�(�r1, �r2) =
∑

qnn′lj

2j + 1

2
U

q

nljV
q

n′ljψnn′lj (�r1, �r2), (2)

0556-2813/2008/78(2)/024315(13) 024315-1 ©2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.78.024315


A. PASTORE, F. BARRANCO, R. A. BROGLIA, AND E. VIGEZZI PHYSICAL REVIEW C 78, 024315 (2008)

where ψnn′lj (�r1, �r2) = [φnlj (�r1)φn′lj (�r2)]00 is the wave function
of two neutrons coupled to J = 0. We shall only consider the
S = 0 component of �, �S=0, which is by far the dominant
one. We then insert in Eq. (2), in place of ψnn′lj , the function

ψS=0
nn′lj (�r1, �r2) = 〈�r1, �r2|nn′lj ; J = 0〉S=0

= 1

4π
ϕnlj (r1)/r1ϕn′lj (r2)/r2Pl(cos θ12), (3)

where Pl is a Legendre polynomial.
The matrix elements of the pairing field are obtained self-

consistently from the abnormal density by using the state-
dependent gap

�nn′lj = −〈nn′lj ; J = 0|v|�〉, (4)

where v is the pairing interaction.
In the present paper we shall determine the spatial de-

pendence of the pairing gap, using a simplified version of
the formalism adopted in Ref. [2], which is convenient to
make contact with phenomenological approaches (cf. the
discussion in the Appendix of Ref. [7]). The total interaction
is given by the sum of the bare nucleon-nucleon interaction,
here taken to be the Argonne v14 interaction vArg, and of
the interaction induced by the exchange of vibrations, vind.
We shall renormalize the matrix elements vArg + vind of the
total interaction, using matrix elements vArg+ind that take into
account fragmentation and self-energy effects:

〈ν ′
1m

′ν ′
2m̄

′|vArg+ind|ν1mν2m̄〉
= Z〈ν ′

1m
′ν ′

2m̄
′|vArg + vind|ν1mν2m̄〉, (5)

where ν stands for {nlj}, |m̄〉 denotes the time reversed state,
|m̄〉 = (−1)m+j | − m〉, and Z denotes an average value of the
quasiparticle strength at the Fermi energy. In the following we
shall use the typical value Z = 0.7 [4,9]. Vertex corrections
are not considered, because their contribution to the pairing
gap has been found to be very small in the detailed calculation
performed by solving the Nambu-Gorkov equation [2].

The matrix elements of the interaction induced by the
exchange of a vibration will be calculated by evaluating the
diagrams shown in Fig. 1, using the same formalism already

+
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2 m
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2’ m’

1 m 2 m
1 m

FIG. 1. Diagrams showing the exchange of a vibration between
two pairs of levels coupled to J = 0.

employed in Ref. [5]:

〈ν ′
1m

′ν ′
2m̄

′|vind|ν1mν2m̄〉

=
∑
Jπ Mi

(f + g)
ν ′

1m
′

ν1m;Jπ Mi(f − g)
ν ′

2m
′

ν2m;Jπ Mi

E0 − (|eν ′
1
− eF | + |eν2 − eF | + h̄ωJπ i)

+
∑
Jπ Mi

(f + g)
ν ′

1m
′

ν1m;Jπ Mi(f − g)
ν ′

2m
′

ν2m;Jπ Mi

E0 − (|eν1 − eF | + |eν ′
2
− eF | + h̄ωJπ i)

. (6)

The index i labels the exchanged vibrational modes, having
a given angular momentum and parity JπM and an energy
h̄ωJπ i . The modes have been calculated in the quasiparticle
random phase approximation (QRPA), by using the same SLy4
interaction already employed to calculate the mean field, with
the exception of the spin-orbit and Coulomb parts [11]. E0

is the pairing correlation energy of a Cooper pair, a quantity
that is of the order of −2�F , where �F is the average value
of the gap close to the Fermi energy. In Eq. (6) f and g

denote the particle-vibration coupling vertices associated with
the spin-independent and spin-dependent parts of the residual
interaction, respectively,

vph(�r, �r ′) = δ(�r − �r ′){[F0(r) + F ′
0(r)�τ · �τ ′]

+ [(G0(r) + G′
0(r)�τ · �τ ′)�σ · �σ ′]}. (7)

In the calculation of the particle-vibration coupling we ne-
glected the momentum-dependent part of the interaction (this
part is instead taken into account in the QRPA calculation).
The vertex f is given by

f ν ′m′
νm;Jπ Mi = il−l′ 〈j ′m′|(i)J YJM |jm〉

∫
drϕν ′[(F0 + F ′

0)δρi
Jπ n

+ (F0 − F ′
0)δρi

Jπ p]ϕν, (8)

where F0, F
′
0 are the generalized Landau-Migdal parameters

associated with the SLy4 force and controlling the isoscalar
and isovector spin-independent channels and δρi

Jπ n and δρi
Jπ p

are, respectively, the neutron and proton contributions to the
transition densities and are given by

δρi
Jπ (r)

= 1√
2J + 1

∑
ν1,ν2

[Xν1,ν2 (i, J π ) + Yν1,ν2 (i, J π )]

× (
uν1vν2 + uν2vν1

)〈ν1||iJ YJ ||ν2〉ϕν1 (r)/rϕν2 (r)/r. (9)

The vertex g is given by

gν ′m′
νmJπ Mi =

J+1∑
L=J−1

il−l′ 〈j ′m′|(i)L[YL × σ ]JM |jm〉 (10)

∫
drϕν ′[(G0 + G′

0)δρi
Jπ Ln + (G0 − G′

0)δρi
Jπ Lp]ϕν, (11)

where G0,G
′
0 are the generalized Landau-Migdal parameters

controlling the isoscalar and isovector spin-dependent chan-
nels and δρi

Jπ Ln and δρi
Jπ Lp are, respectively, the neutron and
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proton contributions to the transition densities and are given
by

δρi
Jπ L(r) = 1√

2J + 1

∑
ν1,ν2

[Xν1,ν2 (i, J π ) − Yν1,ν2 (i, J π )]

× (
uν1vν2 + uν2vν1

) × 〈ν1||iL[YL × σ ]J ||ν2〉
×ϕν1 (r)/rϕν2 (r)/r. (12)

The values of the Landau-Migdal parameters associated with
the SLy4 interaction are shown in Fig. 2. We observe that
only the vertices g, associated with the spin-dependent part
of the residual interaction, can contribute in the case of non-
natural parity phonons (for which J = L + 1 or J = L − 1),
whereas both f and g can contribute in the case of natural-
parity phonons (for which J = L). We have included phonons
of both parities having energy up to 30 MeV, associated with
multipolarities from J = 0 to J = 5. We have verified that the
results are essentially the same including multipolarities up to
J = 8. This is in keeping with the fact that low-lying vibrations
tend to lose their collective character, when the associated
wavelength becomes of the order of the interparticle distance
or smaller than it [1]. The calculation of the matrix elements
of the induced interaction is then the same as performed in
Ref. [5], except for the fact that there the SkM∗ interaction was
used, instead of the SLy4 one (with the influence of 0+, 0−, and
1− multipolarities, which were not included in Ref. [5], being
negligible). The main difference between the two interactions
lies in the value of the effective mass, which is higher in the
SkM∗ case, corresponding to a higher level density close to
the Fermi energy and therefore leading to larger pairing gaps.

We remark that only the results obtained by making use of
the total interaction vArg+ind have physical meaning and should
be compared with experiment. However, to better understand
the properties of the total interaction and to make contact with
the literature we shall also study the Argonne and the induced
interactions separately. It is important to notice that in these
two cases the matrix elements will not be multiplied by Z.

The diagonal matrix elements �nnlj of the state-dependent
pairing gap obtained by solving the HFB equations with
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FIG. 2. (Color online) Landau-Migdal parameters associated
with the SLy4 force, calculated as a function of the distance from
the center of the nucleus in 120Sn.
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FIG. 3. (Color online) Diagonal matrix elements �nnlj as a
function of the single-particle energy enlj . The squares, diamonds, and
triangles refer to the gaps obtained, respectively, with the Argonne
plus induced interaction vArg+ind, with the Argonne interaction vArg,
and with the induced interaction vind. The vertical dashed line
indicates the position of the Fermi energy, which turns out to be
almost the same for the three calculations.

the matrix elements vArg+ind [cf. Eq. (5)] are shown in
Fig. 3 (squares). We plot the results for single-particle states
with energy less than 100 MeV but we note that to reach
convergence within 100 keV for the pairing gap, due to the
presence of a strong repulsive core in the Argonne interaction,
we have to include single-particle levels with energy up to
800 MeV in the HFB equations. For clarity, here and in
following figures, the matrix elements for enlj > 0 have been
averaged over intervals of 3 MeV in width. For large values
of enlj , they assume small negative values, again due to
the presence of the strong repulsive core [12]. The value
of the pairing gap averaged over the five single-particle
states close to the Fermi energy [we take into account
their degeneracy, i.e., �F ≡ ∑

ν(2jν + 1)�νν/
∑

ν(2jν + 1),
where the sum extends over ν = 3s1/2, 2d5/2, 2d3/2, 1g7/2, and
1h11/2] is equal to �F = 1.47 MeV, which is close to the
value derived from the experimental binding energies through
the usual three-point formula. We also show by diamonds
the values of �nnlj obtained with the Argonne pairing
interaction alone, corresponding to a value �F = 1.04 MeV.
The state-dependent gaps obtained by solving the HFB
equations including only the induced interaction are also
shown by triangles in Fig. 3: The gap is concentrated close
to the Fermi energy, and �F = 1.11 MeV. Negative values
of the pairing gap associated with deep-lying levels are
caused by the spin-dependent part of the induced interaction,
associated with the Landau parameters G0 and G′

0, which has
a repulsive character, as discussed in Ref. [5]. This can be
seen looking at Fig. 15(a) in Appendix B, where we report
the same kind of calculations shown in Fig. 3, but including
only the spin-independent part of the induced interaction (i.e.,
putting the Landau parameters G0 and G′

0 equal to zero):
In this case, the induced interaction alone leads to �F =
1.88 MeV, but adding the bare interaction [together with the Z

factor, cf. Eq. (5)] one obtains �F = 2.12 MeV. It is difficult
to determine the spin-dependent part of the particle-hole
interaction, and the balance between attraction and repulsion
is rather dependent on the adopted parametrization. However,
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the main factors determining the induced interaction in finite
nuclei are the pronounced collective character of the surface
modes and the dominance of the neutron-proton interaction
over the neutron-neutron interaction: These determine its
overall attractive character, in contrast with the case of uniform
neutron matter [5]. Therefore, although the absolute value of
the pairing gap could be somewhat different if we employed
another interaction, we expect that the main trends of the
spatial dependence discussed in the following would not be
affected.

We also notice that the induced interaction is dominated by
the contribution of isoscalar modes, whereas isovector modes
reduce the gap slightly. Although T is not a good quantum
number, we have in fact found that by including only the
modes that have a dominant T = 0 character the pairing gap
produced by the induced interaction is increased from 1.11 to
1.30 MeV, whereas by including only modes with dominant
T = 1 character we do not find any pairing gap.

For an interaction that depends only on the relative
coordinate r12, such as the Argonne interaction, the pairing
field �(�r1, �r2) is directly related to the Cooper pair wave
function introduced in Eqs. (2) and (3):

�(�r1, �r2) = −v(r12)�S=0(�r1, �r2). (13)

We note that the matrix elements of the induced interaction
[cf. Eq. (6)] depend on the energies of the single-particle
states through the energy denominators, and one cannot
directly use Eq. (13) to obtain a corresponding pairing field.
We shall instead use the fact that either one of the two
bases ψnn′lj↑ , with j↑ = |l + 1/2|, l = 0, 1, . . ., or ψnn′lj↓ ,
with j↓ = |l − 1/2|, l = 0, 1, 2, . . . , is a complete basis in the
(J = 0, S = 0) subspace, constructing the associated pairing
fields �↑ and �↓, as

�↑(�r1, �r2) =
∑
nn′lj↑

(2l + 1)�nn′lj↑ψS=0
nn′lj↑ (�r1, �r2), (14)

and similarly for �↓, where the factor (2l + 1) is a normaliza-
tion factor associated with the Legendre polynomials. It turns
out that there is some dependence on which basis is used. This
is because of the structure of the denominators in Eq. (6) and
the effect of the spin-orbit interaction. For simplicity, we shall
limit ourselves in the following to the pairing field obtained
by taking the average of the two expansions:

�ind = �↑ + �↓

2
. (15)

We shall show that this leads to a local expression for the
pairing field, which reproduces rather well the quasiparticle
energies and the pairing energies obtained by solving the
original HFB equations [Eq. (1)].

We shall now study the Cooper wave function and the
pairing field associated with the bare Argonne interaction
and the pairing-induced interaction. In Fig. 4 we show the
Cooper pair wave function �S=0 for fixed values of Rc.m.

(the center of mass of the pair), as a function of the relative
distance r12. The wave function also depends weakly on the
value of the angle θp between �Rc.m. and �r12, and we show
the result obtained after an angular average. At small values
of the relative distance, r12 < 1 fm, the strong repulsive core
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FIG. 4. (Color online) Abnormal density �(Rc.m., r12) for fixed
values of Rc.m.. In (a) we show the results calculated with the induced
pairing interaction, in (b) those obtained with the Argonne pairing
interaction.

present in the Argonne interaction prevents the two neutrons
from staying close to each other, producing a hole in the wave
function [see Fig. 4(b)]. For larger values of r12 the wave
functions are rather similar [see Figs. 4(a) and 4(b)], as can
also be seen in Fig. 5, where we show the root-mean-square
radius 〈r 2

12〉1/2, as a function of the position of the center of
mass [13]. In fact, �S=0 is dominated by the spatial dependence
of the single-particle wave functions [14]. One can remark
that, owing to the finite size of the nucleus, which limits the
phase space available for the formation of Cooper pairs, the
values of 〈r 2

12〉1/2 are considerably smaller than the value of
the coherence length ξ in uniform neutron or nuclear matter at
the corresponding density. In fact, ξ can be estimated from ξ =
h̄2kF /m∗π�F [15,16], leading to ξ ∼ 19 fm inside the nucleus
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FIG. 5. (Color online) Root-mean-square radius of the Cooper
pair as a function of the position of the center of mass, obtained with
the Argonne+induced interaction vArg+ind (solid line), the Argonne
interaction vArg (dashed line), and the induced interaction vind (dash-
dotted line).
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FIG. 6. (Color online) Pairing field �(Rc.m., r12) for fixed values
of Rc.m.. (a) Results calculated with the induced pairing interaction;
(b) results obtained with the Argonne pairing interaction.

(m∗ = 0.7 m, kF = 1.3 fm−1,�F = 1 MeV) and to ξ ∼ 6 fm
on the surface (m∗ = m, kF = 0.9 fm−1,�F = 2 MeV).

In Fig. 6 we show the structure of the pairing field as
a function of the relative distance for various values of the
center-of-mass coordinate Rc.m., averaged over the angle θp. In
the case of the Argonne interaction, the pairing field is obtained
from Eq. (13), but in the case of the induced interaction it is
obtained from Eq. (15), as previously discussed. The repulsive
core produces the large negative quantities at small values of
r12 observed in Fig. 6(b), whereas the attractive part prevails
for r12 > 1 fm. The induced gap [Fig. 6(a)] is strongly peaked
around Rc.m. ≈ 6 fm, in keeping with the fact that it receives
the main contribution from the low-lying collective modes,
whose transition density is concentrated on the surface of
the nucleus [5,7]. The negative values for small Rc.m. and
r12 in Fig. 6(a) are due to the repulsive, spin-dependent part
of the interaction [cf. the corresponding Fig. 15(b) where this
part has been left out]. We note the different energy scales in
Figs. 6(a) and 6(b). In fact, the presence of the repulsive core
in the bare interaction makes it difficult to assess the relevance
of the induced interaction. It is more convenient to consider
the dependence of the two interactions on relative momentum
k, because the effect of the repulsive core is then restricted to
high values of k, for which the induced interaction plays no
role.

III. MOMENTUM DEPENDENCE OF THE PAIRING FIELD
AND ITS LOCAL APPROXIMATION

In this section we study the momentum dependence of the
pairing field, by taking the Fourier transform of �(�r1, �r2) with
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FIG. 7. (Color online) Pairing field [Eq. (16)] as a function of
the position of the center of mass for different values of the relative
momentum k, for (a) the Argonne plus induced interaction vArg+ind

and (b) the Argonne interaction vArg.

respect to the relative distance �r12:

�( �Rc.m., �k) =
∫

d3r12e
i�k·�r12�( �Rc.m., �r12). (16)

We then average over the angle between �Rc.m. and the relative
momentum �k and obtain a function �(Rc.m., k) that depends
only on the moduli of these two vectors. In Fig. 7 we plot
�(Rc.m., k) for vArg and for the total interaction vArg+ind. For
the bare interaction, the behavior at small values of Rc.m. is
dominated by the 3s1/2 orbit, whereas the negative values of �

at high values of k are due to the repulsive core [12]. Adding
the induced interaction clearly has a strong effect on the pairing
field for values of k lower than about 1 fm−1, enhancing the
gap in the surface region and reducing it inside the volume of
the nucleus.

One can obtain a local approximation to the pairing
field, through a simple Thomas-Fermi approximation [16,17],
by writing �loc(Rc.m.) ≡ �[Rc.m., kF (Rc.m.)], where the local
Fermi momentum is given by

h̄2k2
F (Rc.m.) = 2m∗(Rc.m.)[eF − U (Rc.m.)], (17)

where U (Rc.m.) is the HF potential and m∗(Rc.m.) is the
effective mass [18] associated with the SLy4 interaction.
Equation (17) is only valid in the classically allowed region
where eF − U (Rc.m.) > 0 (in the present case the turning point
lies at Rt = 7.1 fm). We shall extend our definition into the
classically forbidden region, using the Fourier transform at
zero momentum:

�loc(Rc.m.)ext ≡ �(Rc.m., k = 0) =
∫

d3r12�( �Rc.m., �r12). (18)
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FIG. 8. (Color online) Pairing field obtained with the semiclas-
sical approximation [cf. Eq. (19)] for the three different pairing
interactions: Argonne plus induced vArg+ind (solid line), Argonne vArg

(dashed line), and induced vind (dash-dotted line).

This is equivalent to using a local momentum associated with
an energy slightly larger than eF . In this way the pairing field

�loc(Rc.m.) =
{

�[Rc.m., kF (Rc.m.)], Rc.m. � Rt,

�loc(Rc.m.)ext, Rc.m. > Rt ,
(19)

is continuous, and we have found that the first derivatives also
match to a good approximation. The resulting local pairing
fields are plotted in Fig. 8. The pairing field associated with
the Argonne interaction is rather surface peaked, going from
1.5 MeV at the surface to 0.5 MeV in the interior. Adding the
induced interaction reinforces this surface character, leading
to a large peak at the surface of about 3 MeV. The negative
values of the gap in the interior of the nucleus are caused
by the spin-dependent part of the induced interaction, as can
be checked, by comparing with Fig. 15(f) in Appendix B,
obtained by including only the spin-independent part of the
interaction: In that case the pairing gap essentially vanishes
inside the nuclear volume, whereas it reaches a value of about
4 MeV on the surface.

The local pairing field �loc(Rc.m.) can be used as the pairing
potential in the HFB equations for a zero-range potential
written in coordinate space [19]:(

d2

dR2
− l(l + 1)

R2
+ 2m∗

h̄2 [eF + Eqp − U (R)]

)
ulj (R)

+ 2m∗

h̄2

d

dR

(
h̄2

2m∗

)
d

dR
ulj (R) − 2m∗

h̄2 �loc(R)vlj (R) = 0,

(
d2

dR2
− l(l + 1)

R2
+ 2m∗

h̄2 [eF − Eqp − U (R)]

)
vlj (R)

+ 2m∗

h̄2

d

dR

(
h̄2

2m∗

)
d

dR
vlj (R) + 2m∗

h̄2 �loc(R)ulj (R) = 0.

(20)

To test the reliability of the semiclassical �loc(Rc.m.) we
have compared the quasiparticle energies and the occupation
probabilities obtained by solving the self-consistent HFB
equations [cf. Eq. (1)] using the full potentials, with the
solution of Eq. (20) obtained using the local potential. The
results are collected in Table I. The overall agreement is
rather good: Most quasiparticle energies are reproduced within
200 keV and the occupation probabilities larger than 0.1 are
reproduced within 15%. The local approximation introduced
here, based on the results obtained in the microscopic HFB
calculation, leads to pairing gaps that are rather different from
those obtained from the simplest local density approximation
(LDA), which does not take into account proximity effects
associated with the nuclear surface and the fact that the nuclear
radius is smaller than the coherence length in uniform matter.
This can be seen in Fig. 9, where we compare the local pairing
gap �loc associated with the Argonne interaction with the
function �LDA(Rc.m.) = �n.m.

F [ρn(Rc.m.)], where �n.m.
F is the

pairing gap calculated at the Fermi energy in uniform neutron
matter, for a density equal to the neutron density at a distance
Rc.m. from the center of the nucleus, using the local value
of the effective mass. The LDA overestimates the difference
between the pairing gap on the surface and in the interior of
the nucleus, an effect already observed in the case of the inner
crust in neutron stars [20].

IV. LDA PARAMETRIZATION OF THE PAIRING
INTERACTION

A. Density-dependent, zero-range parametrization

The local pairing fields discussed in the previous section
can be compared to those obtained by several authors, who

TABLE I. The lowest quasiparticle energies, expressed in MeV, associated with the quantum numbers (l, 2j ) obtained by solving the
HFB equations [Eq. (1)] with the Argonne+induced, Argonne, and induced interactions are indicated with Efull

qp ; also listed are the occupation
probabilities v2

can obtained in the canonical basis. They are compared with the quasiparticle energies Eloc
qp and occupation probabilities v2

loc (cf.
Eq. (7) from Ref. [19]) obtained by solving the HFB equations [Eq. (20)] in coordinate space with the local pairing potentials shown in Fig. 8
and discussed in the text.

l 2j vArg+ind vArg vind

Efull
qp v2

can Eloc
qp v2

loc Efull
qp v2

can Eloc
qp v2

loc Efull
qp v2

can Eloc
qp v2

loc

0 1 1.92 0.76 1.35 0.86 1.41 0.85 1.31 0.86 1.30 0.78 0.91 0.95
2 3 1.49 0.66 1.30 0.69 1.18 0.72 1.08 0.74 0.87 0.68 0.67 0.77
2 5 3.76 0.93 3.48 0.97 3.46 0.98 3.42 0.98 3.51 0.94 3.19 0.99
4 7 2.21 0.94 2.32 0.93 2.33 0.94 2.27 0.95 1.87 0.99 1.98 0.98
5 11 1.89 0.23 1.88 0.25 1.37 0.15 1.48 0.17 1.84 0.18 1.38 0.10

024315-6



MICROSCOPIC CALCULATION AND LOCAL . . . PHYSICAL REVIEW C 78, 024315 (2008)

0 2 4 6 8 10
R

c.m.
 [fm]

0

0.5

1

1.5

2

2.5

3

∆(
R

c.
m

.) 
  [

M
eV

]

∆
loc

∆
LDA

FIG. 9. (Color online) The local pairing gap calculated from
Eq. (19) for the Argonne interaction, already shown in Fig. 8 (dashed
line), compared to the gap obtained by using the simple LDA
approximation (solid line).

employed a density-dependent pairing interaction (DDDI) of
the form [21–24]

vδ(�r1, �r2) = v0


1 − η


ρ

(
�r1+�r2

2

)
ρ0




α

 δ(�r1 − �r2), (21)

where ρ0 is the nuclear saturation density and v0, η, and α are
three parameters to be determined, together with the value of
a cutoff energy in the single-particle energies Ecut, needed to
solve the HFB equations with a zero-range interaction [23,25].
The parameter v0 together with Ecut defines the strength of
the pairing interaction, whereas the other two parameters
determine the shape of the pairing field. For a given value
of Ecut, the strength can be fixed at zero density to reproduce
the neutron scattering length. We shall use the single-particle
levels that lie up to 60 MeV above the Fermi energy,

TABLE II. Parameters of the DDDI, Eq. (21), producing pairing
gaps that fit the local semiclassical pairing fields obtained with
the Argonne and with the Argonne plus induced interaction. We
compare the pairing gap at the Fermi energy and the pairing
energies (in MeV) obtained with the full calculation, �full

F and Efull
pair,

with the values obtained using the corresponding density-dependent
interaction, �δ

F and Eδ
pair.

Interaction α η �full
F �δ

F Efull
pair Eδ

pair

vArg 0.66 0.84 1.04 1.03 −13.2 −8.9
vArg+ind 2.0 1.32 1.47 1.28 −15.78 −14.47

following Ref. [24], and as a consequence we shall put v0 =
−458.4 MeV fm−3.

The parameters α and η have been determined in previous
works to reproduce either experimental gaps or the pairing gap
at the Fermi energy obtained with a finite range interaction such
as Gogny or Argonne in uniform neutron matter. In this section
we want instead to determine the parameters of the DDDI from
the condition that the spatial dependence of the associated
gaps reproduces that of the local pairing fields determined
in the previous section [cf. Eq. (19)]. We solve the HFB
equations [cf. Eq. (1)] for the pairing interaction [Eq. (21)].
We then fit the parameters η and α, minimizing the deviation
between the form of the pairing gap obtained with the DDDI
interaction of Eq. (21) and the form of the gap obtained with the
local potentials. The values of the parameters for the various
interactions are reported in Table II. Interestingly, the values
we obtain for the Argonne interaction are very close to those
obtained by Matsuo for the bare interaction in uniform neutron
matter [24]. The values obtained for the Argonne+induced
interaction correspond to a larger attraction in the surface
region, in keeping with Fig. 8. The diagonal matrix elements
of the pairing gap associated with vArg and vArg+ind, already
shown in Fig. 3, are compared with the corresponding
quantities obtained by using the zero-range interaction in
Fig. 10, where we also compare the spatial dependence of
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FIG. 10. (Color online) (a) The diagonal matrix elements of the pairing gap associated with the Argonne interaction vArg (diamonds, already
shown in Fig. 3) compared with those associated with the DDDI, zero-range interaction with the parameters α = 0.66, η = 0.84 (circles). The
semiclassical pairing gaps associated with the Argonne interaction (solid line) and with the zero-range interaction (dashed line) are shown
in the insert. (b) The diagonal matrix elements of the pairing gap associated with the Argonne+induced interaction vArg+ind (squares, already
shown in Fig. 3) compared with the DDDI interaction with the parameters α = 2.0, η = 1.32 (circles, cf. Table II). The semiclassical pairing
gaps associated with the induced interaction (solid line) and with the zero-range interaction (dashed line) are shown in the insert.
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FIG. 11. (Color online) (a) Spatial dependence of the different local pairing interactions introduced in this work to simulate the local pairing
gaps [cf. Eq. (19)] obtained with the corresponding microscopic, nonlocal interactions: bare+induced interaction vArg+ind (corresponding to
the parameters α = 2.0, η = 1.32; cf. Table II); bare+induced interaction neglecting the spin-dependent part (vArg+ind, G0 = 0, G′

0 = 0),
(α = 1.79, η = 1.0; cf. Table V in Appendix B); bare v14 interaction vArg(α = 0.66, η = 0.84; cf. Table II); Gogny interaction vGogny (α =
0.51, η = 0.63; cf. Table IV in Appendix A). (b) The spatial dependence of the bare+induced interaction with and without the spin-dependent
part of the induced interaction, already shown in (a), compared with the volume, surface, and mixed interaction of Ref. [26] (see text).

the local pairing gaps (see insets). One can notice that the
zero-range interaction (DDDI) yields a larger value of the gap
for the levels above the Fermi energy. Nevertheless, we are
able to reproduce the pairing energies associated with the
Argonne+induced interaction within an accuracy of about
10% (cf. Table II). The agreement is not as good in the case of
the pure Argonne interaction. In this case we could improve
the agreement between the pairing energies by modifying the
parameters slightly. We have found that using the parameters
α = 0.7, η = 0.8 we can reproduce the pairing energy within
an accuracy of better than 5%, worsening somewhat the
reproduction of the spatial dependence of the gap.

In Fig. 11(a) we compare the spatial dependence of the vari-
ous local, density-dependent interactions, introduced here and
also in Appendices A and B. The bare+induced interaction is
considerably more attractive than the bare Argonne interaction
or the effective Gogny interaction for Rc.m. ∼ 6 fm. The effect
of the spin-dependent part of the interaction, which produces
a repulsive contribution in the nuclear interior, is also clearly

seen in the figure. By construction, all the interactions tend to
the value v0 = −458.4 MeV fm−3 for large values of Rc.m..
In Fig. 11(b) we compare our results for the bare+induced
interactions (with and without the spin-dependent part) with
the three schematic DDD interactions proposed in Ref. [26],
where the associated pairing gaps have been compared
with those extracted from the experimental odd-even mass
differences. These interactions are of the form of Eq. (21) with
α = 1, and with η = 0 (volume force), η = 1 (surface force),
and η = 0.5 (mixed force). The value of v0 in this case has been
obtained by imposing that the average value of the pairing field
weighted with the nuclear density, �̄ ≡ ∫

d3r�(r)ρ(r), be
equal to 1.24 MeV. (The cutoff adopted in Ref. [26] is slightly
different from ours, and we have imposed the same condition
within our space.) The definition of �̄ gives more weight to
the value of the pairing field in the interior, compared to our
definition of �F , which is based on the single-particle levels
at the Fermi energy, which are more localized on the nuclear
surface.
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FIG. 12. (Color online) (a) The values of the parameter battr, obtained by fitting the Gaussian interaction [Eq. (23)], shown as a function of
the center of mass Rc.m. (filled dots) and compared with the function 0.14Rnucl

dU (r)
dRc.m.

(solid line). (b) The values of the parameter brep, obtained
by fitting the Gaussian interaction [Eq. (23)], also shown as a function of the center of mass Rc.m. (filled squares).
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FIG. 13. (Color online) (a) The diagonal matrix elements of the pairing gap associated with the induced interaction vind (triangles,
cf. Fig. 3) compared with those associated with the Gaussian parametrization [circles, cf. Eq. (23)]. The spatial dependence of the semiclassical
pairing gap associated with the induced interaction (solid line) and with the Gaussian interaction (dashed line) are shown in the insert. (b) The
same as (a), but for the Argonne+induced interaction vArg+ind, shown by squares.

B. Finite range parametrization

Within the zero-range parametrization just discussed, one
can only try to fit the total bare+induced interaction, and since
the resulting pairing interaction is a monotonic function of
Rc.m., one cannot describe specific enhancements of the inter-
action localized on the nuclear surface or within the nuclear
volume. We shall now discuss an alternative parametrization
of vind, based on the dominantly surface or volume character
of the induced interaction associated, respectively, with the
spin-independent or the spin-dependent part of the induced
interaction.

We shall try to determine a Gaussian function
vG

ind(Rc.m., r12) to fulfill approximately the relation

�(Rc.m., r12) = −vG
ind(Rc.m., r12)�S=0(Rc.m., r12). (22)

We consider separately the contribution from the spin-
independent, attractive and spin-dependent, repulsive parts
of the interaction, writing vG

ind(Rc.m., r12) = vG
attr(Rc.m., r12) +

vG
rep(Rc.m., r12). We shall first fit the pairing gap obtained

by including only the spin-independent part of vind and
shown in Appendix B [cf. Fig. 15(b) and 15(c)], using the
function

vG
attr(Rc.m., r12) = −battr · exp{−[(r12 − c)/aattr]

2}, (23)

where aattr, battr, and c are parameters to be determined. We
fix c to constrain the Gaussian function to be maximum when
at least one of the neutrons is on the surface of the nucleus.
This implies c = 2|Rnucl − Rc.m.|, where Rnucl = 6.4 fm is the
location of the maximum of the first derivative of the single-
particle potential. The parameter aattr turns out in all cases to
be very close to aattr ≈ 2 fm, so in practice we have used a
fixed value aattr = 2 fm. The resulting values of the parameter
battr obtained as a function of Rc.m. are peaked on the nuclear
surface and are plotted in Fig. 12(a). They can be rather well
reproduced by the function battr(Rc.m.) ∼ βindRnucl · dU (Rc.m.)

dRc.m.
,

where βind = 0.14, which is of the order of the deformation
parameter associated with the low-lying vibrational states.

The repulsive part of the induced interaction is active only
in the interior of the nucleus, for Rc.m. <∼ 4 fm [cf. Fig 6(a) and
Fig. 15(b) in Appendix B], so we multiply the Gaussian by a
Heaviside function centered at R0 = 4.6 fm:

vG
rep(Rc.m., r12) = brep · exp[−(r12/arep)2]�(Rc.m. − R0).

(24)

We then determine the parameters of the repulsive Gaussian,
fitting the values of arep and brep so that the resulting equation

vG
ind(Rc.m., r12) = vG

attr(Rc.m., r12) + vG
rep(Rc.m., r12) (25)

satisfies Eq. (22) for values of r12 in the interval [0, 2] fm,
where we use in this case the gaps �(Rc.m., r12) and the
Cooper pair wave function �S=0(Rc.m., r12) obtained from the
full calculation of the induced interaction considering both
spin modes and density modes [see Figs. 4(a) and 6(a)].
The parameter arep turns out in all cases to be very close
to arep ≈ 3.5 fm, so in practice we have used a fixed value
arep = 3.5 fm. The resulting values of brep are shown in
Fig. 12(b) as a function of Rc.m..

In Fig. 13(a) we show the diagonal matrix elements of
the pairing gaps and the semiclassical pairing gap obtained
with the resulting Gaussian interaction, comparing it with the
original induced interaction. In Fig. 13(b) we show instead the
quantities obtained by adding the Argonne and the Gaussian
interactions in analogy to Eq. (5). One can notice that the
matrix elements �nnlj are better reproduced with the Gaussian
interaction than with the DDDI parametrization (cf. Fig. 9),
leading to a better agreement with the value of �F calculated
with the full interaction (cf. Table III).

TABLE III. Average gaps and pairing energies (in MeV) obtained
with the full calculation and with the Gaussian parametrization vG

ind.

Interaction �full
F �G

F Efull
pair EG

pair

vind 1.11 1.13 −7.41 −7.99
vArg+ind 1.47 1.65 −15.8 −20.48
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V. CONCLUSIONS

The coupling of quasiparticles with collective surface
vibrations gives rise to an induced pairing interaction that
renormalizes the bare nucleon-nucleon interaction in an impor-
tant way, leading to a total pairing field that is strongly peaked
at the surface of the nucleus. Although the pairing-induced
interaction is nonlocal and energy dependent, it is possible
to adopt a semiclassical approximation, which yields a local

pairing field that reproduces to good accuracy the features of
the full quantal solution. This local field can also be obtained
by adopting the widely used zero-range, density-dependent
interaction, with an appropriate choice of the parameters,
which turn out to be quite different from those usually
employed in more phenomenological approaches. We have
also given a simple and accurate finite range parametrization
of the induced interaction.
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FIG. 14. (Color online) Different pairing gaps and Cooper pair wave functions obtained with the Gogny interaction. (a) Diagonal matrix
elements �nnlj as a function of the single-particle energy enlj . The vertical dashed line indicates the position of the Fermi energy. (b) Pairing
gap �(Rc.m., r12) in coordinate space for fixed values of Rc.m.. (c) Abnormal density �(Rc.m., r12) in coordinate space for fixed values of Rc.m..
(d) Root-mean-square radius of the Cooper pair as a function of the position of the center of mass, for the Gogny interaction (dash-dotted curve),
the Argonne interaction (dashed curve), and the Argonne+induced interaction (solid curve). (e) Pairing field [cf. Eq. (16)] as a function of the
position of the center of mass for different values of the relative momentum k. (f) Pairing fields obtained with the semiclassical approximation
[cf. Eq. (19)] for the Gogny interaction (dash-dotted curve) and for the Gogny interaction with rescaled matrix elements (dotted curve). They
are compared with the pairing field associated with the Argonne+induced interaction (solid curve), already shown in Fig. 8.
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FIG. 15. (Color online) Different pairing gaps and Cooper pair wave functions obtained by including only the spin-independent part of
the induced interaction. (a) Diagonal matrix elements �nnlj as a function of the single-particle energy enlj . The vertical dashed line indicates
the position of the Fermi energy. (b) Pairing gap �(Rc.m., r12) in coordinate space for fixed values of Rc.m.. (c) Abnormal density �(Rc.m., r12)
in coordinate space for fixed values of Rc.m.. (d) Root-mean-square radius of the Cooper pair as a function of the position of the center of
mass, for the induced interaction (dash-dotted curve) and the Argonne+induced interaction (solid curve). (e) Pairing field [cf. Eq. (16)] as a
function of the position of the center of mass for different values of the relative momentum k. (f) Pairing fields obtained with the semiclassical
approximation [cf. Eq. (19)] for the induced interaction (dashed curve) and for the Argonne+induced interaction (solid curve).
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APPENDIX A

In this Appendix, we investigate the properties of the Gogny
D1S interaction. The Gogny interaction is an effective, finite

range interaction that reproduces rather well the overall trends
of the pairing gap along the mass table [27]. Compared to the
bare force, it has a weak repulsive core and leads to larger
gaps close to saturation density. In the following, we shall
evaluate its properties in the pairing channel, starting from
the same HF field obtained with the SLy4 interaction and
previously used. The resulting properties, however, turn out
to be similar to those obtained in a full HFB calculation with
the Gogny force. This is because the values of the effective
mass associated with the SLy4 and Gogny interactions are
rather similar. In the specific case of 120Sn, the values of
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TABLE IV. Parameters of the DDDI, Eq. (21), producing pairing
gaps that fit the local semiclassical pairing fields obtained with the
Gogny and with the rescaled Gogny interaction. We compare in the
last two columns we compare the pairing gap at the Fermi energy
and the pairing energy (in MeV) obtained with the full calculation,
�full

F and Efull
pair, with the values obtained using the corresponding

density-dependent interaction, �δ
F and Eδ

pair.

Interaction α η �full
F �δ

F Efull
pair Eδ

pair

vGogny 0.51 0.63 1.92 2.05 −20.4 −26.6
vGogny, rescaled 0.38 0.67 1.46 1.39 −13.1 −14.1

its matrix elements �nnlj , shown in Fig. 14(a), are close to
1.8 MeV, leading to an overestimate of the experimental
gap.1 The pairing gap �(Rc.m., r12) and the Cooper pair wave
function �(Rc.m., r12) are shown in Figs. 14(b) and 14(c), and
the root-mean-square radius of the Cooper pair is shown in
Fig. 14(d). In Fig. 14(e) we show the Fourier transform of the
pairing field. Finally, in Fig. 14(f) we show the semiclassical
pairing gap �loc(Rc.m.). The volume part of the interaction is
considerably more pronounced compared to the Argonne and
to the Argonne+induced interaction.

To compare this semiclassical gap with the analogous
quantities obtained for the Argonne+induced interaction
presented in the main text, we also show the semiclassical
field obtained after rescaling the matrix elements of the Gogny
interaction by a factor 0.9, so as to obtain a value of the pairing
gap of about 1.4 MeV at the Fermi energy. We also show in
Table IV the parameters of the zero-range, density-dependent

1We note, however, that deducing the pairing gap from the calculated
binding energy with the three-point formula would yield a better
agreement.

TABLE V. Parameters of the DDDI [cf. Eq. (21)] producing
pairing gaps that fit the local semiclassical pairing fields obtained with
the Argonne plus the spin-independent part of the induced interaction.
We compare the pairing gap at the Fermi energy and the pairing
energy (in MeV) obtained with the full calculation, �full

F and Efull
pair,

with the values obtained using the corresponding density-dependent
interaction, �δ

F and Eδ
pair.

Interaction α η �full
F �δ

F Efull
pair Eδ

pair

vArg+ind 1.79 1.0 2.12 2.17 −26.6 −31.4

interaction obtained by fitting either the Gogny or the rescaled
Gogny interaction.

APPENDIX B

In this Appendix, we show the results obtained by ne-
glecting the spin-dependent part of the induced interaction,
that is, setting the Landau parameters G0,G

′
0 in Eq. (11)

equal to zero. In this way one excludes the coupling with
non-natural modes and produces a more attractive induced
interaction. This can be seen, for example, by comparing
the matrix elements of the pairing gap �nnlj reported in
Fig. 15(a), or the pairing gap in coordinate space reported
in Fig. 15(b), with the corresponding results obtained with the
full vind (cf. Fig. 3 and Fig. 6). The local pairing gap reaches
a value of 4 MeV on the nuclear surface, to be compared
with the value of 3 MeV with the full interaction [compare
Fig. 15(f) and Fig. 8]. The Cooper pair wave function is much
less sensitive to the features of the interaction, as we already
noticed in the main text [compare Figs. 15(c) and 15(d) with
Figs. 4 and 5]. We show in Table V the parameters of the
zero-range, density-dependent interaction obtained by fitting
the local pairing gap.
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