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The tilted axis cranking formalism is implemented in relativistic mean field (RMF) theory. It is used for a
microscopic description of magnetic rotation in the framework of covariant density functional theory. We assume
that the rotational axis is in the xz plane and consider systems with the two symmetries P (space reflection)
and PyT (a combination of a reflection in the y direction and time reversal). A computer code based on these
symmetries is developed, and first applications are discussed for the nucleus 142Gd: the rotational band based on
the configuration πh2

11/2 ⊗ νh−2
11/2 is investigated in a fully microscopic and self-consistent way. The results are

compared with available data, such as spectra and electromagnetic transition ratios B(M1)/B(E2). The relation
between rotational velocity and angular momentum are discussed in detail together with the shears mechanism
characteristic of magnetic rotation.
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I. INTRODUCTION

The study of bands with high angular momenta has been at
the forefront of nuclear structure physics for many years. Many
exciting phenomena have been discovered and predicted,
such as Coriolis antipairing [1], backbending [2], alignment
phenomena [3,4], rotating giant resonances [5], superdeformed
rotational bands [6], magnetic rotation [7], wobbling motion
[8], and chiral phenomena [9].

Many of these phenomena were first discussed in phe-
nomenological models such as the particle plus rotor model [8].
For a microscopic understanding, the semiphenomenological
Cranking model [10] has been used with great success.
Because of the high complexity of these phenomena, where
collective degrees of freedom such as deformation and su-
perfluidity connected with symmetry violations and phase
transitions in the mesoscopic nuclear system have a strong
interplay with single-particle configurations based on orbitals
with high single-particle angular momentum, fully quantum
mechanical many-body calculations are even today beyond
the computational possibilities. Only in very light systems
has the shell model been applied [11], and it has been
found that cranked Hartree-Fock-Bogoliubov (HFB) theory
provides a very successful method for a self-consistent and
fully microscopic description of these complex phenomena. It
has also been shown that the cranking approximation can be
understood as an approximate angular momentum projection
before the variation [12]. Most of the applications of cranking
theory are based on principal axis cranking (PAC), also called
one-dimensional cranking, where the rotational axis is parallel
to one of the principal axes of the deformed nucleus, usually

*mengj@pku.edu.cn
†ring@ph.tum.de

parallel to the x axis and perpendicular to the symmetry axis
of the system, usually the z axis.

Cranking calculations are three-dimensional calculations
and therefore highly complex. Most of the applications are
therefore based on simple model Hamiltonians, such as
the pairing-plus-quadrupole model [13] or on microscopic-
macroscopic (mic-mac) models such as the Nilsson-Strutinsky
method in the rotating frame [14]. Even today many of the
investigations are carried out in such semiphenomenological
models. Fully self-consistent calculations based on universal
density functionals such as Skyrme [15] or Gogny [16] or on
relativistic density functionals [17,18] are relatively rare.

The term “magnetic rotation” has been attributed to the so-
called shears bands, which have strong M1 transitions and very
weak E2 transitions. They were experimentally observed in the
region of proton-rich Pb isotopes during the 1990s [19–28].
The description of the shears bands requires a model that goes
beyond principal axis cranking. In other words, the rotating
axis does not coincide with any principal axis of the atomic
nucleus. This leads to the tilted axis cranking (TAC) model
[29], which has been used for the interpretation of the magnetic
rotation [7].

Shears bands are based on relatively few high-j orbitals
of protons and neutrons close to a nearly spherical core
with different particle-hole (p-h) structure. Configurations
with maximally aligned single-particle angular momentum
have an oblate density distribution for particles and a prolate
density distribution for holes. In the following, we discuss a
configuration of high-j proton particles and high-j neutron
holes. Of course configurations with proton holes and neutron
particles lead to the same effects. At the band head, the neutron
holes have angular momenta Jn aligned in the direction of the
z axis producing in this way an prolate density distribution.
The proton particles have an oblate density distribution. To
maximize the overlap of the orbits in this configuration, at the
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band head, the angular momenta Jp of the proton particles
point in a direction almost orthogonal to the neutrons, i.e.,
in the direction of the x axis. This coupling results in a total
angular momentum J = Jp + Jn tilted from the principal axes
and pointing in the xz plane. Within the Cranking model,
the rotational axis is therefore tilted (TAC) pointing in the
xz plane. This is also called two-dimensional cranking. The
magnetic dipole vector µ arising from these few valence proton
and neutron high-j orbitals, rotates around the total angular
momentum vector J. With increasing rotational frequency,
both the proton and neutron angular momenta align toward
the total angular momentum. Consequently, in the intrinsic
frame, the direction of the total angular momentum does not
change much, and regular rotational bands are formed even
though the total density distribution of the nucleus is almost
spherical or weakly deformed. Therefore this kind of rotation
has been called magnetic rotation in order to distinguish it
from the usual collective rotation in well-deformed nuclei
(called electric rotation) [7]. Collective rotations in a finite
many-body system such as the nucleus are only possible
for configurations with a well-defined orientation and small
fluctuations around it, i.e., with a strong violation of symmetry
in the intrinsic frame [30]. Conventional collective rotations
are based on a strong deformation of the density distribution
with a symmetry axis in the z direction, leading to strong
E2 transitions. Magnetic rotation occurs in systems with
small deformation of the density distribution. The orientation
and therefore the symmetry violation are determined by the
currents of the valence neutrons and protons, leading to strong
M1 transitions.

The magnetic properties for the shears bands in 199Pb were
investigated experimentally in 1994 by lifetime measurements
[25]. The deduced B(M1) values are roughly twice those
predicted by the TAC model and show a different behavior
with the rotational frequency. Later experimental lifetime
measurements by Clark et al. for four M1 bands in 198,199Pb in
1997 [27] found better agreement with the TAC calculations
and provided a clear evidence for magnetic rotation. To date,
more than 130 magnetic dipole bands have been identified
for 61 nuclides in four mass regions: A ∼ 80 (Br, Kr, Rb,
Zr), A ∼ 100 (Ag, Cd, In, Sn, Sb, Te), A ∼ 130 (Xe, Ba,
La, Ce, Pr, Nd, Sm, Eu, Gd), and A ∼ 200 (Hg, Pb, Bi,
Rn) [31]. The magnetic rotations for these regions correspond
to different configurations of high-j valence nucleons, e.g.,
πg9/2 particles combined with νg9/2 holes for the A ∼ 80
region, πg9/2 holes with νh11/2 particles for A ∼ 100, πh11/2

particles with νh11/2 holes for A ∼ 130, πi13/2 particles with
νi13/2 holes for A ∼ 200, etc.

The magnetic rotation occurs because the axis of the
uniform rotation does not coincide with any principal axis of
the density distribution. Theoretically, the semiclassical mean
field description for tilted axis rotation can be traced back to
the 1980s [32,33]. The qualities of the TAC approximation
were discussed and tested in Ref. [34] with the particle
plus rotor model (PRM) which also has led to a remarkably
successful description of chiral doublet bands [9,35,36], where
the angular momentum points in an arbitrary direction, also
called three-dimensional cranking. A review of the tilted
axis cranking approach can be found in Ref. [29]. All these

investigations have been carried out in simple models such as
the particle plus rotor model or non-self-consistent cranking
models with a few high-j orbitals in a fixed deformed mean
field. Only recently, relativistic [37] and nonrelativistic [38,39]
density functionals have been used for fully microscopic
investigations of magnetic rotation and of chiral doublet bands.

For many years, density functional theory based on the
mean field approach has played an important role in a fully
microscopic and universal description of medium-heavy and
heavy nuclei. In principle, such theories can provide an exact
description of the many-body dynamics, if the exact density
functional is known; but for such systems as nuclei, one
is far from a microscopic derivation of this functional. The
most successful descriptions are based on density functionals
depending on phenomenological parameters adjusted to a few
finite nuclei distributed all over the periodic system. Covariant
density functional theory (CDFT) is particularly successful,
because Lorentz invariance reduces the number of parameters
considerably. It is based on the Walecka model [40], which
was originally considered as a fully fledged quantum field
theory of the nucleus [41]. However, the real breakthrough
making quantitative applications of high precision possible
occurred when Boguta and Bodmer [42] discovered that an
additional density dependence was necessary. Therefore, today
the relativistic mean field theory with an additional density de-
pendence is considered a covariant density functional approach
[43]. It has been extended to include pairing correlations in the
framework of relativistic Hartree-Bogoliubov (RHB) theory in
Refs. [44–47].

During the past two decades, CDFT has received wide
attention, and several review articles have appeared [48–53].
With a relatively small number of parameters which are
adjusted to reproduce global properties of spherical closed-
shell nuclei, a large variety of nuclear phenomena have been
described over the years within this kind of model: ground
state properties of finite spherical and deformed nuclei all over
the periodic table [54] from light nuclei [55] to super-heavy
elements [56,57], from the neutron drip line, where halo
phenomena are observed [58] and new giant halos are predicted
[59], to the proton drip line [60] with nuclei unstable against
the emission of protons [61]. In addition, this theory gives a
natural explanation for the origin of pseudospin symmetry—a
long-existing mystery in nuclear physics [62–69].

Starting from the time-dependent version of CDFT, the
same functionals can also be applied to the description of
excited states. In the small amplitude limit, one finds the
relativistic random-phase approximation (RRPA) [70] and
quasiparticle RRPA [71] for the description of excited states
with vibrational character, in particular, for the description of
the positions of giant resonances and spin- or/and isospin-
excitations as the Gamov-Teller resonance (GTR) or the
isobaric analog resonance (IAR) [72]. Recently, they have
been also used for a theoretical interpretation of low-lying
dipole [71] and quadrupole [73,74] excitations and for the
scissor modes in deformed nuclei [75].

On the basis of the same functionals and without any
additional phenomenological parameters, rotational excita-
tions can be described in the framework of the relativistic
cranking model [76]. These calculations provide an excellent
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description of superdeformed bands [17,18] and a new
mechanism for the interpretation of identical bands in superde-
formed nuclei [77]. Multiple chiral doublets based on triaxial
deformation and the corresponding configuration have been
investigated in Ref. [78]. Although the cranked RMF equations
with arbitrary orientation of the angular momentum vector
(three-dimensional cranking) have been developed since 2000,
because of their numerical complexity, they have so far been
applied to only one band of magnetic rotation in the nucleus
84Rb [37].

In this investigation, the self-consistent tilted axis cranking
RMF approach is applied to the investigation of bands based on
magnetic rotation. A completely new computer code for self-
consistent relativistic tilted axis cranking has been developed.
It includes considerable improvements, and by using the
technologies of modern supercomputers it allows general
systematic investigations of such bands. In Sec. II we present
the equations of relativistic tilted axis cranking. In Sec. III we
discuss essential numerical details, and in Sec. IV we present,
as an example, results for the band DB1 in 142Gd, which
is based on the configuration πh2

11/2 ⊗ νh−2
11/2. In particular,

we discuss the spectrum, the electromagnetic transition ratio
B(M1)/B(E2), the relation between the rotational frequency
and the angular momentum, and the characteristics of magnetic
rotation and the shears mechanism. In Sec. V we summarize
our results.

II. RELATIVISTIC TILTED AXIS CRANKING THEORY

The starting point of covariant density functional theory is
the standard effective Lagrangian density constructed with the
degrees of freedom associated with the nucleon field ψ , the
two isoscalar meson fields σ and ω, the isovector meson field
ρ, and the photon field A [41,48,49,52,53]:

L = ψ̄

[
iγ µ∂µ − m − gσσ − gωγ µωµ − gργ

µ�τ · �ρµ

− eγ µ 1 − τ3

2
Aµ

]
ψ

+ 1

2
∂µσ∂µσ − 1

2
m2

σ σ 2 − 1

3
g2σ

3 − 1

4
g3σ

4

− 1

4

µν


µν + 1

2
m2

ωωµωµ + 1

4
c3(ωµωµ)2

− 1

4
�Rµν

�Rµν + 1

2
m2

ρ �ρµ �ρµ − 1

4
FµνF

µν, (1)

where the field tensors for the vector mesons and the photon
are defined as


µν ≡ ∂µων − ∂νωµ,

�Rµν ≡ ∂µ �ρν − ∂ν �ρµ, (2)

Fµν ≡ ∂µAν − ∂νAµ.

The Lagrangian (1) also includes nonlinear self-couplings
of the σ meson and the ω meson characterized by the
parameters g2, g3, and c3. In this paper, arrows are used to
indicate vectors in isospin space, and boldface characters are
used for the vectors in r space.

To describe magnetic rotation, we assume that the nucleus
rotates around an axis in the xz plane. The Lagrangian in
Eq. (1) is transformed to the frame rotating with the uniform
velocity

� = (
x, 0,
z) = (
 cos θ
, 0,
 sin θ
), (3)

where θ
 :=<| (�, ex) is the angle between the rotational axis
and the x axis. According to Ref. [79], the equations of motion
can be obtained from the Lagrangian in the rotating frame as

[α(−i∇ − V) + β (m + S) + V − �Ĵ]ψi = εiψi, (4)

where Ĵ = L̂ + 1
2 �̂ is the total angular momentum of the

nucleon spinors, and the relativistic fields S(r), V µ(r) are given
in terms of the meson fields:

S(r) = gσσ (r),

V (r) = gωω0(r) + gρτ3ρ30(r) + e
1 − τ3

2
A0(r), (5)

V(r) = gωω(r) + gρτ3ρ3(r) + e
1 − τ3

2
A(r).

The meson fields and the electromagnetic field obey the
equations of motion[−� + m2

σ − (�L̂)2]σ = −gσρs − g2σ
2 − g3σ

3,[−� + m2
ω − (�L̂)2]ω0 = gωρυ − c3(ωνων)ω0,[−� + m2

ω − (�(L̂ + Ŝ))2]ω = gωjυ − c3(ωνων)�,[−� + m2
ρ − (�L̂)2]ρ30 = gρρ3, (6)[−� + m2

ρ − (�(L̂ + Ŝ))2
]
ρ3 = gρj3,

[−� − (�L̂)2]A0 = eρc,

[−� − (�(L̂ + Ŝ))2]A = ejc.

As usual, we neglect the Coriolis terms (�L̂)2 and (�(L̂ + Ŝ))2

for the meson fields. As discussed in Refs. [76,79], these
contributions are extremely small, because they are quadratic
in the rotational frequency and because the mesons are bosons
sitting to a large part in s-states, i.e., nearly all the angular
momentum comes from the fermions. Since the coupling
constant of the electromagnetic interaction is small compared
with the coupling constants of the meson fields, the spatial
components of the vector potential A(r) are neglected in our
investigations.

Since the Coriolis terms in the Dirac equation (4) break
time-reversal symmetry in the intrinsic frame, spatial compo-
nents of the currents are induced. The densities and currents
entering the source terms in Eq. (6) have the form

ρs(r) =
A∑
i

ψi(r)ψi(r),

ρυ(r) =
A∑
i

ψ
†
i (r)ψi(r),

jυ(r) =
A∑
i

ψ
†
i (r)αψi(r),
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ρ3(r) =
A∑
i

ψ
†
i (r)τ3ψi(r), (7)

j3(r) =
A∑
i

ψ
†
i (r)ατ3ψi(r),

ρc(r) =
A∑
i

ψ
†
i (r)

1 − τ3

2
ψi(r),

jc(r) =
A∑
i

ψ
†
i (r)α

1 − τ3

2
ψi(r).

The sums are taken over the particle states only, i.e., the
contributions of the negative-energy states are neglected (the
no-sea approximation).

The total energy in the laboratory frame is given by

E =
A∑
i

εi + Ec.m. − 1

2

∫
d3r

(
gσσρs + 1

3
g2σ

3 + 1

2
g3σ

4

)

− 1

2

∫
d3r

[
gω(ω0ρυ − ωjυ) − 1

2
c3(ωνω

ν)2

]

− 1

2

∫
d3rgρ[ρ30ρ3 − ρ3j3]

(8)

− 1

2

∫
d3reA0ρc +

A∑
i

〈i|�Ĵ|i〉

+
∫

d3r{σ (�L̂)2σ − ω0(�L̂)2ω0 − ρ30(�L̂)2ρ30

+ω[�(L̂ + Ŝ)]2ω + ρ3[�(L̂ + Ŝ)]2ρ3},
where Ec.m. = −〈P2〉/2M is the correction for the spurious
center-of-mass motion. Following the standard techniques, the
root-mean-square (rms) radius of the system is defined as

〈r2〉1/2 =




∫
d3rr2ρ(r)∫
d3rρ(r)




1/2

. (9)

From the expectation values of the angular momenta

Jx = 〈Ĵx〉 =
〈

A∑
i=1

̂ (i)
x

〉
, Jy = 0,

(10)

Jz = 〈Ĵz〉 =
〈

A∑
i=1

̂ (i)
z

〉
,

and using the cranking condition, we find the total angular
momentum

J =
√

〈Ĵx〉2 + 〈Ĵz〉2 ≡
√

I (I + 1). (11)

The orientation of the angular momentum vector

J = (〈Ĵx〉, 0, 〈Ĵz〉) = (J cos θJ , 0, J sin θJ ) (12)

is given by the angle θJ :=<| (J, ex) between the angular
momentum vector J and the x axis. Since we minimize
〈Ĥ − Ĵ
〉 and since 〈Ĵ
〉 is maximal for J ‖ �, the orientation

θJ of the average angular momentum J should be identical to
the orientation θ
 =<| (�, ex) of the angular velocity �, i.e.,
θJ = θ
, for the self-consistent solution without constraint.

The quadrupole moments Q20 and Q22 are calculated in the
same way by

Q20 =
√

5

16π
〈3z2 − r2〉, Q22 =

√
15

32π
〈x2 − y2〉. (13)

From the quadrupole moments

Q20 = 3A

4π
R2

0a20, Q22 = 3A

4π
R2

0a22, (14)

the deformation parameters a20, a22 and β, γ can be extracted
as

β =
√

a2
20 + 2a2

22, γ = arctan

[√
2
a22

a20

]
, (15)

with R0 = 1.2A1/3 fm. Note, that we use in this work the sign
convention of Ref. [30] for the definition of γ .

In the usual PAC programs (one-dimensional cranking),
the principal axes of the densities and fields are implemented
to be along the x, y, and z axis. The TAC code used in this
investigation (two-dimensional cranking) allows for arbitrary
rotations of the density distributions around the intrinsic
y axis, i.e., only one of the principal axes of the densities
and fields is oriented along the y axis. Otherwise, the density
can have an arbitrary orientation in the xz plane. Of course, this
is a restriction compared to the freedom for general rotations
around all three axes, as it is needed in the case of chiral
rotations (three-dimensional cranking). Keeping the y axis
fixed has the numerical advantage that for the conventional
choice of phases in Ref. [80], the matrix elements of the
rotational matrices d

j

mm′ describing rotations around the y axis
are real. The freedom of rotations around the y axis can lead (in
particular for 
 = 0 and small 
 values) to instabilities during
the iterative solution, because the solutions with different
orientations in the xz plane are degenerate. We therefore
enforce the principal axes of the density distribution to be
identical with the x, y, and z axis by introducing a quadratic
constraint [30] for the expectation value of the quadrupole
moment

〈Q̂2−1〉 = −
√

15

8π
〈xz〉 = 0, (16)

i.e., by minimizing

〈H ′〉 = 〈H 〉 + 1
2C(〈Q̂2−1〉 − a2−1)2, (17)

with a2−1 = 0. C is a spring constant, which, if properly
chosen, has no influence on the final result. Of course, this
additional constraint should, in principle, not be necessary for

 different from zero, because the axis of rotation determines
an orientation and lifts this degeneracy with respect to rotations
around the y axis in this case. However, if one wants to
investigate the energy surface as a function of the orientation
of the rotational axis � in the xz plane determined by the
angle θ
 between the direction of � and the principal axis of
the density distribution, it is necessary to keep the orientation
of the density distribution fixed. As we shall see, the energy
surface is rather flat as a function of the rotational angle θ
.
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This leads to a high degree of instability during the iteration,
and it is advisable to keep the orientation θ
 fixed during the
iterative solution. Of course, for a fully self-consistent solution,
θ
 cannot be kept fixed arbitrarily. The optimal value for θ
 has
been determined by solving the equations for various values
of θ
 and by minimizing the Routhian afterward with respect
to θ
.

The nuclear magnetic moment is given by [81]

µ =
A∑
i

∫
d3r

[
mc2

h̄c
qiψ

†
i (r)r × αψi(r)

+ κiψ
†
i (r)β�ψi(r)

]
, (18)

where q is the charge (qp = 1 for protons and qn = 0 for
neutrons), m the nucleon mass, and κ the free anomalous
gyromagnetic ratio of the nucleon (κp = 1.793 and κn =
−1.913).

From the quadrupole moments and the magnetic moment,
the B(M1) and B(E2) transition probabilities can be derived
in semiclassical approximation [9]

B(M1) = 3

8π
(µx sin θJ − µz cos θJ )2 , (19)

B(E2) = 15

128π

[
Q20 cos2 θJ +

√
2

3
Q22(1 + sin2 θJ )

]2

,

(20)

where θJ 1 :=<| (J, ex) is determined by the orientation of the
average angular momentum in Eq. (12).

III. NUMERICAL DETAILS

A new code for the solution of the tilted axis cranking
relativistic mean field equations has been developed. As in the
older calculations with principal axis cranking [77], the Dirac
spinors are expanded in terms of three-dimensional harmonic
oscillator wave functions in Cartesian coordinates, i.e., the
dependence on the coordinates r = (x, y, z) is represented by
linear combinations of the product states

ϕnxnynz
(r) = 〈r|nx, ny, nz〉 = ϕnx

(x)ϕny
(y)ϕnz

(z), (21)

where the normalized oscillator function ϕnk
(xk) in the k

direction (xk = x, y, z) is given by

ϕnk
(xk) = Nnk√

bk

Hnk

(
xk

bk

)
exp

[
−1

2

(
xk

bk

)2
]

. (22)

Nn = (
√

π2nn!)−1/2 is a normalization factor, and

Hn(ξ ) = (−1)neξ 2 dn

dξn
e−ξ 2

(23)

are the Hermite polynomials [82]. The oscillator length
parameters bk allow for a deformation of the basis with the
deformation parameters β0 and γ0, which should be close but
not necessarily equal to the resulting deformation of the density
distribution.

For each combination of quantum numbers (nx, ny, nz), the
spin part is chosen in such a way that the basis functions are
eigenfunctions of the simplex operator [83] S = PR1, where
P is the parity and R1 is the signature operator [84], i.e., a
rotation by 180◦ around the x axis. S corresponds therefore to
an inversion at the yz plane: (x, y, z) → (−x, y, z) with the
eigenvalues ±i in the space of single fermion wave functions.
Using the fact that

S|nx, ny, nz〉 = (−)nx |nx, ny, nz〉, (24)

and that

S|↑〉 = ei π
2 σ1 |↑〉 = i|↓〉, (25)

we obtain the basis functions for the eigenvalue +i of the
simplex operator S

|α〉 = iny |nx, ny, nz,+i〉
= iny |nx, ny, nz〉 1√

2
(|↑〉 − (−1)nx |↓〉). (26)

The phase factor iny has been added to have real matrix
elements for the Dirac equation [85]. The eigenfunctions of
the simplex operation with eigenvalue −i are obtained by the
time reversal operation:

|α〉 = T |α〉 = |nx, ny, nz,−i〉
= (−i)ny |nx, ny, nz〉 1√

2
(−|↓〉 − (−1)nx |↑〉). (27)

We therefore use the following basis states:

ϕα(r, s) = 〈r, s|α〉

= iny ϕnx
(x)ϕny

(y)ϕnz
(z)

1√
2

(
1

(−1)nx+1

)
, (28)

and

ϕα(r, s) = 〈r, s|α〉

= (−i)ny ϕnx
(x)ϕny

(y)ϕnz
(z)

1√
2

(
(−1)nx+1

−1

)
. (29)

The Dirac spinor for the nucleon has the form

ψi(r) =
(

fi(r, s)

igi(r, s)

)
χi(t), (30)

where χi(t) is the isospin part. In contrast to principal axis
cranking calculations, which preserve simplex symmetry [79],
this is in general no longer the case for TAC calculations, and
therefore the large and small components of the wave function
in Eq. (30) have to be written as linear combinations of the
sets (28) and (29) with different simplex:

fi(r, s) =
∑

α

fαi |α〉 +
∑

ᾱ

fᾱi |ᾱ〉,
(31)

gi(r, s) =
∑

α̃

gα̃i |α̃〉 +
∑

α̃

gα̃i |α̃〉.
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Since the large and small components in the Dirac equation
have different parity, the sums in the expansions for the
large and the small components have to run over oscillator
quantum numbers with even N = nx + ny + nz or odd N,

respectively. This is indicated in Eq. (31) by the indices α

and α̃.

On this basis, the solution of Dirac equation (4) is obtained
by the matrix diagonalization

H




fαi

fαi

gα̃i

gα̃i


 = εi




fαi

fαi

gα̃i

gα̃i


 , (32)

where the Hamiltonian matrix H has the form




〈α|M∗ + V − �Ĵ|α′〉 〈α|M∗ + V − �Ĵ|α′〉 〈α|σ (∇ − iV)|α̃′〉 〈α|σ (∇ − iV)|α̃′〉
〈α|M∗ + V − �Ĵ|α′〉 〈α|M∗ + V − �Ĵ|α′〉 〈α|σ (∇ − iV)|α̃′〉 〈α|σ (∇ − iV)|α̃′〉
〈α̃|−σ (∇ − iV)|α′〉 〈α̃|−σ (∇ − iV)|α′〉 〈α̃|−M∗ + V − �Ĵ|α̃′〉 〈α̃|−M∗ + V − �Ĵ|α̃′〉
〈α̃|−σ (∇ − iV)|α′〉 〈α̃|−σ (∇ − iV)|α′〉 〈α̃|−M∗ + V − �Ĵ|α̃′〉 〈α̃|−M∗ + V − �Ĵ|α̃′〉


 . (33)

Note that the Coriolis term �Ĵ breaks the invariance with
respect to time reversal and with respect to rotations around
the x axis as well as around the z axis. Therefore only the
invariance of space reflection P and the combination of time
reversal and reflection in y direction PyT are valid and used
in the code.

The Klein-Gordon equations for the meson fields (6) are
also solved by expanding the meson fields φ(m)(r) = σ (r),
ωµ(r), ρ

µ

3 (r) in a three-dimensional harmonic oscillator basis
with the same oscillator length parameters bk , and therefore
with the same deformation parameters β0 and γ0, as the basis
of the spinors (21), that is,

φ(m)(r) =
∑

nxnynz

φ(m)
nxnynz

ϕnx
(x)ϕny

(y)ϕnz
(z), (34)

for m = σ, ω, ρ. Since the Coriolis terms (�L̂)2 and (�(L̂ +
Ŝ))2 for the mesons are neglected in the Klein-Gordon
equations (6), the corresponding equations of motion for the
meson fields become a set of inhomogeneous linear equations∑

n′
xn

′
yn

′
z

M(m)
nxnynz,n

′
xn

′
yn

′
z
φ

(m)
n′

xn
′
yn

′
z
= S(m)

nxnynz
, (35)

with the matrix elements

M(m)
nxnynz,n

′
xn

′
yn

′
z

= − 1

b2
x

[√
(nx + 1)n′

xδnxn
′
x−2 + √

nx(n′
x + 1)δnxn

′
x+2

]
× δnyn

′
y
δnzn

′
z
− 1

b2
y

[√
(ny + 1)n′

yδnyn
′
y−2 +

√
ny(n′

y + 1)

× δnyn
′
y+2

]
δnxn

′
x
δnzn

′
z
− 1

b2
z

[√
(nz + 1)n′

zδnzn
′
z−2

+
√

nz(n′
z+)δnzn

′
z+2

]
δnxn

′
x
δnyn

′
y
+

[
nx + 1

2

b2
x

+ ny + 1
2

b2
y

+ nz + 1
2

b2
z

+ m2
m

]
δnxn

′
x
δnyn

′
y
δnzn

′
z
, (36)

and the inhomogeneous parts

S(σ )
nxnynz

= −
∫

d3r ϕnx
(x)ϕny

(y)ϕnz
(z)(gσρs(r)

+ g2σ
2(r) + g3σ

3(r)), (37)

S(ωµ)
nxnynz

= +
∫

d3r ϕnx
(x)ϕny

(y)ϕnz
(z)(gωjµ

υ (r)

− c3ω
ν(r)ων(r)ωµ(r)), (38)

S(ρµ)
nxnynz

= +
∫

d3rϕnx
(x)ϕny

(y)ϕnz
(z)gρj

µ

3 (r). (39)

The densities and currents in the source terms are obtained
from the nucleon wave functions in Eq. (7). For the evaluation
of the Coulomb field, due to its long-range character, an
expansion in oscillator states is very difficult; therefore we
use the standard Green’s function method of Ref. [86] for the
calculation of the Coulomb field in each step of the iteration.

The expansion for the spinors and meson fields has to
be truncated to a fixed number of basis states. The cutoff
parameters of the expansion are taken as nx + ny + nz � Nf =
8 for large components of the nucleon spinors and nx + ny +
nz � Nb = 20 for the meson fields. Of course, as discussed
in Ref. [87], the small components of the nucleon spinors
have to be expanded up to nx + ny + nz � Nf + 1 to avoid
spurious solutions of the Dirac equations. When we increase
the configuration space for the Fermions from Nf = 8 to
Nf = 10, we find changes of only up to 0.6% for the total
energies and up to 4% for the total quadrupole moments for
the ground state of the nucleus 142Gd investigated in this
work. For Nf = 8 and Nf = 10 the same structures for the
single-particle levels are obtained. Therefore, Nf = 8 and
Nb = 20 are adopted in the present calculations. The parameter
set PK1 [88] has been used for the Lagrangian. In the present
calculations, pairing correlations are not taken into account.

As we have seen in the Introduction, magnetic rotation
occurs if specific proton and neutron configurations are
adopted as, for instance, the configuration πh2

11/2 ⊗ νh−2
11/2

in the nucleus 142Gd. This means that at the bandhead (i.e., for

 = |�| = 0), the two proton particles have an oblate density
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distribution and the two neutron holes have a prolate density
distribution.

First we solve the coupled system of Dirac (4) and Klein-
Gordon (6) equations for the ground state, i.e., for 
 = |�| =
0, filling in each step of the iteration the proton and neutron
levels according to their energy from the bottom of the well. We
calculate the quadrupole moments of the density distribution
as defined in Eq. (13) and derive from this information the
relative length of the principal axis of this distribution Rx =√

〈x2〉, Ry =
√

〈y2〉, and Rz =
√

〈z2〉. This leads in general
to a triaxial ground state deformation, and without loss of
generality we choose the axis in such a way that the x axis is
the shortest axis and the z axis is the longest axis, i.e.,

Rx < Ry < Rz. (40)

We can always enforce this condition by choosing proper initial
deformations for the iterative solution.

In the next step, we consider the band with the configuration
πh2

11/2 ⊗ νh−2
11/2 with maximally aligned proton-particle and

neutron-hole pairs. We choose the orientation of these pairs in
such a way that the resulting density distributions of the protons
and neutrons have a maximal overlap with that of the core. To
determine the wave function of such a configuration, we solve
the cranked RMF equations iterating with fixed configurations;
i.e., in each step of the iteration, we determine the densities
and currents [Eq. (7)] by occupying two proton h11/2 levels
and keeping two neutron h11/2 levels empty, filling only the
rest of the levels according to their energy from the bottom
of the well. Since the density distribution of the two proton
particles is oblate, we obtain the maximal overlap with the
core, thereby fulfilling the condition (40) by orienting the
two protons along the shortest axis (x axis), i.e., by occu-
pying the maximally aligned configurations (πh11/2,mx =
11
2 ; πh11/2,mx = 9

2 ). The density distribution of the two
neutron holes is prolate, and therefore we obtain the maximal
overlap with the core by orienting the two neutron holes
along the longest axis (z axis), i.e., keeping the maximally
aligned configurations (vh11/2,mz = − 11

2 ; νh11/2,mz = − 9
2 )

empty. In the following, we say in a shorthand notation
that we block these configurations, which means we occupy
the corresponding proton levels and keep the corresponding
neutron levels empty. The remaining orbits in the intruder shell
for the protons (πh11/2) are kept empty, and the remaining
orbits in the intruder shell for the neutrons (vh11/2) are kept
occupied.

The configurations to be blocked are usually given in the
spherical basis, i.e., by the spherical quantum numbers |nljm〉.
The equations of motion are solved by expanding the Dirac
spinors in terms of the three-dimensional harmonic oscillator
functions in the Cartesian basis [Eq. (31)] labeled by the
quantum number |nx, ny, nz,±i〉. The resulting single-particle
wave functions are often distributed over many components
in the Cartesian basis, and it is not easy to identify the
orbits which have to be blocked. To identify these orbits,
we therefore transform the wave functions from the Cartesian
basis with the quantum number |nxnynz ± i〉 to a spherical
basis with the quantum numbers |nljm〉 using the techniques
given in Refs. [89,90] and block those levels, which have

the maximal overlap with the required |nljm〉 configurations.
These techniques are considerably simplified if we work in
an isotropic Cartesian basis with identical basis parameters
bx = by = bz = b in Eq. (22). Since the deformations are
small in bands with magnetic rotation, we use in the following
calculations an isotropic Cartesian basis with h̄ω0 = 41A−1/3

and with the deformation parameters β0 = γ0 = 0.
Because of the considerable K mixing in TAC solutions and

because of the high level density in such three-dimensional
calculations, it occurs that the character of the blocked
configurations is changing during the iteration. This means that
we have to check in each step of the iteration the character of
the blocked configurations. In particular, we have to determine
the maximal component of the blocked configuration in the
spherical basis sets |nljmx〉 (for protons) and |nljmz〉 (for
neutrons). If this configuration no longer corresponds to the
specific configuration we are interested in, we have to change
the blocked configuration.

In details the situation is often even more complicated.
Of course, the quantum number m depends on the quantization
axis of this spherical basis. For 
 = 0, where the core has its
principal axes in the x, y, and z directions, the two proton
particles in the πh11/2 orbit fully aligned to the x axis
correspond to mx = 11

2 and mx = 9
2 , and the two neutron holes

in the νh11/2 orbit fully aligned to the z axis correspond to
mz = − 11

2 and mz = − 9
2 . Because of the rotational invariance

around the y axis of the entire system, it can occur that the
nucleus assumes a different orientation during the iteration.
In this case, we have to first determine this orientation by
calculating the quadrupole tensor Q2µ. Then we have to
determine the wave functions in the spherical basis quantized
along this new x axis for the proton particles and the new
z axis for the neutron holes. Of course, if the quadratic con-
straint in Eq. (16) is strictly fulfilled, we do not need this addi-
tional rotation of the basis in the xz plane. However, this is not
always the case during the iteration. As an example we show in
Fig. 1, for the angular velocity h̄
 = 0.1 MeV with the

FIG. 1. (Color online) Angle ζ between the longest principal axis
of the density distribution and the z axis as a function of the number of
iterations for various values of the spring constant C of the quadratic
constraint in Eq. (17). In each case, the iteration is started with ζ = 0.
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orientation angle θ
 = 30◦, the resulting angle ζ between the
longest axis of the nucleus and the z axis as a function of
the number of iterations and for various values of the spring
constant C defined in Eq. (17). In each case we start with
ζ = 0. For small values of C the iteration converges to a finite
angle ζ . Only for relatively large C values can the longest axis
of the density distribution be kept parallel to the z axis (ζ = 0).

So far we have discussed the situation for 
 = |�| = 0.
Going to finite values of 
, we first choose a certain orientation
θ� of 
 = (
 sin θ
, 0,
 cos θ
), which is then kept fixed.
We proceed in small steps of 
 = 0 → 
1 = δ
, . . . , 
 =

n → 
n+1 = 
n + δ
. Of course, for finite values of 
,

the blocking criterion (πh11/2,mz = 11
2 ; πh11/2,mz = 9

2 ) for
the protons and (νh11/2,mx = 11

2 ; νh11/2,mx = 9
2 ) for the

neutrons can no longer be strictly applied, because we have
to allow that the shears mechanism aligns the proton and
neutron configurations more and more to the rotational axis
with increasing values of 
. For the solution for 
 = 
n+1 we
therefore first determine the blocking structure of the solution
obtained for 
 = 
n, i.e., counting the levels from the bottom
of the well, we determine the numbers of the blocked levels.
In each of the following iterations, we use the same blocking
structure, i.e., we block the levels with the same numbers. It
can occur that the configuration is changing when we go from

n → 
n + δ
, and in this case we have to reoccupy some
levels, i.e., to change the blocking structure. We adopt the
following prescription: starting from the Dirac level |ψi(
n)〉
blocked for 
 = 
n, we block for 
 = 
n+1 the orbit j which
maximizes the overlap 〈ψi(
n)|ψj (
n+1)〉, i.e.,

〈ψj (
 + δ
)|ψi(
)〉 = 1 + O(δ
). (41)

This means, in particular, that we have to store the single-
particle Dirac spinors of the solution for 
 = 
n during the
calculation for 
 = 
n+1. For infinitesimal step sizes, this
condition corresponds to the concept of parallel transport
[91,92]. In the case of an avoided level crossing, this condition
requires that infinitesimal step sizes stay in an adiabatic way
on the lower (or upper) level. After many infinitesimally small
adiabatic steps, this would lead to a change in the configuration
during the level crossing. For finite step sizes δ
, this
condition corresponds to a diabatic crossing and avoids in
this case the change of configuration. We therefore use in the
following calculations the finite step size h̄δ
 = 0.05 MeV.

In summary, we start for each orientation angle θ
 at 
 =
0, determine here the blocking configuration for the protons
and neutrons by occupying or keeping empty the levels with
maximal alignment in the 1h11/2 intruder shells. Afterward, for
fixed orientation angle θ
, we increase 
 successively in steps
of h̄δ
 = 0.05 MeV and apply in each case the prescription
(41) for the occupation of the various intruder levels.

IV. RESULTS AND DISCUSSION

Bands with magnetic rotation have been observed in the
mass regions A ∼ 80, 100, 130, and 200. For 142Gd, five
bands, denoted as DB1, DB2, DB3, DB4, and DB5, have
been observed experimentally, and four of them have been
interpreted as magnetic rotation bands with the configurations

πh2
11/2 ⊗ νh−2

11/2, πh2
11/2 ⊗ νh−4

11/2, πh1
11/2 ⊗ πg−1

7/2νh−2
11/2, and

πh1
11/2 ⊗ πg−1

7/2νh−4
11/2 [93,94], respectively. Using the nonrela-

tivistic Skyrme-Hartree-Fock method with tilted axis cranking,
the shears mechanism and the spectrum of the band DB1 in
142Gd have been investigated in Refs. [38,95]. In the present
paper, we apply the relativistic TAC approach to describe the
same band DB1 and investigate the characteristic of magnetic
rotation in a relativistic microscopic and self-consistent theory.

In TAC calculations, the tilted angle θ
 of the orientation of
the angular velocity � with respect to the principal axis of the
density distribution should be determined in a self-consistent
way. Such a self-consistent procedure turns out to be very time
consuming. In the literature, so far, this has not been done;
therefore we also start our calculations with the reasonable
approximation to freeze the tilted angle for all 
 values at the
value for 
 = 0, i.e., at θ
 = 45◦. Afterward, we will carry
out a self-consistent determination of the rotational angle. As
we will see, this will improve the agreement with experimental
data.

A. Frozen orientation of the angular velocity � at θ� = 45◦

In this investigation, we consider the configuration
πh2

11/2 ⊗ νh−2
11/2 for the band DB1 in the nucleus 142Gd and

solve the relativistic TAC equations for this configuration with
the parameter set PK1 [88] in a self-consistent way. For 
 = 0,
the two protons in the πh11/2 orbit contribute roughly 10h̄ of
angular momentum parallel to the short axis (x axis), and the
two neutron holes in the νh11/2 orbit contribute roughly 10h̄
angular momentum along the long axis (z axis). Therefore the
total angular momentum arising in this configuration points
in the direction θJ = 45◦, i.e., one has a tilted angle θ
 :=
<| (�, ex) = 45◦, and it is a reasonable approximation to freeze
the value of the tilted angle at the value θ
 = 45◦ for all higher

 values. With this approximation, we solve these equations
for various rotational frequencies, starting at h̄
 = 0.0 MeV
and increasing in steps of 0.05 MeV going up to h̄
 =
0.55 MeV. As discussed in the last section for 
 = 0, the
proton orbits (πh11/2,mx = 11

2 ; πh11/2,mx = 9
2 ) are occupied

and the neutron orbits (vh11/2,mz = − 11
2 ; νh11/2,mz = − 9

2 )
are kept empty. Starting with this solution, we use the
prescription (41) for the occupation with increasing 
 values.

In Table I, we show the deformation parameters β and γ

of the self-consistent density distribution found in these TAC
calculations with frozen orientation of the angular velocity
θ
 = 45◦ as a function of the rotational frequency 
. The
deformation parameter β decreases slowly, except for a small
fluctuation around h̄
 = 0.40 MeV, from β = 0.148 at h̄
 =
0.00 MeV down to β = 0.142 at h̄
 = 0.55 MeV, and the
deformation γ changes from γ = −46.6◦ at h̄
 = 0.00 MeV
to γ = −38.5◦ at h̄
 = 0.55 MeV.

In Fig. 2, the energies of the band DB1 in the nucleus
142Gd, which starts with the configuration πh2

11/2 ⊗ νh−2
11/2, are

shown as a function of the angular momentum I determined
by the cranking condition in Eq. (11). The results of TAC
RMF calculations are shown by open squares and compared
with experimental data (filled circles) of the band DB1 in
Ref. [94] and with nonrelativistic Skyrme-Hartree-Fock (SHF)
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TABLE I. Deformation parameters of the πh2
11/2 ⊗ νh−2

11/2 band in the nucleus 142Gd as functions of the rotational
frequency 
 (in MeV). The results are obtained from tilted axis cranking RMF calculations with the parameter set PK1
and with frozen orientation (θ
 = 45◦) of the cranking axis.


 0.00 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
β 0.148 0.148 0.148 0.147 0.147 0.146 0.145 0.145 0.145 0.147 0.142
γ −46.6◦ −44.6◦ −43.9◦ −43.4◦ −43.1◦ −42.7◦ −42.6◦ −42.4◦ −42.3◦ −40.1◦ −38.5◦

calculations of Ref. [38] (open triangles). As no link to
the ground state is observed, we adopt the recommended
band head spin I = 16h̄ of Ref. [94], and we take the
energy at I = 16h̄ as a reference for both the RMF values
and the nonrelativistic SHF calculations. Compared with the
nonrelativistic SHF results, the experimental energies are well
reproduced in the relativistic TAC calculations with the frozen
orientation θ
 = 45◦. This is a strong indication that bands
based on magnetic rotation can be well understood in the
framework of relativistic tilted axis cranking even with the
approximation of a frozen orientation angle. The calculated
values for angular momenta I = 20h̄ and I = 21h̄ are missing
in Fig. 2, because, working with constant 
, at these values
we could not find converged solutions. In fact, as we will
see in the next section, we observe a level crossing in this
region. One proton level from the 1g7/2 shell crosses with a
proton level from the 2d5/2 shell. Since it is well known that
level crossings cannot be described properly by the cranking
formalism [96], we omitted the energy values for I = 20h̄ and
I = 21h̄. As we will see in the next section, the values for
I � 22h̄ obtained by the prescription (41) belong more or less
to the configuration π [h2

11/2g
−1
7/2d

1
5/2] ⊗ νh−2

11/2, and the value
for I = 22h̄ is in agreement with experiment.

Next we show in Fig. 3 the angular momentum I defined in
Eq. (11) for this band. The relativistic TAC calculations with
frozen orientation of the tilted axis are shown by open squares
as a function of the rotational frequency. They are compared
with the experimental values (filled circles) of Ref. [94], where
the experimental rotational frequency has been calculated by

FIG. 2. (Color online) Energy in the tilted axis cranking RMF
calculation with frozen orientation θ
 = 45◦ and the configuration
πh2

11/2 ⊗ νh−2
11/2 at the bandhead as a function of the total angular

momentum for band DB1 in 142Gd compared with the data [94] and
nonrelativistic SHF results [38].

means of the condition [34]

h̄
exp = 1

2
[Eγ (I + 1 → I ) + Eγ (I → I − 1)] ≈ dE

dI
.

(42)

Both the calculated and the experimental angular momenta
I (
) agree with each other and form nearly straight lines up
to h̄
 = 0.4 MeV. However, at h̄
 = 0.4 MeV, a backbending
is observed in the experimental band, which corresponds
to the level crossing discussed above. It is obviously not
described in our calculations, where we observe no solution
for I = 20h̄ and I = 21h̄. It is a well-known deficiency of
cranking calculations [96] that sharp backbending phenomena
are usually smeared out in this semiclassical approximation
because of the spurious mixing induced by the variation at
fixed angular velocity instead of fixed angular momentum.

To examine the shears mechanism for the band DB1 in
the nucleus 142Gd, we show in Fig. 4 the proton and neutron
angular momentum vectors Jπ and Jν defined as

Jπ = 〈Ĵπ 〉 =
Z∑

p=1

〈p|̂ |p〉, Jν = 〈Ĵν〉 =
N∑

n=1

〈n|̂ |n〉, (43)

where the sum runs over all the proton (or neutron) levels
occupied in the cranking wave function in the intrinsic system.
The abscissa corresponds to the short axis (x axis) and the
ordinate corresponds to the long axis (z axis). The different
panels in this figure correspond to results of relativistic TAC
calculations for various angular velocities 
. Again we used

FIG. 3. (Color online) Total angular momentum in the tilted axis
cranking RMF calculation with frozen orientation θ
 = 45◦ and the
configuration πh2

11/2 ⊗ νh−2
11/2 at the bandhead as a function of the

rotational frequency for band DB1 in 142Gd compared with the data
[94].
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FIG. 4. (Color online) Proton and neutron
angular momentum Jπ and Jν in tilted axis
cranking RMF for frozen orientation θ
 = 45◦

and the configuration πh2
11/2 ⊗ νh−2

11/2 at the
bandhead in the plane spanned by the shortest and
longest axes of the nucleus for several rotational
frequencies 
.

the parameter set PK1 and a frozen orientation angle θ
 = 45◦
starting with the fixed aligned configuration πh2

11/2 ⊗ νh−2
11/2

and using the condition (41) with increasing angular velocity.
For band DB1 in the nucleus 142Gd with the configuration

πh2
11/2 ⊗ νh−2

11/2, the contributions to the angular momentum
come mainly from the two proton particles and the two neutron
holes. At the band head, two protons filling the bottom of the
h11/2 shell contribute around 10h̄ of angular momentum along
the short axis, and the two neutron holes at the upper end
of the h11/2 shell contribute around 10h̄ angular momentum
along the long axis. They form the two blades of the shears.
After the rotation is switched on, the two blades move toward
each other, closing the shears more and more. In such a way,
the shears mechanism for the band DB1 in 142Gd is clearly
observed in Fig. 4.

To display the shears mechanism more explicitly, we show
in Fig. 5 the shears angles �π,�ν, and � as defined in
Ref. [37],

cos �π = Jπ J
|Jπ ||J| , cos �ν = JνJ

|Jν ||J| , � = �π + �ν,

(44)

extracted from the results of our relativistic TAC calculation as
a function of the rotational frequency 
 for band BD1 in 142Gd.
The shears angles �π,�ν, and � are, respectively, the angles
between Jπ and J, Jν and J, and Jπ and Jν . All of them decrease
with the rotational frequency, i.e., the angular momenta of
proton and neutron align toward each other with the increasing
values of the cranking frequency 
. This fact further confirms
the picture of the shears mechanism. We note that the shears
angles decrease almost linearly with the rotational frequency
till h̄
 = 0.40 MeV. After h̄
 = 0.45 MeV, a different trend
appears, and the reason for this sudden change is again the
level crossing discussed below.

Of course, the present calculations do not represent fully
self-consistent solutions of the TAC model, because, so far,
we keep the orientation of the angular velocity fixed and
at the same time we require by the quadratic constraint in
Eq. (17) that the orientation of the density distribution is
parallel to the x, y, and z axes. Therefore the orientation of
the angular velocity given by the angle θ
 is no longer strictly
parallel to the orientation of the angular momentum given
by the angle θJ in Eq. (12). However, as can be seen from
Fig. 4, for h̄
 � 0.4 MeV, the difference between θJ and θ
 is
negligible. This shows that in this region the approximation of a
frozen orientation of � is a reasonable approximation. We also
recognize in Fig. 4 that for h̄
 > 0.4 MeV, this approximation
is no longer valid. This will be discussed in more detail in the
next section.

FIG. 5. (Color online) Shears angles �π,�ν , and � in a tilted axis
cranking RMF calculation with frozen θ
 = 45◦ and the configuration
πh2

11/2 ⊗ νh−2
11/2 at the bandhead as functions of the rotational

frequency for band BD1 in 142Gd.
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FIG. 6. (Color online) Ratio B(M1)/B(E2) as a function of the
total angular momentum for band BD1 in a tilted axis cranking RMF
calculation with frozen orientation θ
 = 45◦ and the configuration
πh2

11/2 ⊗ νh−2
11/2 at the bandhead compared with the data.

A typical characteristic of magnetic rotation is strongly
enhanced B(M1) transitions at low angular momenta as well
their decrease with the angular momentum. Therefore, we give
in Table II the B(M1) and B(E2) values and compare them
with the experimental data of Refs. [93,94]. Here the B(M1)
values are derived from the relativistic form of the effective
current operator in Eq. (18). We find that the calculated B(E2)
values are below 0.03 (e b)2, and the B(M1) values are about
in the range of 1–3 (µN )2. In Fig. 6, we show the ratio
B(M1)/B(E2) between magnetic and electric transitions as
a function of the total angular momentum for the band BD1
in the nucleus 142Gd calculated in the tilted axis cranking
RMF with the configuration πh2

11/2 ⊗ νh−2
11/2 and compare this

ratio with data. The calculated B(M1)/B(E2) values decrease
with rotational frequency and exhibit the typical property of
magnetic rotation. Since the electromagnetic transition data are
available only in the range of the backbending phenomenon
[94], future experiments in the lower spin region are welcome.

TABLE II. Angular momenta I (in h̄), the B(M1) values (in
µN

2) and B(E2) values (in e2 b2) compared with the experimental
values of Refs. [93,94]. The theoretical values Ical are defined in
Eq. (11).

Ical B(M1)cal B(E2)cal Iexp B(M1)exp B(E2)exp

13.03 3.415 0.65 × 10−2 – – –
14.55 3.304 0.92 × 10−2 – – –
15.21 3.177 0.98 × 10−2 – – –
15.81 3.039 1.03 × 10−2 – – –
16.40 2.899 1.08 × 10−2 – – –
16.97 2.762 1.11 × 10−2 – – –
17.53 2.628 1.15 × 10−2 – – –
18.12 2.494 1.19 × 10−2 – – –

18.97 2.310 1.34 × 10−2 19 1.29+0.95
−0.25 1.7+1.9

−0.7 × 10−2

– – – 20 1.10+0.77
−0.20 1.8+1.6

−0.5 × 10−2

– – – 21 1.04+0.38
−0.18 1.7+0.9

−0.4 × 10−2

22.12 1.783 2.12 × 10−2 – – –

24.10 1.517 1.96 × 10−2 – – –

In the previous calculation for 84Rb [37], an attenuation
factor around 0.3 was introduced to improve the agreement
with experimental B(M1)/B(E2) ratios. This factor took
care of the fact that the nonrelativistic form of the magnetic
moment operator had been used in Ref. [37]. The B(M1)
value at I = 19 calculated from Eq. (18) is 2.31µN

2, around
one-third of the value 7.29µN

2 obtained in Ref. [37] from the
nonrelativistic definition.

B. Self-consistent RMF shears results

In TAC calculations, the orientation θ
 of the angular
velocity � with respect to the principal axis of the density
distribution should be determined in a self-consistent way
either by minimizing the total Routhian

E′(
, θ
) = 〈Ĥ − cos θ

Ĵx − sin θ

Ĵz〉, (45)

for fixed values of 
 with respect to θ
 or by requiring that
� is parallel with J at fixed 
. The tilted angle corresponding
to the minimum at fixed 
 is the so-called self-consistent ro-
tational angle. Such a self-consistent procedure is in principle
necessary but turns out to be very time consuming.

As in the nonrelativistic calculations of Ref. [38], all the
TAC calculations discussed so far have been carried out by
freezing the tilted angle for all 
 values at θ
 = 45◦, its
value at 
 = 0. As we have seen in the last section, this
approximation was rather successful below h̄
 � 0.4 MeV.
The data available for the band DB1 in 142Gd have been rather
well reproduced, in particular, the spectra, electromagnetic
transition B(M1)/B(E2) ratios, relation between rotational
frequency and angular momentum, and characteristic shears
mechanism of magnetic rotation. Encouraged by the success
of the approximation with a frozen tilted angle, we carried
out tilted axis calculations in which the orientation of the
angular velocity is determined in a self-consistent way; i.e.,
we repeat the earlier calculations with fixed orientation for
various values of the angle θ
 starting at θ
 = 0 and increasing
it in steps of 5◦. For each θ
 value, we start at 
 = 0
with the aligned configuration πh2

11/2 ⊗ νh−2
11/2, and using the

prescription given in Eq. (41), we determine the occupation
for increasing 
 values as in the last section.

In Fig. 7, we plot the total Routhians (solid lines) as
functions of the tilted angle θ
 for the various rotational
frequencies 
. According to the prescription of the cranking
model, the minimum of the total Routhians with respect to θ


for fixed value of 
 determines the self-consistent rotational
angle θself . In Fig. 7, this angle is represented by full red dots.
The dashed vertical line labels the Routhians corresponding
to the calculations described in the last section with a frozen
angle θ
 = 45◦.

As seen in Fig. 7 for rotational frequencies h̄
 � 0.40 MeV,
the main component for the minimum of the total Routhian
corresponds to the configuration πh2

11/2 ⊗ νh−2
11/2. Beyond

h̄
 = 0.40 MeV, the other competitor minimum appears
corresponding to the configuration π [h2

11/2g
−1
7/2d

1
5/2] ⊗ νh−2

11/2,
which is represented by green triangles in Fig. 7. It is clearly
seen from this figure that the frozen θ
 = 45◦ is a good
approximation of the self-consistent minimum in the Routhian
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FIG. 7. (Color online) Total Routhians as functions of tilted angle
θ
 for several rotational frequencies 
 in a self-consistent tilted axis
cranking RMF calculation. The solid dots and triangles correspond
to the configurations πh2

11/2 ⊗ νh−2
11/2, and π [h2

11/2g
−1
7/2d

1
5/2] ⊗ νh−2

11/2,
respectively.

curve for h̄
 � 0.40 MeV, which explains why the magnetic
rotation for DB1 in 142Gd can be understood well by the tilted
axis cranking RMF calculation with the frozen tilted angle.

For fixed 
 values, increasing the orientation angle θ


results in a crossing between the proton levels 1g7/2 and
2d5/2. Because of this level crossing, in the calculation with
frozen angle θ
 = 45◦ of the last section, the configuration
πh2

11/2 ⊗ νh−2
11/2 is no longer the dominant one but only the

main component in the eigenfunction for h̄
 > 0.40 MeV.
Using the “parallel-transport” method, the level 1g7/2-1/2
after the level crossing should be occupied. However, such
occupation will lead to a divergence. If the lower proton
level 2d5/2 1/2 instead of 1g7/2-1/2 is occupied, for h̄
 =
0.45, 0.50, and 0.55 MeV, other minima will appear in the
Routhian curves, and they will correspond to the configu-

FIG. 9. (Color online) Energy as a function of the total angular
momentum in a tilted axis cranking RMF calculation for RMF-1 and
RMF-2 compared with the data for band DB1 in 142Gd [94]. The
nonrelativistic SHF result [38] and the energy with frozen θ
 = 45◦

for the configuration πh2
11/2 ⊗ νh−2

11/2 are also included.

ration π [h2
11/2g

−1
7/2d

1
5/2] ⊗ νh−2

11/2. That is, for the configura-

tion πh2
11/2 ⊗ νh−2

11/2, we could not get convergent results
for h̄
 = 0.40 MeV and θ
 > 45◦, as we did for h̄
 =
0.45 MeV and θ
 > 39◦, h̄
 = 0.50 MeV and θ
 > 36◦,
and h̄
 = 0.55 MeV and θ
 > 32◦. Therefore the Routhians
curve is not complete for h̄
 > 0.40 MeV and configuration
πh2

11/2 ⊗ νh−2
11/2, and the corresponding minima marked in red

dots with h̄
 > 0.40 MeV in Fig. 7 may not be the real ones.
As we will see in the following, the strong mixture of these
configurations has an impact not only on the minima of the
total Routhians, but also on the other physical observables
of magnetic rotation. In the following, we consider the
self-consistent solutions for the two minima as a function
of 
. They correspond to the configurations πh2

11/2 ⊗ νh−2
11/2

and π [h2
11/2g

−1
7/2d

1
5/2] ⊗ νh−2

11/2 and will be referred to as

FIG. 8. (Color online) Total Routhians
(solid blue line, left scale) and the orientation
of the angular momentum θJ (dashed black
line, right scale) for various rotational fre-
quencies 
. The solid red dots correspond to
the self-consistent angle θself on both curves.
For convenience, we also show the dotted
line defined by θJ = θ
.
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FIG. 10. (Color online) Total angular momentum as a function
of the rotational frequency in tilted axis cranking RMF calculation
with PK1 for the configurations πh2

11/2 ⊗ νh−2
11/2 (RMF-1) and

π [h2
11/2g

−1
7/2d

1
5/2] ⊗ νh−2

11/2 (RMF-2) compared with the data for DB1
in 142Gd [94] and the results with PK1 and frozen θ
 = 45◦ for the
configuration πh2

11/2 ⊗ νh−2
11/2 .

RMF-1 and RMF-2, respectively. For the calculation of the
configuration h2

11/2 ⊗ h−2
11/2 with the frequencies h̄
 = 0.40,

0.45, and 0.55 MeV, we used the values 45◦, 39◦, 36◦, and
32◦ for the corresponding orientations of the angular velocity.
These values correspond to local minima in the Routhian
curves for h̄
 = 0.40, 0.45, 0.50, and 0.55 MeV before the
change of configuration.

In Fig. 8, we show for various 
 values the Routhian
and the orientation of the angular momentum θJ defined in
Eq. (12) as functions of the orientation θ
 of the angular veloc-
ity �. The self-consistent angle (the minimum of the Routhian)
is indicated by a solid dot on both curves. To clarify the situa-
tion, we also show the line θJ = θ
. As it is clearly seen, for
h̄
 < 0.40 MeV the orientation of the angular velocity θ
 is
nearly identical to the orientation of the angular momentum θJ

as expected for a self-consistent solution of the TAC problem.
We also see that for h̄
 = 0.40 MeV, self-consistency is not
fully achieved, and for h̄
 > 0.40 MeV, self-consistency is
only achieved for the second minimum with the configuration
π [h2

11/2g
−1
7/2d

1
5/2] ⊗ νh−2

11/2. In this region, the configuration

πh2
11/2 ⊗ νh−2

11/2 is an excited configuration, which is very
hard to describe in cranking calculations. In Ref. [97], the
cranking model was used to describe excited configurations
by including an additional constraint of orthogonality. This
has not been done in the present investigation, and therefore
the solutions RMF-1 with the configuration πh2

11/2 ⊗ νh−2
11/2

have to be considered only as approximate solutions for h̄
 >

0.40 MeV.
In Fig. 9, we show the energies as functions of the total

angular momentum for the RMF-1 and RMF-2 calculations
for band DB1 in 142Gd. They are compared with the available
data [94], the results of a frozen tilted angle θ
 = 45◦, and
the nonrelativistic SHF results [38]. As in Fig. 2, the energy
at I = 16 h̄ is taken as a reference. In general, the energies in
the RMF calculations achieve better agreement with the data

FIG. 11. (Color online) Shears angles �π, �ν (empty symbols)
and � = �π + �ν (solid symbols) in a tilted axis cranking RMF
calculation for the RMF-1 (circles) and RMF-2 (triangles) configu-
rations. For comparison, we also show the results for the total angle
� for frozen orientation θ
 = 45◦ (squares) as discussed in Fig. 5.

than do the SHF results. The energies in the RMF calculation
with frozen θ
 = 45◦ coincide with the results of RMF-1 at
low spin and are close to the results of RMF-2 at high spin.

The deformation parameters β and γ in the tilted axis
cranking RMF with the configuration πh2

11/2 ⊗ νh−2
11/2 are

given in Table III. For increasing rotational frequencies 
,
the deformation β smoothly decreases from 0.149 for 
 = 0
to 0.139 for h̄
 = 0.55 MeV, and the deformation γ changes
from −46.6◦ for 
 = 0 to −41.9◦ for h̄
 = 0.55 MeV.

In Fig. 10, the total angular momenta are shown as functions
of the rotational frequency and results of RMF-1 and RMF-2
calculations are compared with data of Ref. [94] and with the
results of frozen angle θ
 = 45◦.

FIG. 12. (Color online) Ratios of B(M1)/B(E2) as a function of
the total angular momentum in tilted axis cranking RMF calculation
with PK1 for the configurations πh2

11/2 ⊗ νh−2
11/2 (RMF-1) and

π [h2
11/2g

−1
7/2d

1
5/2] ⊗ νh−2

11/2 (RMF-2) compared with the data for DB1
in 142Gd [94] and the results with PK1 and frozen θ
 = 45◦ for the
configuration πh2

11/2 ⊗ νh−2
11/2.
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TABLE III. Deformation parameters as in Table I, but for the self-consistent value of θ
 at each angular velocity 
.


 0.00 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
β 0.148 0.148 0.148 0.147 0.146 0.146 0.145 0.145 0.144 0.142 0.139
γ −46.6◦ −44.6◦ −43.9◦ −43.4◦ −43.1◦ −43.0◦ −42.8◦ −42.3◦ −41.9◦ −41.6◦ −41.9◦

The total angular momenta in RMF-1 linearly increase
with the rotational frequency and agree with the data until
h̄
 = 0.40 MeV. After h̄
 > 0.40 MeV, an upbending is
observed for the data. This upbending cannot be reproduced by
the smooth behavior in either RMF-1 or RMF-2 calculations.
The curve I (
) with frozen θ
 = 45◦ links in some respect
the results with those for the configurations πh2

11/2 ⊗ νh−2
11/2

and π [h2
11/2g

−1
7/2d

1
5/2] ⊗ νh−2

11/2. This provides a qualitative
explanation for the experimental upbending.

The shears angles �π,�ν, and � in RMF-1 and RMF-2
are shown in Fig. 11 in comparison with the results with frozen
angle θ
 = 45◦. The shears angles in RMF-1 linearly decrease
with 
, which exhibits a pronounced shears mechanism, i.e.,
the proton and neutron angular momenta align toward each
other with increasing rotational frequency 
. Compared with
the previous results of frozen θ
 = 45◦, the RMF-1 shears
angles continue to decrease smoothly with 
 when h̄
 �
0.40 MeV. The results with frozen angle θ
 = 45◦ decrease
much faster for h̄
 � 0.40 MeV and approach the results of
RMF-2 for h̄
 = 0.55 MeV.

Finally, the ratio B(M1)/B(E2) in RMF-1 and RMF-2
are given in comparison with the data and results with
frozen angle θ
 = 45◦ in Fig. 12. The ratio B(M1)/B(E2)
in RMF-1 decreases with the spin until h̄
 = 0.40 MeV
(I = 18h̄) and increases again. The results in RMF-2 appear
after I = 23.7h̄. The data available happen to be located in
the band crossing region. The calculated B(E2) are below

0.03 (e b)2, and the B(M1) are in the range of 1–3 (µN )2. The
ratios B(M1)/B(E2) with frozen θ
 = 45◦ link the results in
RMF-1 and RMF-2. Therefore it is easy to understand why
it gives the best description for the ratio B(M1)/B(E2). In
Fig. 13, we show as in Fig. 8 the total Routhians and the
B(M1)/B(E2) values for various angular velocities 
 as
functions of the orientation angle θ
. We observe that for
fixed and large absolute values of the rotational frequency 
,

the B(M1)/B(E2) value depends strongly on the orientation
angle θ
. For h̄
 � 0.40 MeV, the RMF-2 solution with
the configuration π [h2

11/2g
−1
7/2d

1
5/2] ⊗ νh−2

11/2 shows decreasing
values for B(M1)/B(E2). On the other hand, the orientation
angles θ
 adopted in the calculation of B(M1) and B(E2) for
h̄
 � 0.40 MeV are not the virtual minima in the Routhians
curves shown in Fig. 7 for the configuration πh2

11/2 ⊗ νh−2
11/2,

because the level crossing appears between the levels 1g7/2

and 2d5/2, and the Routhians curve is not complete for
h̄
 > 0.40 MeV and πh2

11/2 ⊗ νh−2
11/2. This leads to the

solution RMF-1 (the first minimum of the Routhians) with
the configuration πh2

11/2 ⊗ νh−2
11/2 showing increasing values

for B(M1)/B(E2), as also seen in Fig. 12.

V. CONCLUSIONS

Summarizing, we have applied in this investigation the
relativistic tilted axis cranking model for a fully self-consistent

FIG. 13. (Color online) Total Routhi-
ans (solid blue line, left scale) and ratios of
B(M1)/B(E2) value (dashed black line,
right scale) as functions of θ
 for various
rotational frequencies h̄
. The solid red
dots correspond to the self-consistent angle
θself on both curves.
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description of magnetic dipole bands. A new code for the
solution of the corresponding equations has been developed.
It fixes the directions of the principal axes of the density
distribution along the x, y, and z axes by a quadratic constraint,
and it allows for rotations with arbitrary orientation of the
angular velocity � in the xz plane (two-dimensional cranking).
The invariance of space reflection P and the combination of
the time reversal and reflection in the y direction (PyT ) are
used. Based on this new tilted axis cranking RMF code, the
magnetic rotation in band DB1 of the nucleus 142Gd is studied
with the parameter set PK1.

To save computer time, first the cranking axis is frozen
at a tilted angle θ
 = 45◦, and afterward this orientation is
determined in a self-consistent way by minimizing the total
Routhian. In all cases, we consider at the band head (
 = 0)
the configuration πh2

11/2 ⊗ νh−2
11/2. Self-consistency requires

that the orientation of the proton spin is orthogonal to that
of the neutron spin at 
 = 0. With increasing angular velocity,
the angle between these two configurations decreases in a
self-consistent way. This means we observe in band DB1
of the nucleus 142Gd a shears mechanism, the characteristic
of magnetic rotation. For large 
 values we find a level
crossing, which leads to a rotation with the configuration
π [h2

11/2g
−1
7/2d

1
5/2] ⊗ νh−2

11/2 above h̄
 > 0.4 MeV. Before the
band crossing region, i.e., for h̄
 � 0.40 MeV, the experi-
mental relation between the total angular momenta and the
rotational frequency is well reproduced by the tilted axis
cranking RMF calculation. The characteristic of magnetic
rotation and the shears mechanism for DB1 in 142Gd are
microscopically and self-consistently demonstrated by the
orientation of proton and neutron angular momenta.

Compared to the nonrelativistic Skyrme-Hartree-Fock re-
sults, in these relativistic tilted axis cranking calculations,

the energies of band DB1 in 142Gd as functions of the total
angular momentum are in much better agreement with the
experimental values.

For band DB1 in 142Gd, it is demonstrated that the
characteristic features of magnetic rotation can be well
described by relativistic mean field theory based on tilted axis
cranking, in particular the energy spectra, the relation between
the total angular momenta and the rotational frequency, the
shears mechanism, and the electromagnetic transition ratios
B(M1)/B(E2). Instead of the empirical formula used in the
previous RMF calculation, the ratio B(M1)/B(E2) is obtained
by adopting Eq. (18) to get the nuclear magnetic moment
from the nuclear current. The calculated results show the
characteristic of the magnetic rotation. Future experiment is
welcome in lower spin regions to validate our prediction.
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