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We present a method based on mean-field states generated by triaxial quadrupole constraints that are projected
on particle number and angular momentum and mixed by the generator coordinate method on the quadrupole
moment. This method is equivalent to a seven-dimensional GCM calculation, mixing all five degrees of freedom
of the quadrupole operator and the gauge angles for protons and neutrons. A first application to 24Mg permits a
detailed analysis of the effects of triaxial deformations and of K mixing.
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I. INTRODUCTION

Methods based on the self-consistent mean-field approach
[1] are up to now the only microscopic tools that can be applied
to all nuclei including the heaviest ones. However, mean-field
methods have several limitations, and the method that we
present here is part of an attempt to eliminate two of the most
penalizing presented in a series of papers. The first limitation
is due to the determination of a wave function in an intrinsic
frame of reference. Although the symmetry-breaking mean-
field approach is a very efficient and transparent way to grasp
the effect of correlations associated with collective modes in
the limit of strong correlations [2–5], the absence of good
quantum numbers and the corresponding selection rules does
not allow direct determination of the electromagnetic transition
probabilities. Instead, approximations have to derived based on
the collective model and these cannot cover all possible cases
as they are well justified only in the limit of large deformation.
The second limitation concerns nuclei for which a mean-
field description through a single configuration breaks down
because several configurations with different shell structure are
close in energy without being separated by a large potential
barrier. Methods to overcome these two problems have been
proposed in the past, but it is only in the last ten years
that sufficient computational resources have become available
to construct and apply methods based on realistic effective
energy density functionals aiming at eliminating both of these
limitations.

Angular momentum projection [5–7] is the key tool to
transform the mean-field wave function from the intrinsic to
the laboratory frame of reference. There is no ambiguity in
determining directly electromagnetic transition probabilities
when working in the laboratory system. However, without
the simplifying assumption of axial states, the restoration
of rotational symmetry requires that rotations about three
Euler angles be considered. So far, for mean-field states
with triaxial quadrupolar deformations, this has been mostly

done in the context of phenomenological models by using
small shell model spaces and often schematic interactions
[8–13]. In the context of energy density functional methods,
projection on angular momentum of mean-field states with
triaxial quadrupolar deformations has been performed at the
Hartree-Fock level by using a simplified Skyrme interaction
in Ref. [14] and very recently with a full Skyrme energy
functional in Ref. [15]. Cranked wave functions have been
projected in both cases to approximate a variation after
projection on the angular momentum [16–18], but pairing
correlations were not included.

To solve the problem of energy surfaces that are soft
with respect to a collective degree of freedom, one has to
introduce fluctuations in this collective degree of freedom into
the ground-state wave function using the generator coordinate
method (GCM) [5–7,19]. Again, many studies used small
shell model spaces and schematic interactions, but there is
also a quite a large body of work starting from mean-field
methods based on effective interactions in the full model
space of occupied single-particle states and with inclusion
of pairing correlations. There have been several applications
[20–22] that deal with the intrinsic quadrupole mode including
triaxial deformations, which is in most cases the dominant
low-lying collective excitation mode in nuclei. There also have
been studies of octupole modes [23–25] and their coupling
to the quadrupole mode [26,27], as well as investigations
of fluctuations in pairing degrees of freedom [28–30]. All
the studies mentioned so far have in common the fact that
simultaneous symmetry restoration, if performed at all, is
limited to numerically inexpensive modes, such as particle
number or parity, whereas angular momentum is not restored.

A simultaneous treatment of angular momentum projection
and of fluctuations with respect to triaxial quadrupole deforma-
tion requires that five degrees of freedom be considered. The
most transparent representation consists of three Euler angles
defining the relative orientation of the intrinsic major axis
frame in the laboratory frame and two independent degrees of
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freedom characterizing the intrinsic deformation (e.g., through
the coordinates β and γ introduced by Å. Bohr). In the context
of the GCM, however, this has so far only been done in highly
schematic models, by using either a single-j shell [31] or a very
small shell model space and a schematic interaction [32,33].

A first step toward the simultaneous treatment of these five
degrees of freedom has been carried out recently with the
GCM mixing of angular-momentum projected quadrupole-
deformed axial mean-field states. This scheme is nowadays
routinely applied by several groups, using Skyrme energy
density functionals [34–36], the density-dependent Gogny
force [37–39], or a relativistic point-coupling model [40,41].
In all of those cases, intrinsic triaxiality is neglected and two
of the three Euler angles can be treated analytically.

All the studies mentioned so far that consider angular
momentum projection have in common the fact that this
operation is performed after variation. This has several
drawbacks [5], in particular when working with time-reversal
invariant mean-field states. The alternative, variation after
projection, is computationally very demanding. The only
standard method where variation after angular-momentum
projection is considered (together with restoration of N,Z,
and parity) is the VAMPIR/MONSTER approach [42,43],
which is confined to a very small shell model space and a shell
model effective Hamiltonian. In this framework, the intrinsic
dynamics is not described in terms of deformation degrees of
freedom, but rather in terms of quasiparticle excitations.

An approximate scheme to describe five-dimensional
quadrupole dynamics in a fully microscopic framework has
been set up long ago. The idea is to construct the input
of the Bohr Hamiltonian microscopically [5,20,44]. This
is an approximation to the full five-dimensional GCM as
it replaces the nonlocal kernels entering the Hill-Wheeler-
Griffin equation for nonorthogonal weight functions by local
potentials and mass parameters in a collective Schrödinger
equation for orthogonal collective wave functions, but it also
allows one to incorporate improved moments of inertia at a
moderate cost. This approach has routinely been used for a
long time in the framework of the density-dependent Gogny
force [45,46], and it has also been recently set up for Skyrme
interactions [47].

In this paper we present a first step toward a microscopic
treatment of triaxial quadrupole dynamics and of angular
momentum projection in the context of nuclear energy
density functional methods using the full space of occupied
single-particle states. The method employed generalizes that
described in Refs. [34–36] by allowing for the breaking of
axial symmetry of the mean-field wave functions.

II. THE METHOD

For a given nucleus, the calculations are performed in three
steps. First, a nonorthogonal basis of self-consistent mean-field
states is generated with constrained Hartree-Fock-Bogoliubov
(HFB) calculations. Second, angular-momentum and particle-
number projected matrix elements between all mean-field
states are calculated. Third, these matrix elements are used in
a configuration-mixing calculation to determine the correlated

ground state, the spectrum of excited states, and the transition
moments

The only inputs to the calculation are the proton and neutron
number and the parameters of a universal energy functional.
The latter are taken from the literature and obtained from
a global fit to nuclear properties aiming at the description
of the entire chart of nuclei, without local fine tuning. One
consistency requirement of our method is that the same
effective interaction is used to generate the mean-field states
and to calculate the configuration mixing. We chose a Skyrme
energy functional supplemented by the Coulomb interaction
in the mean-field channel, together with a zero-range, density-
dependent functional in the pairing channel.

We will give here, and in the Appendix, only a sketch of the
ingredients of the method. We postpone a detailed description
to a future paper on the generalization of the code to time-
reversal invariance breaking triaxial states.

A. The mean-field basis

The HFB equations are solved self-consistently with the
two-basis method of Ref. [48]. The quadrupole moment is
constrained through two coordinates q1 and q2, which are
related to the usual mass quadrupole deformations β and γ

of the Bohr Hamiltonian through the relations [49]

q1 = Q0 cos(γ ) − 1√
3
Q0 sin(γ ), (1)

q2 = 2√
3
Q0 sin(γ ), (2)

with

β2 =
√

5

16π

4πQ0

3R2A
, (3)

where R = 1.2A1/3 fm. A mesh of positive values for q1 and
q2 covers the entire first sextant of the β-γ plane. The mean-
field equations are solved on a three-dimensional mesh [49],
with the total nuclear density imposed to be symmetric with
respect to the three planes. Thus, all odd-l moments of the
density identically vanish whereas the even moments, which
are not constrained, are fully taken into account and take the
values that minimize the energy. All the wave functions that
we consider are, therefore, restricted to have positive parity.

For the results described in the following, the mean-field
wave functions are required to be time-reversal invariant, such
that the collective coordinates can be limited to one sextant
of the β-γ plane. The five other sextants correspond to one
or several permutations of the principle axes of inertia. After
projection and configuration mixing, all of them are equivalent,
although intermediate (nonobservable) quantities might differ.
This equivalence will be used as a test of the numerical
implementation of our method of Sec. III.

B. Projection

Restoring symmetries allows one to extract states with good
quantum numbers from the mean-field states and provides a
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clean framework to use selection rules for electromagnetic
transitions. Eigenstates of the particle-number operator are
obtained in the same way as previously [35,36]. From a
technical point of view, it is crucial to restore this symmetry
when mixing wave functions that are not eigenstates of
the particle-number operators. Since those wave functions
have only the right mean particle number, their transition
matrix elements will contain nondiagonal contributions in the
number of particles. One can estimate easily the error that this
symmetry breaking brings to energies. The binding energy
per nucleon of most nuclei is between 7 and 8 MeV/u and a
deviation of the particle number of a mixed state as small as 0.1
nucleons would affect its energy by several hundreds of keV.
Particle-number projection removes this ambiguity [22]. A
technically simpler approximate method would be to introduce
a constraint on the average value of the particle number N0 of
the mixed states in the Hill-Wheeler-Griffin equation [20,38],
but since the same value for this constraint has to be used for all
the eigenstates to maintain their orthogonality, the error on the
mean number of particles will vary from one state to another.
We always project on the proton and neutron numbers imposed
on the mean-field wave functions by Lagrange multipliers in
the mean-field equations. We, therefore, drop any reference to
particle numbers for the sake of simple notation.

Angular momentum projection is significantly more com-
plicated when triaxial mean-field states instead of axial ones
are considered. Eigenstates of the total angular momentum
operator in the laboratory frame, Ĵ 2, and its projection on the
z axis, Ĵz, with eigenvalues h̄2J (J + 1) and h̄M , respectively,
are obtained by applying the operator

P̂ J
MK = 2J + 1

16π2

∫ 4π

0
dα

∫ π

0
dβ sin(β)

∫ 2π

0
dγ DJ∗

MKR̂, (4)

where R̂ = e−iαĴz e−iβĴy e−iγ Ĵz is the rotation operator and
DJ

MK (α, β, γ ) is a Wigner function1 [50]. P̂ J
MK picks the

component with angular momentum projection K along the
intrinsic z axis. The projected state is then obtained by
summing over all K components of the mean-field state |q〉,

|JMκq〉 =
+J∑

K=−J

f J
κ (K) P̂ J

MK |q〉 =
+J∑

K=−J

f J
κ (K) |JMKq〉,

(5)

with weights f J
κ (K) determined by minimizing the energy

[5,6] (see the following). The number of values that the index κ

can take is restricted by the symmetries of the mean-field states
[13] (signature with respect to x and time-reversal invariance)
to J + 1 for even J values and J − 1 for odd J values.

Note that P̂ J
KM is not a projector in the strict mathematical

sense, but it has the properties P̂ J
KMP̂ J ′

M ′K ′ = δJJ ′δMM ′ P̂ J
KK ′

and (P̂ J
KM )† = P̂ J

MK [51].

1Alternatively, the integration intervals can be chosen as α ∈
[0, 2π ], β ∈ [0, π ], and γ ∈ [0, 4π ]. In any case, for systems with
integer J values as discussed here, the integration over [2π, 4π ] of
either α or γ gives just a factor of 2.

C. Mixing of states with different deformations

The fluctuations of the intrinsic deformation and the
resulting spreading of the nuclear states in the β-γ plane can be
described by a superposition of angular-momentum projected
states by using the two intrinsic quadrupole degrees of freedom
q as generator coordinates. Taking into account that one has
also to mix all K values for each deformation, one obtains a
resulting wave function given by

|JMν〉 =
∑

q

∑
K

FJ
ν (K, q)|JMKq〉. (6)

This corresponds to the discretized version of the GCM.
FJ

ν (K, q) is a weight function of the K components of the
angular-momentum projected states of intrinsic deformation
q, determined from

δ

δF J∗
ν (K, q)

〈JMν|Ĥ |JMν〉
〈JMν|JMν〉 = 0, (7)

which leads to the Hill-Wheeler-Griffin (HWG) Eqs. [52,53]∑
q ′

∑
K ′

[
HJ (K, q; K ′, q ′)

−EJ
ν IJ (K, q; K ′, q ′)

]
FJ

ν (K ′, q ′) = 0, (8)

with the energy and norm kernels

HJ (K, q; K ′, q ′) = 〈JMKq|Ĥ |JMK ′q ′〉, (9)

IJ (K, q; K ′, q ′) = 〈JMKq|JMK ′q ′〉. (10)

For the sake of simple notation, we have introduced the method
using a Hamilton operator Ĥ . We shall comment on the
procedure used to calculate the Hamiltonian kernels from an
energy density functional and discuss some problems this may
cause in Sec. II F.

The dimension of the variational space is considerably
increased by introducing triaxial deformation. One cannot
limit the angular momentum projection to K = 0, and several
K components for each deformation have to be mixed. This
has to be done with some care because of the high redundancy
of the GCM bases, in the K space for a given deformation on
the one hand and also for the whole set of deformations on
the other hand. For an efficient elimination of redundant states
we have chosen a four-step procedure. We start from a basis
|JMKq〉. First, we restrict the subspace for each deformation
q and angular momentum J by diagonalizing the norm kernel
IJ (K, q; K ′, q), rewritten in its significant subspace [13], and
neglecting eigenstates with negligible eigenvalues, typically
smaller than 10−3. Second, we solve the HWG equation in K

space within this new basis. The solutions |JMκq〉 are labeled
by an index κ , Eq. (5). The number of values that κ can take
for a given J depends on the deformation. It is just one for
axial states and even J values and is usually larger for triaxial
deformation. In a third step, we transform all matrix elements
to the new basis |JMκq〉 and diagonalize the norm matrix
IJ (κ, q; κ ′, q ′) in the combined κ and q space. Once more,
only significant eigenvectors of the norm matrix are retained.
Finally, the Hamiltonian kernel is diagonalized in the basis of
norm eigenstates to construct the weight functions FJ

ν (κ, q).
The final eigenstates |JMν〉, Eq. (6), mix all K and q values.
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They are then used to calculate all observables and transition
moments.

Note that our method is not restricted to the choice of the
triaxial quadrupole moment as a generator coordinate. This
choice is suggested by the importance of quadrupole correla-
tions in nuclei, but any other collective variable associated with
an even multipole moment could be additionally considered, at
the expense of having a larger mean-field basis. Including odd
multipoles, in particular octupole deformations, would require
a relatively simple generalization of the codes but cannot be
considered at present. However, some modes not related to a
shape degree of freedom, such as pairing vibrations, can be
included without modification of the numerics, as done earlier
without angular momentum projection in Refs. [28–30].

D. Electromagnetic matrix elements

Once the HWG equation is solved and the weight functions
FJ

ν (κ, q) are known, the expectation values and transition
moments of other observables Ô can be determined by starting
from the kernels 〈JMKq|Ô|JMK ′q ′〉 of the corresponding
operators. Some of them provide a good test of the accuracy
of symmetry restoration, which can be used to determine a
sufficient number of points for projection. The matrix elements
of the proton and neutron number operators, for example, are
equal to the required values with an absolute deviation lower
than 10−8, and they have a dispersion lower than 10−8 when
using a nine-point formula for the particle-number projection.

The symmetries of the unrotated time-reversal invariant
HFB states (time reversal and triaxiality) permit the reduc-
tion of the integration intervals for Euler angles to α ∈
[0, π/2], β ∈ [0, π/2], and γ ∈ [0, π ] (i.e., 1/16 of the full
8π2 integration volume for systems with integer spin). The
integrals over α and γ are discretized with a trapezoidal
rule, while for β we employ Gauss-Legendre quadrature. The
number of points in these intervals used for the results reported
in the following is 6 for α, 18 for β, and 12 for γ , which
corresponds to 24, 36, and 24 points in the full 8π2 integration
volume necessary for integer J values. With this discretization,
the calculated expectation values of the angular momentum
operators Ĵ 2 and Ĵz are accurate with an error of the order
10−4 for the values of J discussed here.

Since the restoration of rotational symmetry provides wave
functions in the laboratory frame of reference, one can compute
directly the expectation values and transition matrix elements
of electromagnetic operators. Besides mean-square radii and
E0 transition moments, we calculate spectroscopic quadrupole
moments and B(E2) values as well as magnetic moments and
B(M1) values. By combining projection and variational GCM
mixing of states with different mass quadrupole moments,
the B(E2) transition moments for in-band and out-of-band
transitions take the form

B(E2; J ′
ν ′ → Jν) = e2

2J ′ + 1

+J∑
M=−J

+J ′∑
M ′=−J ′

×
+2∑

µ=−2

|〈JMν|Q̂2µ|J ′M ′ν ′〉|2 (11)

and the spectroscopic quadrupole moments are given by

Qs(Jν) =
√

16π

5
〈JM = J ν|Q̂20|JM = J ν〉. (12)

The matrix elements of the electric quadrupole moment
operator Q2µ = e

∑
p r2

pY2µ(�p) that enter the B(E2) values
and Qs are calculated by using point protons with their
bare electric charge e. This approach is justified by the
following considerations. First, there is no empirical evidence
that electric moments are significantly modified by the in-
medium effects that are absorbed into the effective energy
functional but ignored for all other observables. Second, we
use the entire space of occupied single-particle states without
assuming an inert core. Third, the projected GCM, as a
“horizontal expansion” [54] of large-amplitude dynamics, can
be formulated such that the calculation of matrix elements
does not contain a sum over unoccupied states [20,22,55].
The absence of effective charges is an important feature of a
method aiming at a universal description of nuclei. The (at least
approximate) folding with the intrinsic charge distribution of
protons and neutrons to construct a charge density is important
for radii [1], but it plays no role for multipole moments when
accepting the current precision of our approach.

Both the B(E2) and Qs values scale with mass and
angular momentum. With triaxial shapes, however, one can
no longer define a dimensionless intrinsic deformation β2

that corresponds to a single Qs or a single B(E2) value,
as can be done in the axial case [35], as one needs two
independent observables (i.e., that are not within the same
band) to determine the deformation β2 and the angle γ [56].

Similarly, magnetic moments are given by

µ(Jν) = 〈J,M = J, ν|µ̂10|J,M = J, ν〉 (13)

and B(M1) values are obtained as

B(M1; J ′
ν ′ → Jν) = 3

4π

1

2J ′ + 1

+J∑
M=−J

+J ′∑
M ′=−J ′

×
+1∑

µ=−1

|〈JMν|µ̂µ|J ′M ′ν ′〉|2. (14)

The magnetic dipole operator µ̂ entering both expressions is
given by

µ̂ = g	,pL̂p + gs,pŜp + gs,nŜn, (15)

where �̂Lt and �̂St are the total orbital and spin operators
for protons and neutrons, t = p, n, and g	,p = 1 µN, gs,p =
5.585 µN , and gs,n = −3.826 µN are the g factors of protons
and neutrons in units of the nuclear magneton µN . Unlike
the electric moments, the spin contribution to the magnetic
moments is modified by the physics of short-range corre-
lations, which is resummed into the energy functional but
not explicitly considered in the wave functions. The spin g

factors are often quenched by an empirical factor to mock up
these effects. In the present paper, we start with time-reversal
invariant mean-field states for which the spins of conjugated
states exactly cancel each other. Although this is no longer
the case after mixing such states, particularly when projecting
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on angular momentum, the angular-momentum projected total
spin 〈JM = Jν|Ŝz|JM = Jν〉 remains a small correction of
a few percent to the dominating collective contribution from
orbital angular momentum when calculating the z component
of total angular momentum in the laboratory frame, 〈JM =
Jν|Ĵz|J M = Jν〉 = h̄J . This has two consequences. First,
we can ignore the subtlety of in-medium corrections to the
spin g factors for the time being. However, when projecting
and mixing cranked states at high spin or n-quasiparticle states
that might have significant open spin, this point will deserve
more attention. Second, the magnetic moments calculated for
the projected and mixed states discussed in the present paper
will be very close to the expectation value of the proton orbital
angular momentum 〈JM = Jν|L̂z,p|JM = Jν〉 in nuclear
magnetons.

E. Evaluation of kernels

The matrix elements that are needed to solve the HWG
equation and to calculate the electromagnetic properties of the
GCM eigenstates are matrix elements of tensor operators T̂λµ

of rank λ between particle-number and angular-momentum
projected states 〈q|P̂ N P̂ ZP̂ J

KMT̂λµP̂ J ′
M ′K ′ P̂ ZP̂ N |q ′〉. As at

present we consider only operators that commute with the
particle-number operator; the particle-number projector for the
left state can be commuted with T̂λµ and one only has to project
the right state on particle number. The angular-momentum
projection operator, however, does not commute with tensor
operators of rank different from zero. Still, the commutator
can be evaluated by using angular-momentum algebra to
obtain matrix elements with an angular-momentum projection
operator acting on the left state only:

〈q|P̂ J
KMT̂λµP̂ J ′

M ′K ′ |q ′〉

= 2J ′ + 1

2J + 1
(J ′λJ |M ′µM)

+J∑
k=−J

(J ′λJ |K ′,K ′ − k, k)

×〈q|P̂ J
Kk T̂λ,K ′−k|q ′〉. (16)

For a scalar operator T̂00, this simplifies to

〈q|P̂ J
KMT̂00 P̂ J ′

M ′K ′ |q ′〉 = δJJ ′δMM ′ 〈q|P̂ J
KK ′ T̂00|q ′〉. (17)

As a consequence, we have to evaluate matrix elements of the
form

〈q|R̂†(α, β, γ )T̂λµ eiφnN̂ eiφzẐ|q ′〉 = 〈L|T̂λµ|R〉, (18)

where |q〉 and |q ′〉 are HFB states with possibly different
intrinsic deformations, and |L〉 and |R〉 are the HFB states
rotated in coordinate and gauge space, respectively. Key
elements of the evaluation of these kernels are outlined in
the Appendix.

F. Configuration mixing using energy functionals

For the sake of simplicity, we have outlined the projected
GCM using a many-body Hamilton operator. In practice,
however, an energy density functional is used in a form
postulated by analogy with the Hamiltonian case [20,57].

In this procedure, the multi-reference (MR) energy density
functional (EDF) is obtained by replacing the density matrices
in the single-reference energy functional by the transition den-
sity matrices as they appear when transition matrix elements
of a Hamilton operator are evaluated with the generalized
Wick theorem [5,20,58]. The terms in the Skyrme EDF
that contain time-odd densities are treated as described in
Appendix C of Ref. [20] and give a small contribution to
the nondiagonal kernels. The density-dependent terms are
generalized by using the standard prescription that the density
is replaced by the transition density in the density-dependent
terms. This is the only prescription that guarantees various
consistency requirements of the energy functional [38,59].
However, this procedure may lead in some cases to problems
that have become evident recently [60,61]. Discontinuities or
even divergences of the energy kernel may indeed appear
as a function of deformation. A regularization scheme has
been proposed [62] and applied to a simple case of MR-EDF
calculations [63]. However, it cannot be applied to the standard
form of the Skyrme and Gogny interactions [64]. We leave this
problem to be addressed in the future and stick to a standard
Skyrme energy functional, as done in our earlier studies.

III. 24MG AS AN ILLUSTRATION

The main features of our method are exemplified by a
calculation for 24Mg. We use the parametrization SLy4 [65]
of the Skyrme + Coulomb energy density functional for
the particle-hole channel of the effective interaction, sup-
plemented by a zero-range density-dependent pairing energy
functional [66]. A soft cutoff around the Fermi energy is used
when solving the HFB equations as introduced in Ref. [67].

Figure 1 provides as a reference some key results from
an axial calculation as a function of the dimensionless mass
quadrupole deformation given through Eq. (3). In this figure,
oblate shapes are labeled by negative values of β2. On the top
part we compare the variation of the energy with deformation
obtained by projecting on particle numbers N and Z only
(solid line) and by projecting on particle number and on
J = 0 (dotted line). In the bottom part, the Nilsson diagram
of eigenvalues of the proton single-particle Hamiltonian is
shown. The Nilsson diagram for neutrons is nearly identical
to the one for protons, except for a global shift owing to the
absence of the Coulomb potential. The projection on J = 0
significantly increases the energy gain from deformation. The
mean-field configuration corresponding to the minimum also
has a significantly larger prolate deformation after projection
than before. After projection, the axial minimum corresponds
to the intrinsic deformation where the Z = N = 12 gap in the
Nilsson diagram is largest. The Nilsson diagram indicates also
that there are only very few level crossings in the interesting
region of deformations.

A. Triaxial energy maps

Three (β, γ ) deformation energy surfaces for 24Mg are
displayed in Fig. 2. All energies are normalized to the energy of
the spherical configuration. A projection on particle numbers
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FIG. 1. (Color online) Lower panel: Nilsson diagram of the
eigenvalues of the proton single-particle Hamiltonian for axial shapes.
Solid lines denote levels with positive parity, dotted lines levels with
negative parity, and the red dashed line the Fermi energy. Upper
panel: Particle-number projected (solid line) and particle-number and
angular-momentum J = 0 projected (dotted line) axial deformation
energy curves.

N and Z is performed for all three panels; it is combined
with a projection on the angular momentum J = 0 in the
middle panel and on J = 2 and K = 0 on the lower one.
Several comments on the interpretation of the deformation
energy surfaces are in order. First, the coordinates β2 and γ

are not related to any matrix element in the angular-momentum
projected energy surfaces but merely provide a label for the
intrinsic state from which the projected energy is obtained.
All states projected on J = 0 are spherical in the laboratory
frame. Second, neither the mean-field nor the projected states
are orthogonal, such that the energy maps do not and cannot
represent the actual metric, which is related to the inverse of the
respective overlap matrix. Finally, the J = 2,K = 0 surface
depends on the orientation chosen for the principal axes of the
nucleus. The quadrupole moment along the z axis is the largest
one in Fig. 2. We shall show later that the K = 0 results have
no obvious interpretation for other choices.

Starting with the energy surface without angular-
momentum projection, one sees that the mean-field ground
state corresponds to an axial prolate deformation, more bound
than the spherical configuration by about 700 keV. Comparing
with the axial energy curve given as a solid line in the upper
panel of Fig. 1, one notices that the prolate minimum is indeed
a true one but that the oblate extremum seen in Fig. 1 is a saddle
point in the γ direction. A qualitatively similar deformation
energy surface was found in HF + BCS calculations with the
Skyrme interaction SIII in Ref. [68] and in HFB calculations
with the Gogny force D1 in Ref. [69].

The projection on J = 0 favors triaxial configurations:
The lowest energy is obtained for a triaxial mean-field

FIG. 2. Triaxial quadrupole energy maps obtained by projecting
mean-field configurations on N and Z only (top) and also either on
J = 0 (middle) or on J = 2 and K = 0. In the latter case, the z axis
is chosen as the symmetry axis. Filled circles denote minima; the
⊗ symbols denote saddle points. All energies are normalized with
respect to the energy of the particle-number projected spherical state.

configuration with γ ≈ 16◦ and a value for β2 around 0.6,
similar to that of the axial mean-field state giving the lowest
J = 0 projected energy. Before projection, these two states
were separated by 2.2 MeV. The energy gain for the triaxial
point is 3.1 MeV larger than that of the axial point. This
difference is thus large enough to compensate for the difference
in energy between the mean-field configurations. However,
this result has to be taken cum grano salis as the deformation
has a limited meaning after projection. In particular, the states
resulting from the projection on the same J value of mean-field
configurations corresponding to different quadrupole moments
may have a large overlap. The states with the lowest energy
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obtained after projection of axial and triaxial configurations
have an overlap close to 0.9. 24Mg is one of the few light
nuclei with a deformed mean-field ground state when pairing
correlations are taken into account. In this small system,
however, the static quadrupole correlation energy (i.e., the
deformation energy of the mean-field ground state) is much
smaller than the dynamical quadrupole correlation energy
obtained from projection and mixing of states with different
intrinsic shapes; this is a general feature of light nuclei with
A < 100 [70].

The projection on J = 2,K = 0 leads to an energy map
whose interpretation is more difficult than that for J = 0. The
orientation of the nucleus that is chosen gives this energy map
some meaning in the interpretation of the first 2+ level, whereas
the second 2+ state belongs mainly to the map corresponding
to K = 2. The topography of the J = 2,K = 0 map is quite
similar to, but slightly flatter than, that of the J = 0 energy
map.

We will not show here the deformation energy surfaces
for higher J and K values. When starting with time-reversal
invariant mean-field states, the angular-momentum projected
energy surfaces for all even values of J and K �= 0 are infinite
at γ = 0◦ and degenerate with the K = 0 surface of the
same J for γ = 60◦, which we will exemplify for one oblate
configuration in the next section. As a consequence, K mixing
becomes usually much stronger when going from prolate to
oblate shapes with increasing γ . For odd values of J , there is
no K = 0 component, and the energy surfaces for finite K are
infinite at both γ = 0◦ and γ = 60◦.

These findings are consistent with what has been seen
before. Many even-even nuclei have a quadrupole-deformed
mean-field ground state with a substantial energy gain that
might be as large as 25 MeV in very heavy nuclei [70].
The corresponding shape in the intrinsic frame, however,
remains axial in most cases. Triaxial ground-state deformation
is rare at the mean-field level, and the additional energy gain
from nonaxial deformation is usually quite small compared
to the deformation energy of the axial minimum or saddle
in the same nucleus [69,71–74]. Triaxiality, however, plays
an important role for high-spin states when described in
mean-field approaches [75,76]. The situation changes when
going beyond the mean field. It is well known that projection
on good quantum numbers favors the breaking of the cor-
responding symmetries in the underlying mean-field states:
For a nucleus with a spherical minimum in the mean-field
deformation energy surface, angular-momentum projection
on J = 0 results in a deeper minimum at slightly deformed
shapes [70], as first noticed by Dalafi [77]; for a nucleus with an
axial minimum of the mean-field energy surface, the minimum
of the J = 0 angular-momentum projected energy surface is
slightly shifted into the triaxial plane, as has been demonstrated
by Hayashi et al. [11].

B. Angular-momentum projection of a single triaxial HFB state

1. The role of the orientation in the intrinsic frame

Scalar quantities such as the overlap and the energy kernels
of the GCM do not depend on the orientation of the projected
state in the laboratory frame (i.e., on its angular momentum

projection M). Moreover, final results do not depend on
the orientation of the mean-field state in its intrinsic frame
when time-reversal invariance is preserved. This equivalence,
however, is only obtained after K mixing. This provides
the opportunity to analyze the role of K mixing for the
projection of states with the same intrinsic deformation but a
different orientation of their principal axes. It also constitutes
an excellent test of the numerical accuracy of the projection
scheme that we have developed.

There are six possible ways to orient a triaxial nucleus in
its intrinsic frame in such a way that the major axes of the
intrinsic quadrupole moment coincide with the axes of the
intrinsic coordinate system. These six possibilities correspond
to the six sextants of the β-γ plane. Owing to the particular
role played by the intrinsic z axis in the angular-momentum
projector [Eq. (4)], results are invariant under exchange of the x

and y axes such that they give pairwise the same decomposition
|JMKq〉. It is, therefore, sufficient to consider the intrinsic
z axis coinciding with the longest, intermediate, or shortest
axis of the triaxial state, without specifying the orientation
of the other two axes. The results for excitation energies and
B(E2) values obtained for the three possible orientations of
the nucleus are presented in Fig. 3; key numbers for excitation
energies are repeated in Table I. When the intrinsic long axis is
chosen along the z axis (left panel), K mixing has a small effect
and a clear connection can be made between the K = 0 and the
K = 2 bands and the ground-state and γ bands after mixing.
The differences between the results before and after K mixing
are due to the nonorthogonality of the states |JMKq〉 with the
same J and M values but different K, which is removed in the
orthogonal basis |JMκq〉. This orthogonalization pushes up
the second 4+ state by 1 MeV. The dominating in-band B(E2)
values are similar before and after K mixing, whereas the
much smaller out-of-band B(E2) values change substantially.

TABLE I. Excitation energies after decomposition of the mean-
field state that gives the minimum of the J = 0 projected energy
surface into angular-momentum projected components |JMKq〉
and after K mixing into |JMκq〉 for three different orientations
of the same triaxial state in the intrinsic frame, corresponding to
Fig. 3.

Decomposition K mixing

J K 104◦ 136◦ 16◦ κ 104◦ 136◦ 16◦

0 0 0.00 0.00 0.00 1 0.00 0.00 0.00
2 0 4.86 3.86 1.83 1 1.84 1.83 1.83

2 2.21 2.40 7.07 2 7.24 7.25 7.24
3 2 9.63 9.62 9.61 1 9.63 9.62 9.61
4 0 9.85 7.68 5.45 1 5.47 5.44 5.44

2 7.89 6.66 10.29 2 11.39 11.35 11.34
4 6.31 6.63 16.56 3 – – –

5 2 18.34 16.14 14.52 1 14.47 14.42 14.42
4 14.85 14.82 20.53 2 – – –

6 0 15.59 14.82 11.09 1 11.11 11.08 11.06
2 14.14 12.84 14.27 2 17.25 17.38 17.18
4 13.75 11.94 20.58 3 – – –
6 11.95 12.94 29.26 4 – – –
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FIG. 3. Excitation spectra and selected B(E2) values after decomposition of the mean-field state that gives the minimum of the J = 0
projected energy surface into angular-momentum projected components |JMKq〉 (left) and after K mixing into |JMκq〉 (right) for three
different orientations of the same triaxial state in the intrinsic frame.

The situation is quite different when the triaxial mean-field
state is orientated in such a way that the z axis is not the longest
one. The energies and transition probabilities obtained before
K mixing have no obvious correspondence with the K-mixed
results. In particular, the B(E2) values without K mixing are of
similar size for in-band and out-of-band transitions. However,
both Fig. 3 and Table I clearly indicate the independence
of the results from the orientation of the mean-field state
after K mixing. Note that the 3+ level is not affected by K

mixing; as with good time-reversal invariance, there is only
one independent nonzero K component with K = 2.

Figure 4 presents the decomposition of the norm of the same
states as in Fig. 3 in components with different total angular
momenta J ,

c2
J =

+J∑
K=−J

〈q|P̂ J
KK |q〉, (19)

summed over all possible values of K; Fig. 5 shows the de-
composition into components with different intrinsic angular

FIG. 4. Decomposition of the mean-field state that gives the
minimum of the J = 0 projected energy surface into components
of same angular momentum J , Eq. (19). The results obtained
from the different possible orientations in the intrinsic frame are
undistinguishable.

momentum projection K ,

c2
K =

∑
J � |K|

〈q|P̂ J
KK |q〉, (20)

summed over all possible values of J for a given value of
K . The underlying state |q〉 is assumed to be particle-number
projected and normalized. As we always choose an orientation
of the triaxial state |q〉 where the intrinsic z axis coincides with
one of the principal axes, the components of opposite K have
the same weight c2

+K = c2
−K . Furthermore, all components

with an odd value of K are zero for all values of J .
The decomposition of a triaxial mean-field state into

components with different J values in the laboratory frame
should be independent of its orientation in the intrinsic frame,
which is indeed the case within the resolution of Fig. 4.
The plot suggests a separation of the coefficient c2

J into two
distinct curves: one for even values of J , which dominates
the decomposition and peaks for J = 2, and a second much
weaker one for odd values of J , which peaks at J = 3.
(When decomposing a time-reversal invariant state, there is no
component with J = 1 for symmetry reasons.) Increasing the
deformation of the intrinsic state modifies the c2

J distribution

FIG. 5. Decomposition of the mean-field state that gives the
minimum of the J = 0 projected energy surface into components
of same K , Eq. (20), for three different orientations of the state in the
intrinsic frame.
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such that the peaks of the distributions for even and odd J are
shifted toward larger values of J .

By contrast, the decomposition of the same triaxial intrinsic
state into its K components depends strongly on its orientation,
which underlines that K is not an observable quantity. The
distribution of K components is quite narrow when the long
axis of the intrinsic state coincides with the z axis, and it
becomes broader when the intermediate or even short axis
is chosen instead. The different distributions in K space
indicate that the numerical convergence of angular-momentum
projection is not the same for all possible orientations of the
mean-field state. The accurate determination of components
with large K values requires many integration points for the
Euler angles α and γ ; hence, it is more favorable to orient
the mean-field wave function with its z axis along the long
axis. The sum over all c2

J coefficients should be equal to the
sum over all the c2

K ones and equal to 1. There is, in practice,
a slight numerical deviation of the order of 10−5, which can
be attributed to high-J and high-K components requiring a
higher number of integration points than have been used here.

2. Decomposition of an oblate HFB state

A further test of our method is given by the projection of an
oblate mean-field configuration, for which the symmetries of
our codes allow two distinct orientations in its intrinsic frame:
The z axis can be either the symmetry axis or perpendicular to
it. Using the properties of the transformation of the operator
P̂ J

MK under rotation, one can show that a pure K = 0 state is
transformed into a multiplet of states with K between 0 and
J . However, the transformed wave functions differ only by an
unobservable phase and are degenerate. An example is given in
Fig. 6 for the mean-field state with mass quadrupole moment
Q0 = 80 fm2, which gives the axial oblate saddle point of
the J = 0 projected energy surface. When using the z axis

FIG. 6. Excitation spectra and selected B(E2) values after de-
composition of the mean-field state that gives the axial oblate saddle of
the J = 0 projected energy surface into angular-momentum projected
components |JMKq〉. The left panel provides the decomposition
when choosing the z axis as the symmetry axis, γ = 180◦. The
middle panel gives the decomposition into K components when the
symmetry axis is chosen perpendicular to the z axis. The right panel
shows the unique band resulting from K mixing (see text).

TABLE II. Spectroscopic quadrupole moments obtained from
projection without and with K mixing compared with values
obtained from the asymmetric rotor model. In this latter case, the
intrinsic charge quadrupole moment Q0,p = 63.45 e fm2 (βp =
0.583) and γ = 16.1◦ value of the triaxial HFB state are used as
input.

Quantity No mixing K mixing Rotor

Qs(2
+
1 )(e fm2) −19.1 −18.7 −17.0

Qs(2
+
2 )(e fm2) 20.0 18.1 17.0

B(E2, 2+
1 → 0+

1 )(e2 fm4) 94.9 95.7 75.5

B(E2, 2+
2 → 0+

1 )(e2 fm4) 15.9 5.2 4.6

B(E2, 2+
2 → 2+

1 )(e2 fm4) 8.4 26.4 14.3

B(E2, 3+
1 → 2+

1 )(e2 fm4) 11.6 10.0 8.3

B(E2, 3+
1 → 2+

2 )(e2 fm4) 146.4 165.4 134.7

as symmetry axis, as was done in axial calculations [34–41],
the projection decomposes the mean-field state into a single
rotational band of K = 0 states; all other K components have
zero norm. When orienting the intrinsic state such that the
z axis is perpendicular to the symmetry axis, as done at γ =
60◦ in the β-γ plane, all even K components |JMKq〉 up to
K = J are nonzero for each J . When constructing the |JMκq〉
states, however, the diagonalization of the norm matrix gives
only one nonzero eigenvalue per even J , and one ends up
with the same rotational band as obtained by exploiting the
symmetry of the intrinsic state.

3. Comparison with the asymmetric rotor model

The spectroscopic quadrupole moments and B(E2) values
obtained by the projection of a triaxial mean-field state are
mainly determined by its geometry. This property is illustrated
in Table II where we compare the values obtained by projecting
the same triaxial mean-field state as in Fig. 3 to those calculated
with the asymmetric rotor model introduced by Davydov
and co-workers [78,79], using the intrinsic proton quadrupole
moment Q0,p = 63.45 e fm2 (βp = 0.583) and γ = 16.1◦ as
input. The agreement is excellent and, in practice, improves
with deformation.

C. Configuration-mixing calculations

1. Selection of the mean-field basis

As a last step, we perform a mixing of states obtained by
projecting on particle-number and angular-momentum mean-
field wave functions covering the full β-γ plane. Specifically,
the results will be analyzed by comparing the spectra and
transition probabilities obtained in calculations using four
different subspaces of states:

(i) a basis of “prolate” axial states, comprising the four
deformations (q1, q2) = (80, 0), (120, 0), (160, 0), and
(200, 0) fm2;
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(ii) a basis of “axial” states, where two oblate deformations
(q1, q2) = (0, 80) and (0, 120) fm2 are added to the
prolate basis;

(iii) a basis of six “triaxial” mean-field configurations
(80, 40), (120, 40), (160, 40), (200, 40), (80, 80), and
(120, 80) fm2;

(iv) a basis labeled “full” where, depending on J , two to four
states of the prolate basis are added to the triaxial basis.

For the full basis, we have added for each J value the largest
possible number of axial points to the triaxial basis. We
have excluded from the GCM calculations those deformed
states that are situated in a region affected by the difficulties
mentioned in Sec. II F. This region spreads from small
deformations around the spherical point to a region with
larger deformations between the oblate axis and γ ≈ 50◦. This
restriction does not permit the mixing of triaxial and oblate
axial states.

For 24Mg, the number of axial states that can be added to
the set of triaxial states is not large, just two to four, depending
on the value for J . Redundancies appear very quickly in the
norm kernel when more states are added to the nonorthogonal
basis. This very small number of nonredundant states is a direct
consequence of the very few level crossings visible in Fig. 1;
even states with quite different intrinsic deformation might
have a very similar single-particle spectrum. This feature is
illustrated in Fig. 7, where the eigenvalues of the J = 0 norm
kernel are plotted as a function of the number of states included
in the configuration-mixing calculation. We start on the left of
the figure with the eigenvalues of calculations performed in the
prolate and axial bases. The addition of oblate configurations
to the prolate set brings one large eigenvalue, close to 1, and
another one around 10−2. The range of values obtained for a
purely triaxial set is very similar to the axial set, although both
bases have no vectors in common. Starting from the initial set
of triaxial points, prolate points are added one after the other.
There is, thus, one more eigenvalue after each addition and the
trace of the norm, which is equal to the number of discretization
points, is increased by 1. One can see that this increase of
the trace is mainly distributed among the largest eigenvalues,
which increase slightly. Each time, a new eigenvalue around
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FIG. 7. Variation of the eigenvalues of the J = 0 norm kernel
among different bases.

FIG. 8. (Color online) Deformation energy curve projected on
N and Z (black) only and projected also on J = 0 (red) for three
different values of γ , as indicated. The energies of the J = 0 GCM
ground state obtained from the axial, triaxial, and full bases as
described in the text cannot be distinguished within the resolution
of the plot and are represented by the same filled diamond plotted
at arbitrary deformation. All energies are normalized to that of the
spherical particle-number projected state.

5 × 10−3 also appears, or an even smaller one when the fourth
axial point is added. Although these changes are very small,
the effect of the coupling between axial and triaxial states on
all observables is not completely negligible.

2. Ground-state correlation energy

We have shown in Fig. 2 that the angular-momentum
projection changes the topography of the J = 0 deformation
energy surface and generates a minimum for the projection
of a triaxial configuration. This result is illustrated further in
Figure 8 where the variation of the energy along three cuts in
the β-γ plane is plotted. The first curve corresponds to prolate
deformations, γ = 0◦, the second to oblate ones, γ = 60◦,
and the third to a cut along γ = 16◦. Results obtained with
and without projection on J = 0 are given. The big diamond
covers the range of the GCM energies obtained by using the
axial, triaxial, and full bases. The lowest energy corresponds
to a prolate configuration in the nonprojected calculation, with
triaxial energies always much larger than the prolate and oblate
ones. After projection on J = 0, the triaxial curve is below the
prolate one for a large range of deformations and the abso-
lute minimum corresponds to a triaxial configuration about
800 keV more bound than the axial saddle point. However,
the total energy gain obtained by mixing axial configurations
is larger than that from the projection of a single triaxial
configuration. Moreover, there is only a 35 keV difference
between the energies obtained by the mixing of triaxial
configurations and a further gain of 160 keV in the largest
possible set of axial and triaxial configurations.

This result puts a limit on the meaning of “rotational”
and “vibrational” energies in the ground state: What appears
to be “vibrational” energy in a projected axial quadrupole
GCM is transformed into “rotational” energy in a projected
GCM including triaxial states. At the same time, this result is
rather encouraging as it brings the hope that the ground-state
correlation energies are rapidly saturating when more than
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TABLE III. Comparison between the theoretical excitation energies in MeV and spectroscopic quadrupole
moments in units of e fm2 and the experimental values taken from Ref. [81].

Level Eex Qs

Axial Triaxial Full Expt. Axial Triaxial Full Expt.

2+
1 2.24 1.87 1.97 1.37 −17.1 −19.6 −19.4 −16.6(6)

4+
1 5.88 5.44 5.57 4.12 −25.1 −26.1 −26.0

2+
2 7.69 6.88 6.99 4.24 9.9 17.1 16.6

3+
1 – 9.59 9.74 5.24 – −0.1 −0.1

4+
2 13.29 11.12 11.28 6.01 9.0 −7.3 −7.4

0+
2 7.53 8.79 7.520 6.42 0.0 0.0 0.0 0.0

the restoration of symmetries on the axial mode is included.
Hagino et al. [80] arrived at a similar conclusion while studying
the ground-state correlation energy in an exactly solvable
model that simulates collective quadrupole motion. Of course,
systematic realistic calculations, in particular for heavier
nuclei, are needed before a general rule can be established.

3. Excitation spectrum

The excitation spectra obtained in three different GCM
bases are given in Fig. 9 and Table III. Table III also lists
results for spectroscopic quadrupole moments, and the B(E2)
values for the most important transitions are given in Fig. 9.
Experimental data are taken from Ref. [81] in both cases,
and 5.940 × 10−2A4/3 e fm4 = 4.11 e fm4 is used for the E2
Weisskopf unit.

The spacing of levels, the relative strength of B(E2) values,
and the K content of the collective wave functions suggest a
separation of the low-lying spectrum into three bands: the
�J = 2 ground-state band dominated by K = 0 components,
a �J = 1 γ band dominated by K = 2 components, and a
third band that is again dominated by K = 0 components.

As already mentioned, the GCM ground-state energy is
quite close in the purely axial and purely triaxial calculations,
but it is 160 keV lower in the full calculation that combines
triaxial and axial states. All excited levels, except the 0+

2 one,
are lower in the triaxial basis than in the axial one. Adding
prolate axial states to the triaxial basis mainly lowers the
energy of all 0+ levels, pushing up levels with other values
of J . The spectroscopic quadrupole moments Qs and B(E2)
values, however, are not significantly affected.

The most significant difference between the axial and
triaxial calculations concerns the first excited band, which
is clearly a γ band in the triaxial basis. Odd-J levels are of
course absent from the first excited band in the axial basis but
some of the features of a γ band are already hinted in this
band dominated by oblate configurations. In particular, the
B(E2) value for the transition from the 4+

2 to the 2+
2 level is

very close to that of the triaxial calculation. This identification
of the projection of an oblate state to a γ band was already
suggested in Sec. III B2. However, K mixing does not bring
any gain in energy in the projection of an oblate state since the
relative weights of the K components are fixed by symmetry
relations, whereas they are free to vary in the projection of
triaxial states. The gain in energy brought by the inclusion of

<

FIG. 9. Excitation spectra and B(E2) values in e2 fm4 obtained in three of the bases defined in the text compared to the available experimental
data. In the four cases, the spectrum is subdivided into a ground-state band, a γ band, and additional low-lying states that do not necessarily
form a band.
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TABLE IV. Overlaps between the GCM wave functions obtained
in calculations using different sets of mean-field states. The two
results marked by asterisks indicate that the number given represents
the overlap between the second prolate and the third triaxial or full
2+ excited states.

Triaxial Full

Prolate Axial Prolate Axial

0.97 0.99 0.97 0.99
J = 0 0.89 0.94 0.96 0.97

0.16 0.93 – 0.96

0.97 0.98 0.97 0.98
J = 2 0.21 0.86 0.23 0.88

0.88∗ 0.82 0.88∗ 0.81

triaxial configurations is evident when looking at the energies
and the spectroscopic quadrupole moment (Table III), which
change drastically when going from the axial to the triaxial
calculation.

The inclusion of triaxial deformations has also a strong
effect on the energies of the levels in the second band. The
excitation energy of the 2+

2 level is lowered by nearly 1 MeV,
and that of the excitation energy of the 4+

2 level even more.
Altogether, the inclusion of triaxial mean-field states brings the
right tendency to make the spectrum more compact and brings
it closer to the experimental data. It remains to verify whether
the use of time-reversal invariance breaking HFB states will
add the extra gain of energy required to bring the states with J

different from 0 closer to the experimental levels. In particular,
the odd-J states in the γ band still have excitation energies
that are much too high.

To analyze further the equivalence of and differences
between the bases that we have used, the component of the
triaxial and full bases that are included in the prolate and axial
bases are given in Table IV. These overlaps, 〈JMν|JMµ〉, can
be easily calculated by using the FJ

ν (κ, q) and the norm kernels
I(κ, q; κ ′, q ′). A bit surprisingly, the differences between the
collective ground-state wave functions obtained within the
axial and full bases are very small, the overlap with the prolate
basis being slightly lower but still quite high. The second 0+
state is not as well described by the prolate basis and the third
one state is missing in this basis. Note that the difference
between the axial and full ground-state wave functions is
still larger than the energy differences between these states
(0.16 MeV out of a total energy of around 200 MeV).

The first 2+ state has the same structure in all bases.
In contrast, the second 2+ state of the axial and full bases
is not described by the prolate basis. Although the overlap
between the 2+

2 states in the axial and full bases is close
to 0.9, the excitation energy is lowered by 800 keV when
triaxial configurations are included. This confirms our previous
interpretation that the mixing of prolate and oblate axial states
can, to some extent, simulate states with K �= 0, but not fully.

In the N = Z nucleus 24Mg, all calculated magnetic
moments are just a few percent larger than ZJ/(N + Z) =
J/2 in nuclear magnetons. This is a consequence of (a) the
time-reversal symmetry that we impose on the underlying HFB

TABLE V. Comparison between theoretical and experimental
B(M1) values in units of µ2

N . Data are taken from Ref. [81].

Transition B(M1)

Axial Triaxial Full Expt.

2+
2 → 2+

1 4 × 10−6 3 × 10−6 3 × 10−6 1.6 × 10−5(14)
3+

1 → 2+
1 – 2 × 10−7 1 × 10−7 3.8 × 10−5(20)

3+
1 → 2+

2 – 4 × 10−5 4 × 10−5 6.2 × 10−4(30)

states as explained in Sec. II D and of (b) the fact that protons
and neutrons have nearly the same contribution to the angular
momentum in this N = Z nucleus. The calculated magnetic
moments agree well with the available experimental ones [81]
for the 2+

1 , 4+
1 , 2+

2 , and 4+
2 states within the experimental error

bars.
The calculated and experimental B(M1) values are com-

pared in Table V. Data are taken from Ref. [81] where
1.790 µ2

N is used for the M1 Weisskopf unit. The values
that we obtain are about one order of magnitude too small,
which clearly indicates that the projected currents and spin
densities are underestimated. Starting from time-reversal
breaking mean-field states instead of time-reversal invariant
ones as done here can be expected to increase the B(M1)
values.

IV. SUMMARY AND OUTLOOK

A generalization of a method that enables the mixing of
projected mean-field states that was previously limited to
axial configurations has been set up to allow for a description
of the full five-dimension quadrupole dynamics. Compared
to a GCM calculation limited to projected axial quadrupole
deformed states, the present method allows for a spreading of
the collective states into the β-γ plane. In the case of 24Mg, we
have shown how the spectroscopic properties of the low-lying
states are affected. One can summarize our main results as
follows:

(i) When looking at the projection of a single configuration,
the energy obtained for the ground state is significantly
lowered when allowing for triaxial quadrupole deforma-
tion.

(ii) If one considers at the same time the correlation energy
from symmetry restorations and configuration mixing,
the total energy difference between the ground state
obtained within an axial and a triaxial mean-field basis
is quite small. This indicates that the nondiagonal matrix
elements between prolate and oblate axially deformed
mean-field states bring a large fraction of the correlation
energy that is obtained by the projection of triaxial
configurations between them. This puts a limit on the
meaning of rotational and vibrational energies, as what
appears to be “vibrational” energy in the projected
quadrupole GCM of axial states is transformed into
“rotational” energy in a projected GCM including triaxial
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states. Of course, this result will have to be confirmed by
studies in other nuclei.

(iii) This finding is also supported by the analysis of the
spectrum of eigenvalues of the norm matrix, where
adding triaxial states does not introduce states with large
eigenvalues to the space of 0+ states.

(iv) For higher J values, the situation is more complex.
However, including triaxial deformations lowers the
excitation energies and brings the spectrum closer to
experiment.

On the basis of this analysis, one can draw some conclusions
about the effect of triaxial deformations:

(i) Their effect on masses seems marginal and it is reas-
suring in some way: If one can confirm that triaxial
deformations increase binding energies by only around
100 to 200 keV, it would be justified to avoid the
complexities from their introduction in systematic mass
calculations.

(ii) The gain of energy on excited states partly cures a prob-
lem common to all projected GCM calculations based
exclusively on axial mean-field states. However, further
improvements are still necessary, including the breaking
of time-reversal invariance and the consideration of the
projection of cranking states optimized for each angular
momentum. The breaking of axiality is a necessary first
step before the breaking of time-reversal invariance and
we hope to validate the extension of our method in this
case in the near future.

(iii) The power of our method will be more apparent
when breaking of time-reversal invariance is included.
Although some new states can already be described at
the present level of development (e.g., odd-J members
of K �= 0 bands), it will be possible to describe quasi-
particle excitations and in particular nuclei with an odd
number of neutrons or protons.

(iv) Our method also provides an ideal tool to benchmark
simpler models. To give only one example, the metric
of the β-γ plane is generated directly in our method
by the overlaps between mean-field wave functions of
different shapes. Although it is not trivial to derive this
metric in a multidimensional problem, as was done in
Ref [20] for the one-dimensional case, it would be very
instructive to compare a metric derived from a purely
microscopic approach to the metrics that are usually
based on semiclassical approximations.

There are no basic reasons that prevent the application of
the method presented here to heavy nuclei, although this
would be too time consuming with our current numerical
implementation. Further developments are required to improve
the efficiency of the numerical algorithms. In particular, the
choice of discretization points used to evaluate the integrals
over the Euler angles needs to be optimized and the codes have
to be parallelized, which could be done in a very efficient way.
Work in that direction is underway.

Another development that will have to be completed in
the near future is the implementation of the regularization
scheme proposed in Ref. [62] to remove the pathologies

brought by the use of the generalized Wick theorem when
evaluating the energy kernels starting from an energy density
functional. However, the conceptual and technical difficulties
encountered in the present generalization of the projected
GCM justify the continuation of the present developments in
parallel. Considerable work at the level of the computational
algorithm still remains to be performed to have a method
applicable to heavy nuclei.
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APPENDIX: COMMENTS ON THE NUMERICAL
EVALUATION OF THE KERNELS

A. Self-consistent mean-field calculations

The mean-field states are generated with a simplified ver-
sion of the cranked HFB code whose evolution is documented
in Refs. [48,66,68]. We have imposed time-reversal invariance
of the HFB vacua such that the single-particle wave functions
are pairwise connected by time reversal. The single-particle
wave functions are represented as complex spinors discretized
on a three-dimensional Cartesian Lagrange mesh in coordinate
space. In addition to time reversal, two further symmetries
of the DT D

2h symmetry group [82,83] are imposed on the
single-particle basis, namely that they are eigenstates of the
parity P̂ and z signature R̂z. Their relative phases are fixed by
choosing a basis where the eigenvalue of the y time simplex
ST

y is +1 for all single-particle states. This introduces three
plane symmetries and allows us to restrict the numerical
representation of individual wave functions to 1/8 of a full
box [68]. In addition, the single-particle states are chosen to
have good isospin projection (i.e. they are either pure proton
or neutron states).

Mean-field states with different deformation are obtained
by adding constraints on q1 and q2 as defined in Eq. (1) in the
variation. The constrained HFB equations are solved by using
the “two-basis method” described in Ref. [48], which delivers
the HFB states |q〉 through quite a small number of single-
particle states represented in coordinate space in the so-called
Hartree-Fock (HF) basis that diagonalizes the single-particle
Hamiltonian and the corresponding U and V matrices that
establish the general Bogoliubov transformation [5,7,18] from
the HF basis to the quasiparticle basis that diagonalizes the
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quasiparticle Hamiltonian. This procedure permits us to limit
the numerical representation to all single-particle levels below
the Fermi energy and to a small number of levels above. As
done in our earlier configuration-mixing calculations, we add
the Lipkin-Nogami (LN) prescription to the HFB equations
to enforce pairing correlations in all mean-field states. Using
states without pairing in a GCM calculation introduces the
danger of artificially decoupling many-body states with a
different ratio of occupied single-particle states of positive and
negative parity, which can lead to instabilities when solving
the HWG equation (8).

The representation of the single-particle states on a coor-
dinate space mesh has the clear advantage that its precision
is fairly independent of the deformation when a sufficiently
large box is chosen, and it only depends on the distance of
discretization points. This is important for GCM calculations
mixing states with very different deformation.

For the subsequent projection and mixing of HFB states
with different shapes, it is advantageous to use the canonical
single-particle bases of the mean-field states as a starting
point. This simplifies the corresponding U and V matrices
and allows for a safe cutoff of single-particle states with very
small occupation v2 that do not contribute to any of the kernels.
For the identification of symmetries of the integrals over Euler
angles, it also turns out to be advantageous to transform the
single-particle basis to a basis of eigenstates of x signature
R̂x .

B. Rotation of mean-field states

The rotation of the “left” state in coordinate space and the
“right” state in gauge space, Eq. (18), can be performed either
as rotations of the canonical single-particle states leaving the
corresponding U and V matrices untouched or as rotations
of the U and V matrices leaving the single-particle states
untouched. For the coordinate space rotation, the latter is
equivalent to the expansion of the rotated single-particle states
in terms of the unrotated ones, which already at moderate
deformation requires highly excited single-particle states
above the Fermi energy, which are outside of the single-particle
basis used to describe the unrotated state. Therefore, the
coordinate space rotation R̂(α, β, γ ) is performed as a rotation
of the single-particle states on the mesh as described in
Refs. [14,84], which, however, is the most time-consuming
piece of the numerical calculations. In contrast, it is simpler
and numerically more efficient to perform the gauge-space
rotation as a transformation of the V matrices instead of the
single-particle basis, which in the canonical basis boils down
to the multiplication of a small antidiagonal matrix with a
phase factor.

The rotation operator R̂(α, β, γ ) mixes single-particle
states of both signatures, which requires one to extend the
numerical representation of the single-particle wave functions
from 1/8 to 1/2 of the full box, leaving only parity (and the
isospin projection) as a good quantum number. The sym-
metries of the unrotated time-reversal invariant HFB states,
however, permit the reduction of the integration intervals for
Euler angles to α ∈ [0, π/2], β ∈ [0, π/2], and γ ∈ [0, π ]

(i.e., 1/16 of the full 8π2 integration volume for systems with
integer spin).

C. Calculation of the kernels between rotated mean-field states

Rotating an HFB state in coordinate or gauge space gives
back an HFB state; hence, the matrix elements between
“left” and “right” states, Eq. (18), can be easily evaluated
with the generalized Wick theorem [5,58]. The expressions
given in Refs. [5,58] cannot be directly used, however. First,
we have to transform the contractions between states in
different quasiparticle bases to expressions for contraction
between states in different canonical single-particle bases
[20,22]. Second, our coordinate space representation has as
a consequence that the single-particle bases that set up |q〉 and
|q ′〉 are not equivalent, a difficulty that is amplified further by
rotation of one of the states. This difficulty can be overcome
by eliminating the contribution to the kernels coming from
single-particle states that are occupied in one of the bases but
not in the other [20,22,34,55].2

Only diagonal kernels and half of the off-diagonal ones
have to be calculated; the other half of the off-diagonal kernels
can be constructed by using symmetries of the kernels.

D. Particle-number projection and the phase of the overlap

The integrals over the gauge angles for projection on
proton and neutron number are discretized with the Fomenko
prescription [85], which is equivalent to a trapezoidal rule. By
using the number parity of the mean-field states, the integration
intervals can be reduced to φ ∈ [0, π ] for protons and neutrons.
Additionally, a symmetry connects the basic contractions and
overlap in the interval [0, π/2] with those in [π/2, π ], which,
however, cannot be used to reduce the integration intervals for
the reasons outlined in the Appendix of Ref. [22].

With the symmetries of the HFB states chosen here, the
overlap of two HFB states with different deformation, where
one is additionally rotated in coordinate space, remains real.
As soon as one of the two HFB states is additionally rotated
in gauge space, however, the overlap in general becomes
complex. Its modulus is determined by the Onishi formula
[5,19]. Its phase, a rapidly varying oscillatory function of
the gauge angle of particle-number projection, has to be
determined from continuity arguments. Its value is zero for
the overlap between non-gauge-space-rotated states and is
followed during the gauge-space rotation by performing a
second-order Taylor expansion. To this end, the overlap and
its derivatives are also determined at a small number of gauge
angles between the integration points for the gauge-space
integration, separately for protons and neutrons.

2The expressions for the matrices defining the basic contractions
and the overlap given in Refs. [20,22,34] contain a systematical
typographical error: All (R†)−1 should be replaced by (RT )−1, which
does not have any consequences for these papers as the matrix R is
real with the symmetries chosen there.
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