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Applying a variational multiparticle-multihole configuration mixing method whose purpose is to include
correlations beyond the mean field in a unified way without particle number and Pauli principle violations,
we investigate pairing-like correlations in the ground states of 116Sn, 106Sn, and 100Sn. The same effective
nucleon-nucleon interaction, namely, the D1S parametrization of the Gogny force, is used to derive both the
mean field and correlation components of nuclear wave functions. Calculations are performed using an axially
symmetric representation. The structure of correlated wave functions, their convergence with respect to the number
of particle-hole excitations, and the influence of correlations on single-particle level spectra and occupation
probabilities are analyzed and compared with results obtained with the same two-body effective interaction from
BCS, Hartree-Fock-Bogoliubov, and particle number projected after variation BCS approaches. Calculations of
nuclear radii and the first theoretical excited 0+ states are compared with experimental data.
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I. INTRODUCTION

Microscopic approaches based on the self-consistent mean-
field theory and its extensions are among the most powerful
methods of describing many-body interacting systems. These
approaches have been used for many years in nuclear physics
[1] as well as in atomic and molecular physics [2,3]. In nuclear
physics, they are usually based on energy density functionals
built from phenomenological parametrizations of the nucleon-
nucleon effective interaction as the Skyrme forces [4,5] or the
Gogny interaction [6].

In nuclei away from closed shells, pairing correlations are
known to play a very important role. The techniques commonly
used to describe them in a microscopic framework are the
Hartree-Fock (HF) + BCS and Hartree-Fock-Bogoliubov
(HFB) approaches. Whereas these approaches have proved
to provide an excellent description of observables associated
with pairing such as gaps or odd-even mass differences in
superfluid nuclei, they suffer from the defect that pairing
correlations are introduced by means of a wave function –the
BCS wave function —that does not represent a definite number
of nucleons. As a consequence, strongly paired nuclear states
contain spurious nucleon number fluctuations that may be
large. In addition, those correlations induced by the nuclear
pairing interaction are not described in weakly correlated
regimes [7,8].

This problem, which arises from the particular form of the
BCS wave function, has led to a revival of the study of pairing
correlations in atomic nuclei in the last five years. Namely,
methods have been implemented by several groups based
on particle number projected BCS wave functions [9–13].
Whereas projection of the self-consistent HFB or BCS wave
functions—the projection after variation (PAV) technique—
allows one to restore nucleon numbers and to compute the
corresponding correction to the total binding energy, only the
variation after projection (VAP) procedure, either in the form of
the approximate Lipkin-Nogami technique or using the exact

formalism, is able to describe correlations in situations where
BCS or HFB pairing is small. It is shown in Ref. [13] that
the two kinds of approach lead to significant differences in the
correlation content of projected wave functions.

In this work, we envisage an alternative to these projection
methods by applying a variational multiparticle-multihole
(mp-mh) configuration mixing technique. This approach
is similar to the multiconfiguration Hartree-Fock method
(MCHF) [2] well-known in atomic physics or to the mul-
ticonfiguration self-consistent field method (MCSCF) [3]
employed in molecular physics, and it can be used to describe
not only pairing correlations but also other kinds of long-
range correlations such as those associated with collective
vibrations. The wave function of the system is assumed to be
a superposition of a finite set of Slater determinants which
includes a HF-type state together with multiple particle-hole
(p-h) excitations of this state. Both the configuration mixing
coefficients and the single-particle states are determined in a
self-consistent way from a variational procedure.

Let us emphasize that, contrary to the wave functions
used in the large-scale shell model approach [14,15], p-h
excitations are not restricted to those within one major shell.
They are built from the full (finite) single-particle spectrum
obtained in the HF-like calculation. On the other hand, only
excited configurations involving a relatively small number
of p-h excitations have to be taken into account. This is
because single-particle states are derived from a self-consistent
mean field that already contains a large part of the effect of
two-body interactions. It has been shown in Ref. [16] that
pairing correlations in usual superfluid nuclei can be accurately
described using excitations involving the excitation of no more
than three conjugate pairs of like nucleons.

One important advantage of such an approach is to
describe correlations in a formalism that explicitly preserves
particle number conservation and never violates the Pauli
principle (contrary to, e.g., random-phase approximation
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(RPA) correlations). In the case of pairing, as will be seen
in Sec. II, the mp-mh method is more general than the fully
VAP procedure. It is therefore in position to describe both
strong pairing correlations without particle number violation
as well as the particular correlations occurring in weakly paired
systems.

Pioneering work along this line in nuclear physics has
used an approach referred to as the Higher Tamm-Dancoff
approximation (HTDA) [17]. In this kind of approach, the
nuclear mean field that provides the single-particle states
is derived from an energy density functional built with an
effective force of the Skyrme family, and correlations are
generated by means of a simplified phenomenological residual
interaction in the form of a contact two-body force. This
method has been used to describe the behavior of nuclei as
a function of quadrupole deformation and the properties of
long-lived nuclear states such as isomeric states in the 178Hf
nucleus. Extensions of this work, where the residual interaction
is treated in a perturbative way, in the spirit of a highly
truncated shell model, can be found in Ref. [18]. An attempt in
this direction was previously proposed in Ref. [19]. Let us also
mention a similar approach proposed in Ref. [20] to describe
pairing correlations in a fully particle-number conserving way.

In the present mp-mh configuration mixing approach, the
ground state and first excited states are derived variationally
from an energy density functional taken as the mean-value
within the mp-mh wave function of the effective Hamiltonian
built with the Gogny force. Calculations are performed using
an axially symetric representation of single-particle states. The
density distribution entering the density-dependent term of the
Gogny force has been taken as the one built from the correlated
mp-mh wave function. This prescription has been adopted in
the VAP onto the particle number procedure [9–11], in the
context of the projected HFB approach. Although there is
no justification for using this correlated density distribution
in the effective force, such a choice has been made in order
to naturally obtain in the variational procedure the so-called
rearrangement terms that are known to play a crucial role in the
matrix elements of the mean field [6] and also of the residual
interaction. The importance of including such rearrangement
terms is clearly exposed and illustrated in Refs. [21–24] in
the context of RPA and QRPA methods. Let us mention
that the use of a unique effective two-body interaction for
deriving in a unified way both the single-particle structure
associated with the nuclear mean field and the correlations
beyond the mean field is clearly an advantage in the context
of a completely microscopic description of nuclear states.
It reduces the phenomenological part of the present nuclear
structure approach, as the only parameters are those of the
nucleon-nucleon effective interaction.

In the present work, we will only study correlations of
the pairing type, leaving for further work other kinds of
correlations. The mp-mh trial wave function will therefore
be restricted to a superposition of configurations taken as
BCS-type pair excitations. Here, a BCS-type pair is defined
as two protons or two neutrons in time-reversed states.
By making this choice, only the usual pairing part of the
residual interaction—the singlet even component—is taken
into account in the description of correlations. In particular,

proton-neutron pairing-type correlations are not taken into
account in the present study.

The aim of the present work is to analyze pairing-type
correlations in nuclei in three different situations: large
BCS pairing, medium BCS pairing, and no BCS pairing by
analyzing three well-known nuclei: 116Sn, 106Sn, and 100Sn.
The quantities that will be examined are the total correlation
energy, the structure of the correlated ground state wave
function, particularly the respective weights of the HF-type
wave function and of the different mp-mh pair excitations,
and the influence of correlations on single-particle energies
and occupation probabilities. Comparisons will be made with
the usual HFB results derived from the same Gogny two-body
effective interaction and with those of projection methods such
as projected BCS (PBCS) after variation. Nuclear radii and the
energy and structure of the first theoretical excited 0+ state will
be compared with experimental data.

The paper is organized as follows. In Sec. II we present
the variational mp-mh configuration mixing method together
with its restriction to the case of pairing correlations. Results
obtained for pairing-type correlations in 116Sn, 106Sn, and
100Sn are presented and discussed in Sec. III. Summary and
conclusions are given in Sec. IV.

II. GENERAL FORMALISM

In this part, we present the derivation of the variational
mp-mh configuration mixing method applied to the ground
state description of even-even nuclei. We have considered
pertinent to detail it here first, as this approach is not commonly
used in nuclear physics, contrary to atomic and molecular
physics. Moreover, some features of the method are specific to
nuclear physics, such as the existence of two kinds of particles
and the occurrence of rearrangement terms coming from
the density dependence of the phenomenological effective
nucleon-nucleon interaction.

The variational mp-mh configuration mixing method is a
self-consistent approach that generalizes the usual density-
dependent Hartree-Fock (DDHF) approach [6,25] in order to
take into account various types of nuclear correlations beyond
the mean field in a unified way.

The trial wave function |�〉 that describes nuclear states is
taken as a linear combination

|�〉 =
∑
απ αν

Aαπ αν

∣∣φαπ
φαν

〉
(1)

of direct products∣∣φαπ
φαν

〉 ≡ ∣∣φαπ

〉⊗ ∣∣φαν

〉
(2)

of proton and neutron Slater determinants |φαπ
〉 and |φαν

〉. The
indices π and ν stand for proton and neutron, respectively.
Each Slater determinant |φατ

〉, τ = π, ν, is a multiple particle-
hole (p-h) excitation ατ = (p1h1, p2h2, . . .)τ of a HF-type
reference state |φτ 〉 built with orbitals a+

τj :

∣∣φατ

〉 = Mατ∏
i

(
a+

τpi
aτhi

)|φτ 〉, |φτ 〉 =
∏
h

a+
τh|0〉, (3)
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where the index h(p) denotes occupied (unoccupied) orbitals
in |φτ 〉.

In Eq. (1), the Aαπ αν
are mixing coefficients. One notices

that they are not taken as products of a proton and a neutron
coefficient. The splitting of the mixing coefficients into the
product of a proton and a neutron coefficient only occurs when
the proton-neutron residual interaction is neglected. Therefore,
in the most general case, |�〉 is not the direct product of a
proton and of a neutron wave function. It assumes the most
general form compatible with the separate conservation of
proton and neutron numbers. In Eq. (3), Mαπ(ν) indicates what
we will call the excitation order of the Slater |φατ

〉, that is, the
number of p-h excitations applied to |φτ 〉. The summation in
Eq. (1) includes the HF-type reference state which is obtained
for Mαπ

= Mαν
= 0. The p-h excitations are restricted to those

combinations conserving the quantum numbers associated
with the symmetries imposed on the nuclear wave function.
In the present work, they have been taken as the parity
symmetry and the axial symmetry around the Oz axis. Also,
a finite number of unoccupied p states are taken into account.
Therefore, the number of configurations included in Eq. (1) is
finite.

The state (1) depends on two sets of unknown quanti-
ties which are taken as variational parameters: the mixing
coefficients Aαπ αν

and the single-particle states a+
τj entering

the Slater determinants of Eq. (3). They are determined by
applying a variational principle to the energy functional:

F (�) = 〈�|Ĥ [ρ]|�〉 − λ〈�|�〉
=
∑
απ αν

A∗
απ αν

Aα′
π α′

ν
〈φαπ

φαν
|Ĥ [ρ] − λ|φα′

π
φα′

ν
〉. (4)

The operator Ĥ [ρ] is the many-body Hamiltonian built with
the two-body effective interaction v̂12:

Ĥ [ρ] =
∑
ij

〈i| p̂2

2M
|j 〉a+

i aj + 1

4

∑
ijkl

〈ij |v̂[ρ]|k̃l〉a+
i a+

j alak

≡ K̂ + V̂ [ρ] (5)

and the term proportional to λ is introduced in order to fix
the normalization of |�〉. The interaction v̂ij is supposed to
depend on the neutron+proton nuclear density distribution
ρ(�r). Hence the notations v̂[ρ] and Ĥ [ρ]. As mentioned in the
Introduction, the density ρ(�r) used in the two-body interaction
will be taken as the one-body density ρ(�r) associated with the
correlated wave function |�〉:

ρ(�r) = 〈�|ρ̂(�r)|�〉, (6)

with ρ̂(�r) =∑A
i=1 δ(�r − �ri). This prescription is arbitrary

since there is no justification for employing the density of the
correlated state |�〉 within an energy density functional which
is originally defined in the context of the mean-field theory.
However, as pointed out in the Introduction, this choice has the
advantage of introducing in a natural way the rearrangement
terms that are essential for obtaining realistic matrix elements
for the mean field and for the residual interaction [6,21–24].
Let us mention that the present prescription is consistent with
the one adopted in the application of the VAP procedure of
Refs. [9–11].

By performing independent variations of the mixing coef-
ficients Aαπ αν

and of the single-particle wave functions ϕτj

associated with the operators a+
τj , one gets the two extrema

conditions: 

∂F (�)

∂A∗
απ αν

∣∣∣∣∣
ϕτj fixed

= 0,

∂F (�)

∂ϕ∗
τj

∣∣∣∣∣
Aαπ αν fixed

= 0.

(7)

Following the derivation in Appendix A, the first condition in
Eq. (7) leads to the secular equation:∑

α′
π α′

ν

Hαπ αν,α′
π α′

ν
Aα′

π α′
ν
= λAαπ αν

, (8)

where the Hamiltonian matrix H is defined by

Hαπ αν,α′
π α′

ν
= 〈φαπ

φαν
|Ĥ +

∑
mnτ

�τ
mna

+
τmaτn|φα′

π
φα′

ν
〉, (9)

with

�τ
mn =

∫
d3�rϕ∗

τm(�r)ϕτn(�r)〈�| ∂V̂

∂ρ(�r)
|�〉, (10)

and

∂V̂ [ρ]

∂ρ(�r)
= 1

4

∑
ijkl

〈ij |∂V [ρ]

∂ρ(�r)
|k̃l〉a+

i a+
j alak. (11)

As Eq. (10) shows, the quantities �τ
mn are the matrix ele-

ments of a one-body Hamiltonian. One now expresses the
Hamiltonian Ĥ [ρ] as the sum of the proton, neutron, and
proton-neutron contributions:

Ĥ [ρ] = Ĥ π [ρ] + Ĥ ν[ρ] + V̂ πν[ρ]. (12)

Then, Eq. (9) takes the form∑
απ

Aαπ α′
ν

(
〈φα′

π
|Ĥ π [ρ]|φαπ

〉

+
∑
mn

�π
mn(ρ, σ )〈φα′

π
|a+

man|φαπ
〉
)

+
∑
αν

Aα′
π αν

(
〈φα′

ν
|Ĥ ν[ρ]|φαν

〉

+
∑
mn

�ν
mn(ρ, σ )〈φα′

ν
|a+

man|φαν
〉
)

+
∑
απ αν

Aαπ αν
〈φα′

π
φα′

ν
|V̂ πν[ρ]|φαπ

φαν
〉 = λAα′

π α′
ν
. (13)

In Eq. (13), σ denotes the two-body correlation function
defined by Eq. (19) below.
From Eq. (13), one sees that the Hamiltonian matrixH contains
three different contributions:

(i) A proton contribution involving configurations
|φαπ

φαν
〉 and |φα′

π
φα′

ν
〉 with the same neutron content:

|φαν
〉 = |φα′

ν
〉
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(ii) A neutron contribution involving configurations
|φαπ

φαν
〉 and |φα′

π
φα′

ν
〉 with the same proton content:

|φαπ
〉 = |φα′

π
〉

(iii) A proton-neutron contribution.

The first two contributions include rearrangement terms �τ
mn

coming from the density-dependence of the effective force
used. Because of these terms and of the dependence of Ĥ τ [ρ]
on the density ρ, the secular equation (8) is a highly nonlinear
equation that does not reduce to the simple diagonalization of
the Hamiltonian matrix H. We give later on more details about
the way this equation can be solved.

From Eq. (13), one sees that in the variational mp-mh
configuration mixing method, the residual interaction has
two components. The first one originates from the matrix
elements 〈φα′

τ
|Ĥ τ [ρ]|φατ

〉 between configurations |φατ
〉 and

|φα′
τ
〉 differing by 2p-2h excitations and from the matrix ele-

ments 〈φα′
π
φα′

ν
|V̂ πν[ρ]|φαπ

φαν
〉. The second one is composed

of rearrangement terms between two configurations differing
by 1p-1h excitations.

Equation (8) will be used to calculate the mixing coef-
ficients Aαπ αν

for known orbitals a+
τj and the total energy

associated with the correlated state. The second condition of
Eq. (7) will serve to determine the representation used in the
Slater determinants of Eq. (3). This condition applies because
only a finite set of single-particle orbitals and a truncated
excitation order are used and, therefore, the correlated wave
function |�〉 spans only a restricted part of the full many-body
Hilbert space. Expanding the a+

τj over a given fixed single-
particle basis denoted by c+

n

a+
τj =

∑
n

Cn,τj c
+
n , (14)

the variation with respect to {ϕτj } is equivalent to the variation
of the coefficients Cn,τj . Hence, the second equation (7) is
equivalent to

∂F (�)

∂C∗
n,τj

= 0. (15)

As shown in Appendix B, this leads to the condition

〈�|
[
Ĥ +

∫
〈�|∂V̂ [ρ]

∂ρ(�r)
|�〉ρ̂(�r)d3�r, a+

k al

]
|�〉 = 0, (16)

where

〈�|∂V̂ [ρ]

∂ρ(�r)
|�〉 = 1

4

∑
mnpr

〈mn|∂V̂ [ρ]

∂ρ(�r)
|p̃r〉〈�|a+

ma+
n arap|�〉.

(17)

Using the following definitions for the one-body density matrix
ρ associated with the correlated state |�〉

ρij = 〈�|a+
j ai |�〉 (18)

and the two-body correlation matrix σ

σij,kl = 〈�|a+
i a+

k alaj |�〉 − ρjiρlk + ρjkρli , (19)

one can show that Eq. (16) is equivalent to the inhomogeneous
HF-type equation

[h[ρ, σ ], ρ] = G(σ ). (20)

Here, h[ρ, σ ] is the one-body mean-field Hamiltonian built
with the one-body density ρ and the two-body correlation
function σ :

hij [ρ, σ ] = 〈i|K|j 〉 + 
ij [ρ] + ∂
ij [ρ] + ∂
ij [σ ], (21)

with


ij [ρ] =
∑
mn

〈im|V [ρ]|j̃n〉ρnm, (22)

∂
ij [ρ] = 1

2

∑
mnpq

〈mn|V [ρ]

∂ρji

|p̃q〉ρpmρqn, (23)

∂
ij [σ ] = 1

2

∑
mnpq

〈mn|V [ρ]

∂ρji

|p̃q〉σmp,nq, (24)

and

Gkl(σ ) = 1

2

∑
imn

〈im|V [ρ]|k̃n〉σil,mn

(25)
−1

2

∑
imn

〈ml|V [ρ]|ñi〉σki,mn.

From Eq. (25), one sees that Gkl is an anti-Hermitian matrix.
The fourth term on the right-hand side of Eq. (21) is unusual

in the definition of the mean field. It is a rearrangement field
that makes the nuclear mean field dependent on not only the
one-body matrix ρ but also the correlation matrix σ . Equation
(20) shows that the single-particle orbitals a+

i depend on σ

also through the matrix G(σ ). By introducing the “natural
basis” associated with the mp-mh wave function |�〉, i.e.,
the representation |µ〉 that diagonalizes the one-body density
matrix ρ

ρµν = δµνnµ, (26)

this equation can be cast into the form

ĥ[ρ, σ ]|ϕµ〉 =
∑

ν

|ϕν〉ενµ + |Xµ(σ )〉, (27)

where |Xµ(σ )〉 depend on the matrix G(σ ). This equation has
the same structure as the partial differential equations solved
in atomic and molecular physics. Equation (27) can be used to
determine the natural states |µ〉. Then, the single-particle states
|i〉 can be derived, since they are related to the |µ〉 by a unitary
transformation depending only on the mixing coefficients A.

In the first application made in this work, we did not solve
the full equation (27) because of the complicated structure of
G(σ ). That is, we neglected the dependence of h[ρ, σ ] on σ

and omitted the last term in Eq. (27). With this approximation,
correlations influence the single-particle states |i〉 only through
the one-body density matrix ρ. Since the simplified equation
(27) is still nonlinear, the states |µ〉 are obtained using an
iterative procedure: One starts from a HF calculation that
gives a first set of single-particle orbitals. With the correlated
wave function |�〉 solution of Eq. (8), one calculates the
correlated one-body density ρij = 〈�|a+

j ai |�〉 that is then
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used to calculate h. The diagonalization of h gives a new set of
single-particle orbitals. With this new set of orbitals, one solves
again Eq. (8) and the procedure is applied until convergence.
The convergence is obtained when the variation of all matrix
elements of ρ between two iterations is less than a defined
accuracy.

The existence of Eq. (20), even when approximated by
the scheme outlined just above, is a very important feature
of the mp-mh formalism. It expresses the fact that the
single-particle states entering the definition of |�〉 depend
on the coupling between the HF-type ground state and mp-mh
excited configurations. Therefore, the self-consistent single-
particle orbitals incorporate a part of the residual interaction
beyond the usual HF single-particle potential. This should
have the consequence of minimizing the effects of the residual
interaction and should allow one to truncate the expansion
of |�〉 to low p-h excitation order [16,17,26]. In this sense,
the single-particle structure derived from Eq. (20) appears
as the most adapted for describing both the mean field and
the correlation content of |�〉. Let us note at this stage that
the strong short-range correlations due to the repulsive core
of the nucleon-nucleon interaction are already absorbed in
the phenomenological effective interaction. Therefore, only
correlations associated with long-range correlations have to
be included, explaining why the above-mentioned truncation
in the expansion of the wave function can be made. These
remarks are of course crucial in view of the tractability of the
mp-mh configuration mixing method.

It must be emphasized that the mp-mh configuration mixing
method does not make use of an inert core. This is an
important feature of the method, because the matrix elements
that couple the occupied deep single-particle states in |φτ 〉 with
high-lying unoccupied ones are not negligible. For instance,
taking the Fourier transform of the central part of the Gogny
force shows that occupied single-particle states can couple to
unoccupied states up to 80 MeV excitation energy. In fact,
these matrix elements are expected to contribute significantly
to the renormalization of the single-particle states due to
correlations.

Since the correlated wave function |�〉 is derived from a
variational principle applied to the total energy of the system, it
will describe the state having the lowest energy for a given set
of quantum numbers. Then, the mp-mh formalism formulated
here can be applied to the description of ground states as
well as of yrast nuclear states. These will be obtained as the
solution with the lowest eigenvalue of λ in Eq. (8). Excited
states |�1〉 having the same quantum numbers can be obtained
by adding constraints −λ1〈�0|�〉 to the functional F of
Eq. (4), whose purpose is to impose |�〉 to be orthogonal to
the ground state |�0〉, and more generally, by adding a set of
constraints −∑j=0 λj 〈�j |�〉, where |�j 〉 are the ground state
and excited states with lower energy than that of the excited
state |�〉 that is looked for. This kind of extension will not be
further discussed in this paper. A reasonable approximation of
low energy excited states |�1〉 should, however, be obtained by
taking the second, third, etc. lower energy solutions of Eq. (8).
One expects this approximation to be good if the single-particle
structure associated with |�1〉 is not very different from the
one associated with |�0〉.

FIG. 1. Configuration mixing diagrams.

Two-body residual correlations are introduced in the
mp-mh configuration mixing method from matrix elements
〈φα′

π
φα′

ν
|V̂ [ρ]|φαπ

φαν
〉 appearing in the right-hand side of

Eq. (9) between configurations that differ from two particles
in two different orbitals. These matrix elements can be
represented by Feynman diagrams [27] as in Fig. 1, where the
total order of excitation of the configuration |φαπ

φαν
〉(|φα′

π
φα′

ν
〉)

is denoted by n (m). In all diagrams, p (h) stands for particle
(hole) states. The evaluation of the many-body matrix ele-
ments 〈φα′

π
φα′

ν
|V̂ [ρ]|φαπ

φαν
〉 in terms of the two-body matrix

elements lead to three nontrivial cases for (a) |n − m| = 2, (b)
|n − m| = 1, and (c) |n − m| = 0. In the three cases, the two
many-body configurations |φαπ

φαν
〉 and |φα′

π
φα′

ν
〉 have to differ

exactly by 2p-2h excitation, otherwise the matrix element is
zero.

Diagrams (a1) and (a2) are those that introduce correlations
in the mp-mh configuration mixing wave function. In the
description of ground states, they mix in particular the HF-type
reference state with 2p-2h configurations. More generally,
they couple mp-mh with (m+2)p-(m+2)h configurations.
Diagrams (a1) and (a2) are those responsible for ground state
correlations in the RPA theory, where they generate virtual
2p-2h excitations (see, for example, Ref. [1]). In the case
where p2 and h2 are the time-reversed states of p1 and h1,
respectively, these diagrams create Cooper pairs from the
noncorrelated state.

Diagrams (b1) and (b2) are rarely introduced in micro-
scopic approaches. They describe the influence of a p-h pair
annihilation (creation) on the propagation of a hole (particle).
They allow one to introduce the coupling between individual
and collective motion, i.e., the so-called particle-vibration
coupling.
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Diagrams (c1)–(c4), which appear in the mp-mh config-
uration mixing approach between Slater determinants with
the same order of excitation, are encountered in various
approaches. On the one hand, diagrams (c1) and (c2) are
characteristic of RPA-type correlations. They are introduced
in ph-RPA through the well-known A submatrix of the RPA
matrix (see, for example, Ref. [1]). Diagram (c1) represents
the direct part and diagram (c2) the exchange part of the same
two-body matrix element. Diagram (c1) describes the anni-
hilation of a p-h pair and the creation of another one. In
diagram (c2), a p-h pair is scattered from one state to another
one. On the other hand, diagrams (c3) and (c4) appear in the
pp(hh)-RPA and in QRPA. In such formalism, they describe
pairing vibrations for collective states [1]. In the particular
case where particles are in time-reversed states, they describe
the pair diffusion mechanism of the BCS and HFB approaches.

Let us end this section by giving the definition of the
correlation energy we will use. The correlation energy
Ecorr will be taken as the difference between the total
energy E(�) = 〈�|Ĥ |�〉 of the correlated system defined in
Eq. (A20) of Appendix A and the energy of the simple HF
method EHF

0 = 〈φ0|Ĥ |φ0〉:

Ecorr = E(�) − EHF
0 , (28)

where |φ0〉 is such that 〈δφ0|Ĥ |φ0〉 = 0.

III. PAIRING CORRELATION DESCRIPTION USING THE
mp-mh FORMALISM

A. Residual pairing Hamiltonian

In this part, we apply the mp-mh configuration mixing
formalism for the description of the usual proton-proton and
neutron-neutron pairing correlations.

As already mentioned in the Introduction, the description
in terms of mean field plus residual pairing Hamiltonian has
played a very important role in the understanding of nuclear
structure and low-energy spectroscopy. The commonly used
BCS approximation or its HFB extension, which solves this
problem in an approximate way, suffer from defects, as for
example the nonconservation of particle number, which is in
general invoked because of the inability of such an approach
to describe weak pairing regimes.

In the exact solution of a pairing Hamiltonian formulated
by Richardson [28], eigensolutions with seniority s = 0 and
s = 2 compete energetically. Let us note that the seniority
quantum number gives the number of unpaired nucleons or
twice the number of broken pairs in even particle systems.
In the language of BCS or HFB approximations, this means
that the exact treatment produces four-quasiparticle excitations
lying lower in energy than two-quasiparticle excitations. This
behavior is never observed in BCS or HFB approaches,
where four-quasiparticle excitations are always far too high
in energy (the first two-quasiparticle excitation corresponding
to pair breaking). Therefore, it looks interesting to exhibit the
relationship and differences between the PBCS solution, the
mp-mh configuration mixing solution and the exact solution
of the pairing Hamiltonian.

In a standard way, when no proton-neutron pairing correla-
tion is included, the total BCS wave function is expressed as
the direct product of a proton by a neutron BCS wave function:

|BCS〉 = |BCS〉π × |BCS〉ν . (29)

In second quantization, for even-even nuclei, each BCS wave
function |BCS〉τ (τ ≡ π or ν) is written as

|BCS〉τ = Nτ e
B+

τ |0〉τ , (30)

where |0〉τ represents the proton or neutron vacuum.
In Eq. (30), Nτ is the normalization constant, and B+

τ is a
collective pair creation operator:

Nτ =
∏
j>0

cos θτj , B+
τ =

∑
j>0

tgθτj b
+
τj , (31)

with cos θτj ≡ uτj and sin θτj ≡ vτj (uτj and vτj being the
usual variational parameters of the BCS approach). The b+

τj

operator represents the pair creation operator

b+
τj = a+

τj a
+
τj

, (32)

where the {aτj , a
+
τj } are defined in Eq. (14). In this work, a

pair of nucleons is defined as two nucleons in time-reversed
states, and it is coupled to a total angular momentum projection
and parity Kp = 0+. Expanding the exponential of Eq. (30),
|BCS〉τ can be written as

|BCS〉τ =
∞∑

N=0

(B+
τ )N

N !
|0〉. (33)

The |BCS〉τ wave function decomposes into wave functions
with different numbers of particles 2N . It is always possible
to extract from Eq. (33) the part of |BCS〉τ having the good
particle number 2N , that is,

|φ2N 〉τ = Nτ

∑
0<j1<j2<···<jN

tgθτj1 . . . tgθτjN
b+

τj1
. . . b+

τjN
|0〉.

(34)

Defining the HF-type state with 2N particles as

|HF〉τ =
N∏

h=1

b+
τh|0〉, (35)

one finds

|φ2N 〉τ = N ′
τ

∞∑
n=0

∑
0<p1<···<pn

0<h1<···<hn

tgθτp1 . . . tgθτpn

tgθτh1 . . . tgθτhn

×
n∏

k=1

(
b+

τpk
bτhk

)|HF〉, (36)

where N ′
τ = Nτ

∏
h tgθτh =∏h>0 sin θτh

∏
p>0 cos θτp. The

wave function |φ2N 〉 clearly is the projection of |BCS〉 onto the
good particle number 2N . One sees that such a wave function is
a superposition of configurations corresponding to excitations
of nucleon pairs. Equation (36) shows that the projected BCS
wave function is a subset of the general mp-mh wave function
of Eq. (1), containing only certain types of configurations and
with particular mixing coefficients that are products of particle
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and hole coefficients. Because of the particular form of mixing
coefficients, |φ2N 〉τ is also less general than the exact solution
of pairing Hamiltonian formulated by Richardson.

In the framework of the variational mp-mh configuration
mixing method, one considers as a trial wave function
the reduction of Eq. (1) built only with the excited pair
configurations that are relevant for the description of pairing
correlations with particle number conservation. Such kind
of trial wave function mimics the exact solution of pairing
Hamiltonian. Then, proton and neutron Slater determinants
are written as

|φατ
〉 =

Mατ∏
i=1

(
b+

τpi
bτhi

)|φτ 〉. (37)

Here, Mατ
designates the number of excited pairs in the

configuration |φατ
〉. As shown in Appendix C, without residual

proton-neutron interaction, the mixing coefficients Aαπ αν
split

into the direct product of a proton coefficient and a neutron
one. Then, the correlated wave function takes the particular
form

|� ′〉 = ∣∣�k
π

〉⊗ ∣∣�j
ν

〉
, (38)

where |�i
τ 〉 =∑ατ

Uτ
ατ ,i

|φατ
〉 and

∑
ατ

|Uτ
ατ ,i

|2 = 1. For the
description of ground states of even-even nuclei, the proton and
neutron correlated wave functions |�p

π 〉 and |�n
ν 〉 are coupled

to Kp = 0+:

|� ′〉0+ = ∣∣�p
π

〉
0+ ⊗ ∣∣�n

ν

〉
0+ . (39)

One defines the functional F(� ′) as

F(� ′) = 〈� ′|Ĥ [ρ]|� ′〉 − λπ

〈
�p

π

∣∣�p
π

〉− λν

〈
�n

ν

∣∣�n
ν

〉
. (40)

The first equation of Eq. (7) is equivalent to

∂F(� ′)
∂U

p∗
α′

π

= 0,
∂F(� ′)
∂Un∗

α′
ν

= 0. (41)

One expresses the Hamiltonian Ĥ [ρ] as the sum of proton,
neutron, and proton-neutron contributions:

Ĥ [ρ] = Ĥ π [ρ] + Ĥ ν[ρ] + V̂ πν[ρ]. (42)

The density-dependent term of the D1S Gogny force acts only
between proton and neutron configurations. The associated
rearrangement term is noted as δĤπν[ρ].

Following the same method as for the general formalism,
the variational principle yields the coupled set of equations∑

α′
π

U
p

α′
π

[〈
φαπ

∣∣Ĥ π
∣∣φα′

π

〉+ Eπν
α′

π
δαπ α′

π

] = (λπ − Eν)Up
απ

, (43)

∑
α′

ν

Un
α′

ν

[〈
φαν

∣∣Ĥ ν
∣∣φα′

ν

〉+ Eπν
α′

ν
δανα′

ν

] = (λν − Eπ )Un
αν

. (44)

Equation (43) determines proton mixing coefficients, and
Eq. (44) neutron ones. The quantities Eν and Eπν

απ
that appear

in Eq. (43) are defined as

Eν =
∑
ανα′

ν

Un∗
αν

Un
α′

ν

〈
φαν

∣∣Ĥ ν
∣∣φα′

ν

〉
, (45)

Eπν
απ

=
∑
αν

(
Un

αν

)2〈
φαπ

φαν

∣∣V̂ πν[ρ] + δĤπν[ρ]
∣∣φαπ

φαν

〉
. (46)

Similar expressions for Eπ and Eπν
αν

in Eq. (44) are obtained by
exchanging π and ν indices in Eqs. (45) and (46), respectively.

Even though no proton-neutron residual interaction is taken
into account, the two sets of Eqs. (45) and (46) are not fully
decoupled because of the four terms Eν, Eπ , Eπν

α′
π

, and Eπν
α′

ν
. This

means that the neutron solution depends on the proton solution
and conversely.

B. Results without self-consistency

In this part, we discuss effects of pairing correlations
concerning the description of 116Sn, 106Sn, and 100Sn ground
states using the variational mp-mh configuration mixing
approach. The same interaction is used in the mean field
and the residual part of the Hamiltonian, namely, the D1S
Gogny force [29]. The correlated wave function contains
only configurations corresponding to pair excitations. No
proton-neutron residual interaction is taken into account. The
residual part of the Hamiltonian is defined using the Wick
decomposition of the many-body Hamiltonian Ĥ with respect
to the uncorrelated state |φπφν〉.

In this section, we focus on the effect of the mp-mh
configuration mixing. Results presented in this part have
been obtained by solving only the first equation of Eq. (7),
which determines mixing coefficients. We have performed
one HF calculation followed by one diagonalization in the
multiconfiguration space.

We have been interested in the convergence properties in
multiconfiguration space, correlation energies [Eq. (28)], and
the structure of correlated wave functions [Eq. (38)]. From a
technical point of view, an 11-shell harmonic oscillator basis
is used to expand single-particle states [see Eq. (14)], and axial
symmetry is imposed. We will call level the twice-degenerated
axially symmetric state containing two time-reversed nucleon
states. Because calculations are performed in even-even nuclei
for which Kp = Jp = 0+ (with K the projection of the spin
J onto the symmetry axis), the mp-mh nuclear states are even
under the time-reversal symmetry T̂ . Furthermore, we restrict
the multiconfiguration space by imposing the self-consistent
symmetry T̂ �̂2, where �̂2 is the reflection with respect to
the xOz plane. Using this symmetry, all matrix elements and
mixing coefficients can be chosen real. Let us add that the
two-body center of mass correction term has not been included
in the effective interaction.

1. Convergence properties in the multiconfiguration space

Convergence properties, according to two criteria, have
been studied for the description of 116Sn, 106Sn, and 100Sn
ground states: (i) the number of single-particle states included
for the configuration mixing, assuming no core (all single-
particle states under the Fermi level have always been taken
into account) and (ii) the truncation in the expansion of the
correlated wave function according to the total excitation order
M = Mαπ

+ Mαν
, where Mατ

defines the number of excited
pairs for each isospin [see Eq. (37)].

Table I shows, for protons and neutrons, the number of
Slater determinants restricted to Mατ

= 1 or 2 and the total size
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TABLE I. Number of proton π and neutron ν Slater determinants corre-
sponding to one excited and two excited pairs and total dimensions following
the criteria M = Mαπ

+ Mαν
� 2, for 100Sn, 106Sn, and 116Sn. 286 proton and

286 neutron single-particle levels have been considered.

Nucleus (1pair)π (1pair)ν (2pairs)π (2pairs)ν Dimension

100Sn 6525 6525 10 179000 10 179000 62 946676
106Sn 6525 7224 10 179000 12 531834 69 861184
116Sn 6525 8349 10 179000 16 831584 81 502684

of the multiconfiguration space associated to M � 2. Proton
and neutron valence spaces include the entire number of single-
particle levels generated by an 11-shell harmonic oscillator
basis, that is, 286 proton and 286 neutron doubly degenerate
single-particle levels.

Columns 2–4 give the number of proton and neutron
configurations corresponding to one and two excited pairs. In
column 5, the indicated dimension includes configurations as
(0pair)π ⊗ (0pair)ν , (0pair)π ⊗ (1pair)ν , (1pair)π ⊗ (0pair)ν ,
(0pair)π ⊗ (2pairs)ν , (1pair)π ⊗ (1pair)ν , (2pairs)π ⊗
(0pair)ν . Dimensions associated with three excited pair
configurations are omitted because their effect is found
negligible in our calculations for the three Sn isotopes.

The diagonalization of the Hamiltonian matrices of H-type
[see Eq. (9)] is accomplished using a very efficient technique
developed for large-scale shell-model calculations [14,30].
This state-of-the-art method and the capabilities of present-
day computers allow us to diagonalize matrices of the size
presented in Table I in a reasonably fast way, which is a crucial
point concerning the feasibility of the present variational
mp-mh configuration mixing method.

The quantity for which it is obviously natural to be
interested in is the convergence of the correlation energy
[Eq. (28)]. Results are shown in Figs. 2 and 3 for 116Sn, a
nucleus containing large pairing correlations.

Figure 2 displays the evolution of the correlation energy,
in absolute value and expressed in MeV, as a function of the
number of proton single-particle levels (proton orbitals are
ordered by increasing energy), for a fixed number of neutron
configurations. All neutron configurations corresponding to
286 single-particle levels have been included. Full circles
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Number of proton single particle levels
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 | 
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2 pairs

Fixed neutron valence space (286 levels)
116Sn

FIG. 2. Evolution of the correlation energy calculated with the
mp-mh configuration mixing method, as a function of the proton
valence space for 116Sn.

show the correlation energy for configurations containing only
one excited pair: (0pair)π ⊗ (0pair)ν and (0pair)π ⊗ (1pair)ν .
Triangles indicate the result obtained with in addition two
excited pairs: (0pair)π ⊗ (2pairs)ν, (1pair)π ⊗ (1pair)ν , and
(2pairs)π ⊗ (0pair)ν . On each curve, the first point on the left
is calculated for 25 proton levels for which only the 0 excited
pair configuration occurs. This point gives an estimate of the
neutron contribution to the total correlation energy, since in this
case only neutrons are excited: (0pair)π ⊗ (0pair)ν, (0pair)π ⊗
(1pair)ν , and (0pair)π ⊗ (2pairs)ν . For this first point, neutron
correlations coming from one excited pair configurations is

2.5 MeV. Neutron two excited pair configurations bring an
additional energy of 
1 MeV. As more and more proton
single-particle levels are included, one observes that the
correlation energy saturates. Analyzing the correlated wave
function shows that most of the proton correlation energy
comes from the proton single-particle states close to the Fermi
level. For each curve, one sees that a change in the slope
occurs for a number of proton single-particle levels near 50.
One obtains that the eigensolution (black triangles) including
additional two excited proton pair configurations and mixed
two excited pair configurations brings an energy gain of about
∼1 MeV with respect to the eigensolution containing only
one excited pair configurations. The contributions of three
and more excited pair configurations are not shown on the
figure because they are small. For instance, three excited pair
configurations contribute less than 100 keV to the correlation
energy.

Similarly, Fig. 3 shows the evolution of the correlation en-
ergy as a function of the number of neutron single-particle lev-
els for a fixed number of proton configurations corresponding
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Number of neutron single particle levels
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FIG. 3. Evolution of the correlation energy calculated with the
mp-mh configuration mixing method, as a function of the neutron
valence space for 116Sn.
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to 286 proton single-particle levels. As previously discussed,
results are shown for wave functions including configurations
up to one excited and two excited pairs. The left-most point
on each curve, corresponding to 33 neutron single-particle
levels, now gives an estimate of the contribution from the
proton to the total correlation energy. Adding proton two
excited pair configurations is less crucial than in the case
of neutron ones as the correlation energy gain is only 

200 keV. Again, one observes a change in the slope around
50 neutron single-particle levels. The slope change is much
sharper than in Fig. 2, which indicates that neutron correlations
are stronger than proton ones. One sees that the convergence of
the correlation energy as a function of the number of neutron
levels is less good than in Fig. 2. This slow convergence of the
correlation energy can be understood from the magnitude of
the ranges (0.7 and 1.2 fm) of the Gaussian part of the Gogny
force. When pairing correlations are strong, pairs involve
single-particle levels up to 
100 MeV excitation energy. Let
us note that a similar behavior is observed in HFB calculations.

Similar calculations have been done for 106Sn and 100Sn. As
expected, the behavior of the correlation energy as a function
of the proton valence space is similar to the one of 116Sn. In
contrast, the convergence of the correlation energy with the
size of the neutron valence space is somewhat different for
106Sn and 100Sn. For 100Sn, convergence properties according
to the size of neutron valence space resemble the ones
associated to proton valence space (see Fig. 2), since 100Sn
is a doubly magic N = Z nucleus. The solution containing
two excited pair configurations brings an energy gain of about

300 keV on top of the one excited pair configurations. This
clearly indicates that two excited pair configurations are less
important for the description of the 100Sn ground state than in
116Sn. 106Sn appears as an intermediate case between 116Sn and
100Sn, where the magnitude of neutron correlations is stronger
than in 100Sn and smaller than in 116Sn. The slope changes
observed on the left of curves such as those in Figs. 2 and
3 are smaller than in 116Sn. Adding the contribution of the
two excited pair configurations brings an additional energy of
around 700 keV instead of the 1 MeV observed in 116Sn and
300 keV in 100Sn.

The main conclusions of this study can be summarized as
follows: (i) Most correlations come from excited configura-
tions implying single-particle states close to the Fermi level
and are provided by configurations built with one excited pair.
(ii) Two excited pair configurations are essential in 116Sn and
106Sn ground states. (iii) Three excited pair configurations can
be neglected.

2. Correlation energy

We discuss here the magnitude and origin of the correlation
energy obtained in the three Sn isotopes. Unless otherwise
mentioned, all available proton and neutron single-particle
states are taken into account (286 doubly degenerated levels
for each kind of nucleon) and the multiconfiguration space
includes configurations up to two excited pairs.

The second column of Table II displays the absolute value
of the total correlation energy |Ecorr| for 116Sn, 106Sn, and
100Sn. One sees that 116Sn is the most correlated nucleus

TABLE II. Absolute values of total correlation
energy |Etotal

corr | and neutron contribution |Eneutron
corr |

for 100Sn, 106Sn, and 116Sn. Energies are expressed
in MeV.

Nucleus |Etotal
corr | |Eneutron

corr |
100Sn 3.67 1.90
106Sn 4.62 2.88
116Sn 5.44 3.74

and 100Sn the less one: |Ecorr| = 5.44 MeV against |Ecorr| =
3.67 MeV, respectively. The third column gives the associated
neutron contribution noted |Eneutron

corr |. The neutron contribution
is extracted from a calculation in which neutrons are excited
whereas protons are in the HF configuration. When one goes
from 100Sn to 116Sn, the neutron correlation energy increases.
Let us note that the usual BCS or HFB approximations are
unable to find correlations in 100Sn and more generally when
the pairing strength is small compared to the value of the gap
between the last occupied level and the first unoccupied level
in the HF approach.

The difference between Ecorr and Eneutron
corr is of the same

order of magnitude for the three Sn isotopes, about 1.7 MeV.
This indicates that correlations coming from protons are more
or less the same, as expected.

In Table III, the spin-isospin two-nucleon channels involved
for each component of the Gogny force are recalled (crosses),
and circles indicate the channels and components contributing
to the correlation part of the wave function in Eq. (38). The
spin-orbit contributes to the (S = 1, T = 1) channel, and the
density-dependent term acts only in the mean-field part. The
residual interaction coming from the two Gaussians arises in
both (S = 0, T = 1) and (S = 1, T = 1) channels [6].

Because our method of solving the configuration mixing
equations does not allow us to extract the contribution of each
term to the correlation energy, we have studied the influence
of these different terms on the correlation content of the wave
function by removing them selectively from the residual part
of the nuclear Hamiltonian.

First, removing the Coulomb contribution from the residual
part of the Hamiltonian changes the correlation energies of the
second column in Table II for 100Sn, 106Sn, and 116Sn to 2.98,
3.92, and 4.68 MeV, respectively; that is, the correlation energy
decreases by 
700 keV in all three isotopes.

TABLE III. Spin-isospin ST channels present in each component
of the Gogny force (crosses). The circles indicate the channels and
components that contribute to the residual interaction taken into
account by the correlated wave functions defined in Eq. (38).

S, T S = 0, S = 1, S = 0, S = 1,

T = 1 T = 1 T = 0 T = 0

Central ⊗ ⊗ × ×
Density ×
Spin-orbit ⊗
Coulomb ⊗ ⊗
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TABLE IV. Wave-function components, in percentage, for 116Sn,
106Sn, and 100Sn.

Nucleus T (0, 0) T (0, 1) T (1, 0) T (0, 2) T (1, 1) T (2, 0)

116Sn 65.38 26.04 4.50 2.68 1.23 0.17
106Sn 67.44 25.29 3.63 2.54 0.99 0.11
100Sn 90.85 5.02 3.70 0.16 0.18 0.09

Second, the different components of the nuclear residual
interaction listed in Table III have been successively removed
in addition to the Coulomb contribution mentioned above.
As a result, removing all components except the singlet even
one (S = 0, T = 1) leaves the correlation energy practically
unchanged, and removing the singlet even residual interaction
completely kills the nuclear correlation energy. Hence the main
sources of correlations are the (S = 0, T = 1) channel of the
nuclear force—the one that contributes to pairing correlations
in the HFB approach—and the Coulomb interaction between
protons.

3. Structure of correlated wave functions

To have a measure of the amount of correlations in the
mp-mh wave function |� ′〉, we define the quantity T (i, j ) as

T (i, j ) =
ij∑

απ αν

|Aαπ αν
|2 =

ij∑
απ αν

∣∣Up
απ

∣∣2∣∣Un
αν

∣∣2. (47)

The first and second arguments of T stand for the number of
proton and neutron excited pairs included in |� ′〉, respectively.

Table IV displays the values obtained for T (i, j ) with
0 � i � 2 and 0 � j � 2 for the three Sn isotopes. Using∑

j=0 T (i, j ) = 1, T (i, j ) is expressed in percentage. One
observes that the HF description is approximate even in 100Sn,
since T (0, 0) significantly differs from 100% in this nucleus
[T (0, 0) 
 91%]. The remaining 9% essentially comes from
one-pair excitation in either the proton sector or the neutron
one. Two-pair correlations are negligible in this nucleus. As
expected, the two superfluid nucleus wave functions contain
large contributions from one-pair excitations in the neutron
sector (
25%) and, to a lesser extent, from one-pair proton
excitation (
2.5%) and two-pair excitation (
3.5–4%).

It is interesting to note that if only one-pair excitations are
included in the wave function |� ′〉, significant modifications
occur to the above numbers. This is illustrated in Table V. The
T (0, 0) coefficients are seen to noticeably increase and the

TABLE V. Components of 116Sn, 106Sn, and 100Sn
wave functions including only configurations with up
to one excited pair.

Nucleus T (0, 0) T (0, 1) T (1, 0)

116Sn 87.21 8.98 3.81
106Sn 88.06 8.95 2.98
100Sn 92.89 3.99 3.12
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FIG. 4. Neutron single-particle levels in 106Sn.

T (0, 1) to strongly decrease, especially in the two superfluid
nuclei. This shows that although two-pair configurations have
a relatively small weight in the ground state wave function,
their presence strongly affects the other components of this
wave function. Let us mention that three and higher order pair
configurations have no influence on the overall structure of the
wave function. Let us add that many one-pair coefficients |A|2
contribute with small and similar magnitudes.

As can be seen in Table IV, correlations are similar in the
ground state description of 106Sn and 116Sn and most part of
them come from neutron pairing. As already pointed out, the
proton contribution is more or less unchanged from one isotope
to the other. The difference between the isotopes essentially
comes from the neutron part.

In Fig. 4, a schematic representation of neutron single-
particle states pertaining to the 50–82 major shell is drawn.

For 106Sn, the neutron Fermi level is 2d5/2, and it is
completely filled in the HF approximation. The gap between
the 2d5/2 and 1g7/2 subshells is only 1.5 MeV. The excitation
of a neutron pair costs at least 
3.0 MeV. Note that in BCS or
HFB calculations with the D1S Gogny force, pairing switches
on when the energy gap between the last occupied and the
first unoccupied level is of the order of 
3.5 MeV. One
obtains a depletion of the T (0, 0) component essentially in
favor of the T (0, 1) component, which is much larger in 106Sn
(
25.29%) than in 100Sn (
5.02%). The coupling between the
configurations corresponding to the excitation of 2d5/2 neutron
pairs to the 1g7/2 subshell and the HF configuration is relatively
strong. Those 12 configurations constitute 
15.5% of the
total wave function. The three configurations corresponding to
excitation of 2d5/2 neutron pairs to the 3s1/2 subshell account
for 
1% of the total wave function and the six configurations
corresponding to excitation of 2d5/2 neutron pairs in the 1d3/2

subshell for 
3%. All the other configurations (∼70 × 106 as
indicated in Table I) each contribute extremely small amounts.

In 116Sn, the T (0, 1) component is even larger than the
106Sn one. The neutron Fermi level is the completely filled
3s1/2 subshell. As can be seen on Fig. 4, the 1d3/2 subshell is
very close to the 3s1/2 one: the gap is 
300 keV. The lowest
pair excitation energy is much smaller than in 106Sn: 
600 keV.
However, the T (0, 1) component of 116Sn is close to the
106Sn one. This comes from the fact that the larger energy
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gap in 106Sn is compensated for by the larger degeneracy of
the 1g7/2 state compared to the 3s1/2 one.

Calculations for 116Sn involve a total number of config-
urations of ∼81 × 106. As for 106Sn, one can isolate a few
configurations with strong weights. (i) The two configurations
corresponding to the excitation of the 3s1/2 neutron pair into
the 1d3/2 subshell account for 8.2% of the total wave function.
(ii) The six configurations corresponding to the excitation of
the 3s1/2 neutron pair into the 1h11/2 subshell total 2.5%. (iii)
Sixty-seven configurations, most of them being of the one
excited pair type, have individual weights larger than 0.05%
and a summed contribution of 12.5%.

In the 106Sn and 116Sn wave functions, the two excited
pair configurations are more important than in 100Sn, more
particularly T (0, 2) and T (1, 1), which are equal to 
2.6%
and ∼1%, respectively. Comparisons of Table IV and Table V
for 106Sn and 116Sn are clearly consistent with this result, as the
T (0, 0) and T (0, 1) components are strongly affected by the
removal of the two excited neutron pair configurations. One
sees that there is a strong coupling on the one hand between HF
and one excited neutron pair configurations and, on the other
hand between one and two excited neutron pair configurations.
The T (2, 0) component appears negligible for the description
of the three Sn ground states.

To conclude this section, let us discuss the separate proton
and neutron contributions to the correlated wave function of
106Sn, the nucleus having the most correlated ground state. As
proton-neutron pairing is not taken into account, the T (i, j )
quantities decompose into the product of a proton and a neutron
contribution:

T (0, 0) = ∣∣Up
π

∣∣2 · ∣∣Un
ν

∣∣2 = T π
0 · T ν

0 , (48)

T (0, 1) = ∣∣Up
π

∣∣2 ·
i=0,j=1∑

αν

∣∣Un
αν

∣∣2 = T π
0 · T ν

1 ,

(49)

T (1, 0) = ∣∣Un
ν

∣∣2 ·
i=1,j=0∑

απ

∣∣Up
απ

∣∣2 = T ν
0 · T π

1 ,

T (0, 2) = ∣∣Up
π

∣∣2 ·
i=0,j=2∑

αν

∣∣Un
αν

∣∣2 = T π
0 · T ν

2 ,

(50)

T (2, 0) = ∣∣Un
ν

∣∣2 ·
i=2,j=0∑

απ

∣∣Up
απ

∣∣2 = T ν
0 · T π

2 .

Numerical calculations in 116Sn give:

T π
0 
 93%, T π

1 
 6%, T π
2 
 0%,

(51)
T ν

0 
 70%, T ν
1 
 28%, T ν

2 
 3%.

One sees that for this nucleus, even though T (0, 0) 
 65%,
neutron mean values of observables will be much more
affected by correlations than proton ones.

C. Self-consistency effect

In this section, we study the effect of self-consistency on
quantities such as correlation energy, components of correlated
wave function, single-particle spectra, and single-particle

TABLE VI. Correlation energy as defined in the text for 116Sn,
106Sn, and 100Sn. The mp-mh correlated wave functions including
configurations with up to two excited pairs. Energies are expressed
in MeV.

Nucleus |Ewith
corr | |Ewithout

corr | |EBCS
corr | |EHFB

corr |
116Sn 4.75 3.45 3.25 3.86
106Sn 4.09 3.54 1.37 1.73
100Sn 3.19 2.79 0.00 0.00

occupation probabilities. We also look at nuclear radii (neutron
skin and charge radii) and first 0+ excited states, for which
experimental data are available for most of the Sn isotopes.
When possible, comparisons with BCS or HFB approaches
will be done. As explained in Sec. II, the full solution of mp-mh
equations consists of solving the system of Eqs. (8) and (20).
However, as mentioned earlier [in the paragraph following
Eq. (33)], instead of solving Eq. (20), we have used an
approximate procedure consisting of diagonalizing h[ρ] and
have ignored the contribution of σ to h[ρ].

All the following self-consistent results have been obtained
using truncated proton and neutron single-particle spaces,
including the 98 lowest proton single-particle levels and the
141 lowest neutron single-particle levels. The total number of
configurations is of the order of 10 × 106 for 116Sn, 9 × 106

for 106Sn, and 8 × 106 for 100Sn. Note that these numbers
are significantly smaller than those of Sec. III B, where 286
doubly degenerate single-particle levels were used for protons
or neutrons.

1. Self-consistent correlation energy

In this section, we discuss the effect of the truncation of
the single-particle space and the role of self-consistency on
the correlation energy. Results are presented in Table VI for
the four cases: mp-mh configuration mixing approach with
and without self-consistency denoted Ewith

corr and Ewithout
corr , BCS

and HFB approaches labeled, respectively, EBCS
corr and EHFB

corr .
Let us note that the values indicated for BCS and HFB
approximations are deduced from self-consistent calculations
that include the full single-particle space associated with 11
shell harmonic oscillator bases (286 doubly degenerate levels).
The BCS approximation is defined here as the reduction of the
HFB approach in which only the elements of the pairing field
matrix that are diagonal in the representation that diagonalizes
the one-body Hamiltonian h[ρ] are taken into account [31].
These diagonal terms therefore are obtained from the full
Gogny interaction. The mp-mh correlated wave functions
include configurations built with one and two excited pairs,
as discussed in the Sec. III B.

By comparing Ewithout
corr of Table VI and Etotal

corr of Table II, one
observes that truncating the proton and neutron single-particle
spaces has a quantitative effect on the total correlation energy,
especially in the case of 116Sn. The reason is that high-energy
configurations are so numerous that even though they have
very small individual contributions, in the end, they bring a
nonnegligible additional energy.
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TABLE VII. Wave-function components, in percentage, for
116Sn, 106Sn, and 100Sn. Results are deduced from truncated proton
and neutron single-particle spaces without self-consistency.

Nucleus T (0, 0) T (0, 1) T (1, 0) T (0, 2) T (1, 1) T (2, 0)

116Sn 65.06 26.49 4.22 2.87 1.21 0.15
106Sn 67.57 26.00 2.71 2.84 0.81 0.07
100Sn 91.05 4.98 3.55 0.17 0.17 0.08

Table VII shows the components of correlated wave
functions for proton and neutron truncated single-particle
spaces without self-consistency. Comparing these values with
those of Table IV, one sees that wave-function contents are
very similar (differences are less than 0.3%).

From Table VI, one sees that, comparing Ewith
corr and Ewithout

corr ,
self-consistency brings an additional energy of the order of
400–500 keV for 100Sn and 106Sn. For 116Sn, one obtains a
correlation energy larger by 
1.3 MeV. We will go back to this
point in the next section. Moreover, even with smaller single-
particle spaces, the mp-mh configuration mixing approach
provides systematically more correlations than the BCS or
HFB approaches (HFB usually gives more pairing correlations
than BCS).

The difference between Ewith
corr and EHFB

corr is around

0.9 MeV for 116Sn, 
2.3 MeV for 106Sn, and 
3.2 MeV
for 100Sn. The latter case is the most striking, because neither
BCS nor HFB are able to find correlations in this nucleus. As
correlations coming from protons are quantitatively the same
in the three Sn isotopes, this is a confirmation of the known
idea that BCS or HFB approaches are good approximations in
strong pairing regimes but fail for weak pairing regimes.

2. Structure of self-consistent correlated wave functions

We present in Table VIII wave-function components (in
percentage) obtained from self-consistent calculations. Com-
paring with Table VII, T (0, 0) has decreased by 
3%. In the
case of 100Sn, this decrease is counterbalanced by an increase
of T (0, 1) and T (1, 0). This is partly due to a small reduction
of proton (
300 keV) and neutron (
50 keV) gaps between
the 2g9/2 and 2d5/2 single-particle levels. The HF proton and
neutron gaps between these two levels are, respectively, 
6.88
and 
6.73 MeV.

For 106Sn, the effect is a little more pronounced, as it is
accompanied by a 
5% reduction of T (0, 0). As we will
discuss later, we observe a 
300 keV reduction of the proton
gap between 2g9/2 and 2d5/2 and a 
70 keV reduction of

TABLE VIII. Components of self-consistent correlated wave
functions for 116Sn, 106Sn, and 100Sn, including configurations with
up to two-pair excitation. Components are expressed in percentage.

Nucleus T (0, 0) T (0, 1) T (1, 0) T (0, 2) T (1, 1) T (2, 0)

116Sn 42.09 44.28 3.00 8.43 2.09 0.11
106Sn 62.90 28.65 3.54 3.62 1.17 0.11
100Sn 88.19 6.36 4.74 0.27 0.29 0.15
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FIG. 5. Distribution of neutron number components of the BCS
wave functions of 106Sn and 116Sn.

the neutron gap between 2d5/2 and 1g7/2. The HF proton and
neutron gaps between the single-particle levels mentioned just
before are, respectively, 
6.21 and 
1.86 MeV.

For 116Sn, the most surprising effect is the large depletion
of the T (0, 0) component. The T (0, 1) component is now the
largest one: 
44% vs 
42% for T (0, 0). We observe also
an appreciable jump of the T (0, 2) component. As we will
analyze later in more detail, this effect is essentially explained
by the rearrangement of neutron single-particle levels. Here
again, the reason is the neutron reduction of gaps between
3s1/2 and 2d3/2 and 2d3/2 and 1h11/2 subshells. Consequently,
the rearrangement of neutron single-particle states due to self-
consistency has produced (i) a reduction of 
70 keV of the
630 keV gap between 3s1/2 and 2d3/2, and (ii) a reduction of

300 keV for the 1.21 MeV gap between 2d3/2 and 1h11/2,
which is equal to 
1.21 MeV.

Let us note that changes in single-particle energies are
bigger in 116Sn because the implied gaps are smaller.

In the following, we compare mp-mh and PBCS wave
functions. We make use of Eq. (36), which gives a formal
expression for PBCS wave functions. In Fig. 5, the decom-
position of BCS wave functions according to the difference
N − N ′, where N ′ is the nucleus neutron number, is shown
for 106Sn and 116Sn. 100Sn has not been considered, since the
BCS solution is identical to the HF solution. For 106Sn and
116Sn, the neutron BCS wave functions spread essentially on
11 values of N − N ′. The particle number squared fluctuation
(�N )2 =ν 〈BCS|N̂2|BCS〉ν − N2 = 4

∑
k>0 u2

kv
2
k is 6.71 for

106Sn and 9.95 for 116Sn. It is larger for 116Sn than for 106Sn
because pairing correlations are stronger in 116Sn.

The main component of BCS wave functions in both nuclei
has the good particle number N − N ′ = 0. It represents 
31%
and 
25% of the total BCS wave function, respectively.
The components N − N ′ = ±2 are of the order of 20%,
and the components N − N ′ = ±4 
 10%. For 106Sn, the
last nonnegligible components are the N − N ′ = ±6 ones,
with percentages around 2%. For 116Sn, the N − N ′ = ±6
components are larger and contribute 
5%, whereas the
N − N ′ = ±8 components are quite small (
0.2%).

024305-12



VARIATIONAL MULTIPARTICLE-MULTIHOLE . . . PHYSICAL REVIEW C 78, 024305 (2008)

TABLE IX. Components of 106Sn and 116Sn PBCS after variation
wave function. Components are expressed in percentage.

Nucleus T (0, 0) T (0, 1) T (0, 2) T (0, 3) T (0, 4)

106Sn 29.09 54.78 15.88 0.25 ∼0
116Sn 8.03 43.75 38.55 9.67 ∼0

We now look at the decomposition of the component
having the good particle number in terms of configurations
characterized by a given number of excited pairs [see
Eq. (36)]. To compare this decomposition with the mp-mh
wave function, we have normalized this component to unity.
Results are reported in Table IX. By comparing with the
results of Table VII, one sees that for both 106Sn and 116Sn,
the content of the PBCS after the variation wave function is
strongly different from the one of the mp-mh wave function.
The T (0, 0) component is only 
29% for 106Sn and 
8% for
116Sn. This means that the PBCS wave function overestimates
the contribution of excited configurations.

To better understand these results, we compared the single-
particle levels obtained in the three approaches HF, BCS, and
mp-mh. To this end, we expressed the BCS single-particle
states |iBCS〉 and the mp-mh ones |imp−mh〉 as linear combina-
tions of the HF single-particle states |iHF〉. For 106Sn and 116Sn,
we determined that each BCS or mp-mh single-particle state
overlaps with the corresponding HF state by 99.999%. This
means that HF, BCS, and mp-mh single-particle states are very
similar. The spherical single-particle states with given quantum
numbers do not mix between themselves under the effect
of pairing correlations. Consequently, components of PBCS
wave functions depend only on the values of the variational
parameters vn and un. The difference between the T (i, j )
components of PBCS and mp-mh wave function appears as
a consequence of the well-known fact that BCS overestimates
pairing correlations [28], whereas mp-mh wave functions are
much closer to the exact ones [16].

3. Single-particle spectra and occupation probabilities
in the self-consistent mp-mh approach

It is well known that when one goes beyond the HF
approximation, the notion of single-particle spectra begins
to be lost (except in the BCS approximation). Equation (20)
illustrates this idea, as h[ρ] and ρ cannot be simultaneously
diagonalized. The same phenomenon occurs also in HFB
theory. However, single-particle spectra can be obtained either
by diagonalizing the density matrix ρ and taking the mean
value of h[ρ] or by diagonalizing h[ρ]. Here, the second
scheme will be used.

In this section, we are interested in single-particle level
shifts due to pairing-type correlations. In the representation
that diagonalizes h[ρ] and in the special case of the excited
pairs wave function, the one-body density matrix calculated
as the mean value of the density operator with respect to
the correlated wave function is diagonal. Diagonal terms are
directly interpreted as fractional occupation probabilities.
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FIG. 6. Neutron single-particle spectra for 106Sn and 116Sn, in the
HF, mp-mh, HFB, and BCS approaches. The dotted horizontal line is
located between the HF Fermi level and the first empty level.

In Fig. 6, the neutron level of the 50–82 major shell for
106Sn and 116Sn deduced from four approaches (HF, mp-mh
configuration mixing, HFB, and BCS) are shown. For the
two nuclei, one can note two tendencies: (i) Levels are more
compressed in the mp-mh approach than in the HF ones, and
(ii) the gap between the HF Fermi level and the next level
decreases when pairing correlations are taken into account,
the effect being the larger in HFB.

In Fig. 7, all bound proton single-particle levels are
presented in the case of 116Sn. 100Sn and 106Sn are very similar.
We observe that proton single-particle levels deduced from
the mp-mh configuration mixing method are systematically
shifted upward. This comes from the well-identified effect of
including the Coulomb interaction in the residual interaction
responsible for correlations [32]. Besides, we obtained also a
small compression of proton spectra as the most shifted levels
are the deeper ones.

To interpret in more detail what happens with single-particle
spectra, we examine the quantity εHF − ε, where εHF is the
energy of HF single-particle states and ε the corresponding
energy found in other approaches (mp-mh, HFB, or BCS).
Figure 8 displays energy shifts of bound proton and neutron
single-particle levels, between the HF and mp-mh configura-
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FIG. 7. 116Sn proton single-particle spectra from the HF, mp-mh,
and HFB approaches. Only bounded states have been drawn. The
dotted horizontal line is between occupied and empty single-particle
levels in a pure HF approach.

tion mixing approaches for 100Sn. One observes that proton
single-particle states are systematically shifted upward in the
mp-mh configuration mixing method. One also sees that this
shift decreases when going from the bottom to the top of the
potential well. It is 
1.2 MeV for the 1s1/2 state and 
0.5 MeV
at the Fermi surface. For neutrons, one obtains a different
scenario. First, shifts are smaller (<200 keV) and second shifts
become positive above the Fermi surface. This sign inversion
produces a small compression of the neutron spectrum. It
seems intuitive that, at least, a part of the single-particle levels
should be shifted upward when correlations are present, since
the mean field that gives minimal total energy is the HF one.
The level compression effects may be attributed to the coupling
of the particle propagation with mean-field dynamics, whereas
the different behavior of protons and neutrons comes from the
Coulomb residual interaction.

Let us turn to 106Sn, a nucleus where BCS pairing correla-
tions are relatively small. Figure 9 presents the single-particle
energy shifts obtained from the mp-mh, HFB, and BCS
approaches, together with the mp-mh shifts in 100Sn taken from
Fig. 8 (stars). For protons, the mp-mh configuration mixing
method predicts systematic upward shifts of the same order of
magnitude or larger (for the 1s1/2 state) than those of 100Sn. The
proton shifts obtained in 106Sn by the mp-mh approach appear
to originate from two effects: the influence of the same kind
of correlations as in 100Sn and the effect of neutron pairing.
The differences with 100Sn can be explained by the sign of the
coupling associated with pairing correlations. For example, the
1s1/2 proton shifts found in the mp-mh approach for 100Sn and
the HFB one for 106Sn have the same sign, so the total 1s1/2 shift
in 106Sn is larger than the 100Sn one. On the contrary, the 1f5/2

proton shifts found in the mp-mh approach for 100Sn and the
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FIG. 8. 100Sn proton and neutron single-particle level energy
differences εHF − ε between HF and mp-mh approaches. Energies
are expressed in MeV. The vertical dashed line represents the Fermi
level. Only bound levels have been drawn.

HFB approach for 106Sn have opposite signs. Consequently,
the final proton shift in 106Sn is reduced in comparison with
the 100Sn one. For neutrons, a similar behavior is obtained.
However, shifts are smaller, and they appear essentially in
s and p single-particle states.

Figure 10 displays energy shifts obtained in 116Sn. Similar
conclusions to those of 106Sn can be drawn, except for the 2d3/2

and 1h11/2 neutron orbitals, which tend to be closer to each
other in the mp-mh configuration mixing approach. Besides,
for this nucleus, an inversion between the neutron 1f5/2 and
2p3/2 states has been obtained with mp-mh as well as with
HFB or BCS approaches. The HFB approximation tends to
amplify this inversion by about 
300 keV in comparison with
the mp-mh configuration mixing method.

In the mechanism of adding the two previously mentioned
effects (100Sn type correlations and pairing), the total HFB
or BCS shifts found for 106Sn and 116Sn and those found in
100Sn do not give exactly the shifts obtained in the mp-mh
configuration mixing for 106Sn and 116Sn but only the main
trend. However, one must point out that the structure of orbitals
is expected to change from one isotope to the other one.

The influence of the residual interaction can be measured
also through the values of the single-particle states occupation:

v2
τ i = 〈�|a+

τ iaτ i |�〉, (52)
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FIG. 9. Same as Fig. 8, but for 106Sn. The stars indicate the
values obtained in 100Sn from the mp-mh approach. The vertical lines
indicate the results from HF, mp-mh, HFB, and BCS approaches.

where |�〉 represents here the ground state wave function for
a given approximation (HF+BCS, HFB, mp-mh configuration
mixing).

In Fig. 11, neutron occupation probabilities for single-
particle states located around the Fermi surface are drawn
for 100Sn, 106Sn, and 116Sn. They have been calculated for
five different cases: non-self-consistent mp-mh configuration
mixing (cross), self-consistent mp-mh configuration mixing
(star), HFB (circle), PBCS (triangle), and BCS (diamond)
approaches.

In 100Sn, HFB, PBCS, and BCS give the trivial HF zero
or one occupation probabilities. In the mp-mh configuration
mixing approaches (non-self-consistent or self-consistent),
neutron occupation probabilities are no longer equal to 0 or
1, but they are still close to these values. Let us note that a
similar behavior is obtained for protons in all three Sn isotopes
calculated with the mp-mh configuration mixing description.
Referring to the discussion about the structure of correlated
wave functions in Sec. III B3, neutron correlations can be
estimated to be less than 10% of the neutron correlated wave
function in 100Sn. Proton correlations in 100Sn as well as in
106Sn and 116Sn also represent less than 10%. This explains
why occupation probabilities, in those cases, are so close to
the HF ones.
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FIG. 10. Same as Fig. 8, but for 116Sn.

In 106Sn and 116Sn, occupation probabilities for neutron
are markedly different. A pronounced depletion of the single-
particle states below the Fermi level is obtained, which is
compensated for by a non-zero population of single-particle
states above the Fermi sea. The results in Fig. 11 show
that HFB, PBCS, and BCS overestimate the occupation
probabilities above the Fermi sea and underestimate those
within the Fermi sea in comparison to the mp-mh configuration
mixing method. A similar behavior has been observed when
comparing HFB, PBCS, and BCS with the results of the exactly
solvable model of Richardson [16,28]. To conclude, one
observes that when pairing correlations are medium (106Sn) or
weak (100Sn), self-consistent, and non-self-consistent mp-mh
configuration mixing calculations give similar results. In
contrast, in a strong pairing regime (116Sn), self-consistent
mp-mh calculations give results significantly different from
those of non-self-consistent ones. Self-consistence induces a
stronger depletion of single-particle states inside the Fermi
sea, which, however, is smaller than the one obtained with
HFB.

4. Radii

The size and shape of nuclei strongly depend on the
number of protons and neutrons and, to a lesser extent, on
the magnitude of correlations present in the internal structure.
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FIG. 11. Neutron single-particle occupation probabilities as func-
tions of single-particle levels energies in 116Sn, 106Sn, and 100Sn
calculated for five different cases (see legend).

The three Sn isotopes studied in this work are found to be
spherical with the mp-mh approach. Concerning their size, we
have calculated different types of radii and some associated
quantities directly comparable with experimental data in order
to see the effect of pairing correlations obtained in the particle
number conserving mp-mh approach. The total root mean
square (rms) radius is

rav =
√

r2
p + r2

n

Z + N
, (53)

with proton and neutron rms radii defined as

rp =
√∫

d3r ρπ (r)r2

Z
, rn =

√∫
d3r ρν(r)r2

N
, (54)

where ρπ (r) and ρν(r) are the proton and neutron radial
densities. The difference is expressed as

�rnp = rn − rp, (55)

a measure of the neutron-skin thickness. The rms charge radius
is

rc =
[
r2
p + 3

2
(B2 − b) − 0.1161

N

Z

]1/2

, (56)

where B = 0.7144 fm comes from the proton form factor, and
b is a correction for the center of mass motion. Assuming
a pure harmonic oscillator wave function, b is given by
the relation b = 41.47/h̄ω(Z + N ), where the size parameter
h̄ω is determined by Bethe’s formula h̄ω = 1.85 + 35.5(Z +
N )−1/3 [25]. The third contribution to rc in Eq. (56) is a
correction associated with neutron electromagnetic properties.

The total rms radius rav has been calculated in HF, HFB,
and mp-mh approaches for six Sn isotopes (100Sn, 106Sn, 114Sn,
116Sn, 120Sn, and 132Sn). Results are shown in Fig. 12. One
observes a regular increase of rav with the mass number A.
Values obtained from HF, HFB, and mp-mh approaches are
very close to each other, the largest difference being found in
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4.5

4.6
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FIG. 12. Total rms radii rav for six Sn isotopes calculated with the
HF, HFB, and mp-mh approaches. Lines between points are drawn to
guide eye.
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FIG. 13. (Color online) Difference between neutron and proton
rms radii �rnp calculated with the HF, HFB, and mp-mh approaches.
Experimental measurements with error bars are also represented.

120Sn. This almost regular increase is also obtained in the
separate proton and neutron rms radii rp and rn. Looking
into more detail, one observes that for Sn isotopes containing
large pairing correlations, rav is larger in HF than in HFB
or mp-mh. The same observation is true also for rp and rn

taken individually. This result is not very intuitive, as pairing
correlation populates levels above the Fermi level having on
the average larger spatial extensions. However, this behavior
can be explained from the fact that, as shown previously,
correlations tend to shift single-particle states downward,
hence producing a reduction of single-particle orbital rms radii.

One experimentally accessible quantity is the neutron-
proton difference �rnp defined in Eq. (55). This difference
gives crucial indications about the distributions of protons
and neutrons in nuclei. For that reason, it is a quantity more
sensitive to models than the total rms radius rav . Results are
displayed in Fig. 13 for six different Sn isotopes. Experimental
data have been taken from Refs. [33–36]. In the two light
proton rich isotopes 100Sn and 106Sn, where no experimental
data are available, the three theoretical approaches give
negative values of �rnp very close to each other. The fact
that the proton radii are larger than neutron ones is of course
due to the magnitude of the Coulomb field in these nuclei. In
the heavier Sn isotopes, �rnp changes sign, which means that a
neutron skin develops. One observes that the mp-mh approach
yields values of �rnp smaller than HF and HFB, especially in
the most superfluid nuclei 114,116,120Sn. All calculated values
are within experimental error bars, except for the mp-mh
configuration mixing calculation of 120Sn and to a lesser extent
116Sn. The low values obtained in midshell Sn with mp-mh
configuration mixing mainly come from the large downward
shift of the neutron 1h11/2 orbital (see Fig. 10), which gives
rise to a smaller value of the neutron 1h11/2 orbital radius. One
notes that the experimental error bars are quite large and that
the different experimental results are scattered over a relatively
large range of values.
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FIG. 14. (Color online) Charge radii for several Sn isotopes
calculated within HF, HFB, and mp-mh approaches. Experimental
data are indicated by solid squares, with error bars.

To have a more precise idea of the meaning of results
concerning �rnp, we have evaluated also the rms charge
radius rc using formula (56). For a given nucleus, rc depends
essentially on rp. Then, rc gives an indication of the reliability
of rp calculations. Figure 14 displays the evolution of rc for
the same Sn isotopes as in Fig. 13. Experimental data have
been extracted from Refs. [37–40].

One sees that the mp-mh configuration mixing approach
gives a description of charge radii closer to experimental
values, particularly in isotopes where pairing is large. From
this result, one infers that the larger deviations from experiment
obtained for �rnp with the mp-mh approach come mainly from
the neutron rms radius. It is interesting to note that although
the HF and HFB �rnp are closer to experiment, the separate
reproduction of rc, and therefore of rp and rn, is not as good
as the one obtained with the mp-mh approach.

5. First excited 0+ state

Sn isotopes manifest a very rich and complex spectroscopy.
In the last two decades, many experiments have been carried
out so that a lot of experimental data are now available for
most Sn isotopes between A = 108 and A = 132, giving us
the opportunity to study nuclear property changes over a
large-range neutron-proton asymmetry. Of course, a complete
description of the low-energy spectroscopy of these nuclei is
beyond the scope of this work, since it would require taking
into account more general correlations than pairing.

Excited 0+ states have been observed in most Sn isotopes. In
this study, we look first at excited 0+ states and compare their
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FIG. 15. (Color online) First excited 0+ states calculated with
the mp-mh approach for six Sn isotopes. Experimental data for 0+

are indicated by horizontal bars.

energy to experimental measurements. In Fig. 15, the energy of
the first excited 0+ state calculated using mp-mh configuration
mixing is displayed for 100Sn, 106Sn, 114Sn, 116Sn, 120Sn, and
132Sn. Energies vary from 
12 MeV for the two doubly
magic isotopes 100Sn and 132Sn down to 
2 MeV for midshell
isotopes. Among the selected isotopes, experimental data on
excited 0+ energies can be found in the literature only for
114Sn, 116Sn, and 120Sn [41]. They are represented in Fig. 15 by
horizontal red bars. The first excited 0+

1 state in 116Sn is known
to be a collective state (it is the head of a rotational band),
contrary to the second experimental excited 0+

2 state [42].
Therefore, a description of the 0+

1 experimental state is beyond
the scope of this work, and the first excited state obtained with
the mp-mh approach is likely to be the second experimental
0+

2 excited state. This point has been stressed in Ref. [43].
With this hypothesis, the difference between experimental
and theoretical excitation energies is 
300 keV in the three
isotopes where experimental data are available. One must note
that for 120Sn, there is no evidence that the experimental first
0+

1 excited state is a collective nature, as in 116Sn [43]. Hence,
it may be that the first 0+ state we calculate indeed could
be interpreted as the first experimental 0+. For this nucleus,
the difference between experimental and theoretical excitation
energies is 
400 keV. For 114Sn, experimental data give no
information about the collectivity of excited 0+ states. The
experimental excitation energies of the three first excited 0+
states are 1.953, 2.156, and 2.421 MeV, whereas the mp-mh
configuration mixing calculation gives 
2.78 MeV.

IV. SUMMARY AND CONCLUSION

In this paper, we have presented the formalism of a varia-
tional configuration mixing self-consistent method adapted to
nuclear structure. This approach is an extension of the usual
mean-field theory, which is able to treat pairing-like, RPA-like,
and particle-vibration correlations in a unified way. No inert
core is assumed in this approach. In the spirit of the mean-field

theory, the same interaction is used to describe both the mean
field and the residual part of the effective Hamiltonian. We
have applied this formalism to the special case of pairing-like
correlation using the finite-range density-dependent Gogny
force. Applications to three Sn isotopes characterized by three
BCS pairing regimes have been considered: 100Sn (no pairing),
106Sn (weak pairing), and 116Sn (strong pairing).

We have shown that the mp-mh configuration mixing
method systematically finds more correlations than BCS,
HFB, and projected BCS (PBCS). In the proton sector, a
systematic additional energy of the order of 1.7 MeV has
been found for the three Sn isotopes mentioned just above. For
the neutron sector, we find that in the strong pairing regime,
BCS, HFB, or mp-mh approaches provide similar correlation
energy; whereas in weak and medium pairing regimes, mp-mh
provides many more correlations than BCS or HFB. Moreover,
the structure of mp-mh wave functions appears quite different
from those of BCS, HFB, and PBCS. The differences manifest
themselves in quantities such as occupation probabilities for
which BCS, PBCS, or HFB always overestimate the effect of
correlations in comparison to the mp-mh configuration mixing
method, and also in nuclear rms radii.

Correlation energies have been shown to converge rea-
sonably well using a small number of p-h excitation (up
to 4p-4h) and a number of single-particle states extending
to 
100 MeV above the Fermi sea. On the other hand,
self-consistency effects, i.e., the influence of the modification
of the single-particle states due to correlations has been found
important when correlations are strong, e.g., in 116Sn.

Work is in progress to include more general correlations
than those considered in this study.
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APPENDIX A: VARIATIONAL PRINCIPLE WITH RESPECT
TO THE MIXING COEFFICIENTS

In this Appendix, we derive the secular equation that
determines the mixing coefficients {Aαπ αν

}. Moreover, we
will give details concerning the evaluation of N -body matrix
elements associated with one-body and two-body operators.

The first condition given by the variational principle,
applied to the energy functional F , [see Eqs. (4) and (7)]
reads

∂F (�)

∂A∗
απ αν

= 0. (A1)
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The two-body nuclear Hamiltonian is defined by

Ĥ = K̂ + V̂ [ρ]. (A2)

In Eq. (A2), the Hamiltonian contains a kinetic term K̂

(which includes the one-body center of mass correction) and
a density-dependent potential term. As a matter of fact, the
general formalism developed in this paper can be applied to
any two-body interaction, as for instance Skyrme or Gogny
effective forces.

Equation (A1) leads to∑
α′

π α′
ν

Aα′
π α′

ν

[
〈φαπ

φαν
|Ĥ [ρ]|φα′

π
φα′

ν
〉

+
∑
απ αν

A∗
απ αν

〈φαπ
φαν

|
∫

∂V̂ [ρ]

∂ρ(�r)

∂ρ(�r)

∂A∗
α′

π α′
ν

d3r|φα′
π
φα′

ν
〉
]
,

= λAαπ αν
. (A3)

where ρ(�r) is the nucleon density distribution defined in
Eq. (6). After some manipulation, Eq. (A3) takes the form∑

α′
π α′

ν

Hαπ αν,α′
π α′

ν
Aα′

π α′
ν
= λAαπ αν

, (A4)

where the Hamiltonian matrix H is defined by

Hαπ αν,α′
π α′

ν
= 〈φαπ

φαν
|Ĥ +

∑
mnτ

�τ
mna

+
τmaτn|φα′

π
φα′

ν
〉, (A5)

with � a one-body rearrangement field whose matrix elements
are

�τ
mn =

∫
d3�rϕ∗

τm(�r)ϕτn(�r)〈�| ∂V̂

∂ρ(�r)
|�〉 (A6)

and

∂V̂ [ρ]

∂ρ(�r)
= 1

4

∑
ijkl

〈ij |∂V [ρ]

∂ρ(�r)
|k̃l〉a+

i a+
j alak. (A7)

As can be seen from Eq. (A5),H requires the evaluation of one-
body and two-body matrix elements such as 〈φα′ |a+

i aj |φα〉 and
〈φα′ |a+

i a+
j alak|φα〉. To calculate them, excited configurations

are written in the form

|φα〉 =
N∏

i=1

a+
αi

|0〉 = a+
α1

a+
α2

. . . a+
αN

|0〉, (A8)

where N is the number of particles (either proton or neutron)
and |0〉 stands for the particle vacuum. The set of {αi} indices
represents orbitals that are occupied in the configuration |φα〉.
To simplify notations, proton and neutron indices have been
omitted in Eq. (A8). The same notation will be used in the
following.

One assumes that, in Eq. (A8), particle creation operators
are ordered, for example, by increasing single-particle energy
when one goes from the left to the right. The set of cre-
ation and annihilation operators {a+

i , ai} follows the fermion
anticommutation rules:

[a+
i , aj ] = a+

i aj + aja
+
i = δij ,

(A9)
[a+

i , a+
j ] = a+

i a+
j + a+

j a+
i = 0.

Using relation (A9), it is easy to show that

aj |φα〉 =
N∑

m=1

(−)m+1δjαm

N∏
n=1,n�=m

a+
αn

|0〉. (A10)

Then:

a+
i aj |φα〉 =

N∑
m=1

(−)m−1δjαm
a+

i

N∏
n=1,n�=m

a+
αn

|0〉, (A11)

where there remains to order a+
i within the list of a+

αn
operators.

Therefore

a+
i aj |φα〉 =

N∑
m=1

δjαm
(−)m−1+i ′ ∣∣φim

α

〉
, (A12)

with i ′ = i − 1 if i � m, i ′ = i if i ≥ m, and |φim
α 〉 is the Slater

determinant obtained by removing a+
αm

from |φα〉, adding
a+

i , and ordering the a+ from left to right. One sees that
〈φα′ |a+

i aj |φα〉 is nonzero only if |φim
α 〉 and |φα′ 〉 contain the

same orbitals.
For a two-body operator, the evaluation of

〈φα′ |a+
i a+

j alak|φα〉 is a little more tedious but is done
in the same manner. One first obtains

alak|φα〉 = (1 − δlk)
N∑

m=1

(−)m+1δkαm

(A13)

×
N∑

n=1,n�=m

(−)n
′+1δlαn

N∏
r=1,r �=n�=m

a+
αr

|0〉,

with n′ = n if l < k, and n′ = n − 1 if l > k. Then

a+
i a+

j alak|φα〉 = (1 − δlk)(1 − δij )

×
N∑

m=1

(−)m+1δkαm

N∑
n=1,n�=m

(−)n
′+1δlαn

× a+
i a+

j

N∏
r=1,r �=n�=m

(1 − δiαr
)(1 − δjαr

)a+
αr

|0〉,

(A14)

or

a+
i a+

j alak|φα〉 = (1 − δlk)(1 − δij )
N∑

m=1

(−)m+1δkαm

×
N∑

n=1,n�=m

(−)n
′+1δlαn

(−)i
′+j ′ ∣∣φijmn

α

〉
,

(A15)

where (−)i
′

and (−)j
′

are phases. |φijmn
α 〉 is the Slater

determinant obtained by removing a+
αm

and a+
αn

from |φα〉,
adding a+

i and a+
j , and ordering the a+ from left to right. The

term 〈φα′ |a+
i a+

j alak|φα〉 is nonzero only if |φijmn
α 〉 and |φα′ 〉

containsthe same orbitals. The calculation of the mean value
of one-body and two-body operators is straight forward using
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formulas (A12) and (A15). Let

θ̂1 =
∑
ij

〈i|θ1|j 〉a+
i aj (A16)

be a one-body operator. Using Eq. (A12), one obtains

〈φα′ |θ̂1|φα〉

=
∑

i

(
N∑

l=1

δiαl

)
〈i|θ1|i〉〈φα′ |φα〉

+
∑
i �=j

N∑
m=1

(−)m+1δjαm
〈i|θ1|j 〉〈φα′

∣∣φim
α

〉
. (A17)

The first term on the right-hand side of Eq. (A17) gives
a diagonal contribution in the multiconfiguration space. It
is a mean-field term. The second term is an off-diagonal
contribution which is nonzero only if |φα′ 〉 = |φim

α 〉. In this
case, the off-diagonal term is proportional to 〈i|θ1|j 〉.

Now, let θ̂2 be a two-body operator:

θ̂2 =
∑
ijkl

〈ij |θ2|k̃l〉a+
i a+

j alak. (A18)

Using Eq. (A18), the expression of 〈φα′ |θ̂2|φα〉 contains three
different contributions, as shown in Eq. (A19).

〈φα′ |θ̂2|φα〉

=
∑
i<j

 N∑
p=1

δj,αp

N∑
q=1,q �=p

δi,αq

 〈φα′ |φα〉〈ij |θ2|ĩj〉

+
∑

i<j,j �=k

∑
k

 N∑
p=1

(−)pδk,αp

N∑
q=1,q �=p

δi,αq

〈
φα′
∣∣φijki

α

〉
× 〈ij ∣∣θ2

∣∣k̃i
〉

+
∑

i<j,j �=k �=l

∑
l

 N∑
p=1

δi,αp

N∑
q=1,q �=p

(−)q−1δl,αq

〈
φα′
∣∣φijil

α

〉
×〈ij |θ2|ĩl〉

+
∑

i<j,i �=k �=l

∑
k

 N∑
p=1

(−)p−1δk,αp

N∑
q=1,q �=p

δj,αq

〈
φα′
∣∣φijkj

α

〉
×〈ij |θ2|k̃j〉

+
∑

i<j,i �=k �=l

∑
l

 N∑
p=1

δj,αp

N∑
q=1,q �=p

(−)qδl,αq

〈
φα′
∣∣φijjl

α

〉
×〈ij |θ2|j̃ l〉

+
∑

i<j,(i,j )�=k �=l

∑
l<k

 N∑
p=1

(−)p+1δk,αp

×
N∑

q=1,q �=p

(−)q+1δl,αq

〈
φα′
∣∣φijkl

α

〉 〈ij |θ2|k̃l〉. (A19)

The first term corresponds to the usual mean-field contribution.
The four following terms as well as the last one are of-diagonal

contributions in the multiconfiguration space. The four terms
couple Slater determinants |φα〉 and |φα′ 〉 differing from one
particle in one orbital, and the last term couples two Slater
determinants that differ from two particles in two different
orbitals.

Let us add that the total energy E(�) of the nucleus is
obtained by multiplying Eq. (A4) by A∗

απ αν
and summing over

απαν . Taking into account the relation
∑

απ αν
|Aαπ αν

|2 = 1,
one gets

E(�) = λ −
∑
mnτ

�τ
mn〈�|a+

τmaτn|�〉. (A20)

APPENDIX B: VARIATIONAL PRINCIPLE WITH RESPECT
TO THE SINGLE-PARTICLE ORBITALS

We detail here the derivation of Eq. (20). The starting point
is the second condition of system (7) where one assumes fixed
mixing coefficients.

∂F (�)

∂ϕ∗
τj

= 0. (B1)

Using Eq. (4), the variation δF(�) of the energy functional is

δF (�) = 〈δ�|Ĥ − λ|�〉 + 〈�|Ĥ − λ|δ�〉
+ 〈�|δV̂ [ρ]|�〉, (B2)

with

δV̂ [ρ] =
∫

d3�r ∂V̂ [ρ]

∂ρ(�r)
δρ(�r), (B3)

and

δρ(�r) = 〈δ�|ρ̂(�r)|�〉 + 〈�|ρ̂(�r)|δ�〉. (B4)

First, let us note that the variation of |�〉 with respect to the
orbitals a+

α can be written as

|δ�〉 = iŜ|�〉, (B5)

where Ŝ is an infinitesimal Hermitian one-body operator

Ŝ =
∑
kl

Skla
+
k al. (B6)

In fact, using Thouless’s theorem, a variation of the orbitals
can be written as

a+
α → eiŜa+

α e−iŜ ∼ a+
α + [iŜ, a+

α ]. (B7)

Therefore, any Slater determinant of the form (A8) varies
according to

|φα〉 → eiŜ |φα〉 ∼ (1 + iŜ)|φα〉, (B8)

as eiŜ |0〉 = |0〉. Consequently

|�〉 =
∑

α

Aα|φα〉 → |�〉 + |δ�〉 =
∑

α

Aα(1 + iŜ)|φα〉,

(B9)

which yields Eq. (B5).
Let us mention that |δ�〉 represents a genuine variation of

|�〉 only if |�〉 belongs to a subspace of the full N -particle
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Hilbert space. This is the case here, since |�〉 is built from a
finite set of mp-mh excitations.

Using Eq. (B5), Eq. (B2) can be expressed as

δF(�) = i〈�|
(

Ĥ − λ +
∫

d3�r〈�|∂V̂ (ρ)

ρ(�r)
|�〉ρ̂(�r)

)
Ŝ

(B10)

−Ŝ

(
Ĥ − λ +

∫
d3�r〈�|∂V̂ (ρ)

ρ(�r)
|�〉ρ̂(�r)

)
|�〉.

The second condition (7) finally leads to

〈�|
[
Ĥ +

∫
d3�r〈�|∂V̂ [ρ]

∂ρ(�r)
|�〉ρ̂(�r), a+

k al

]
|�〉 = 0.

(B11)

Let σ be the two-body correlation matrix defined as

〈�|a+
i a+

manal|�〉 = ρliρnm − ρlmρni + σil,mn. (B12)

Equation (B11) can be seen to be equivalent to

[h[ρ, σ ], ρ] = G(σ ), (B13)

with

Gkl(σ ) = 1

2

∑
imn

〈im|V [ρ]|kn〉σil,mn

− 1

2

∑
imn

〈ml|V [ρ]|ni〉σki,mn. (B14)

Equation (B13) appears as an inhomogeneous HF equation,
the right-hand side G(σ ) being an antisymmetric matrix
depending only on the two-body correlation matrix σ . This
equation reduces to the usual HF condition, when σ is taken
to be zero.

APPENDIX C: PROTON-NEUTRON SPLITTING OF THE
MIXING COEFFICIENTS

In this Appendix, one assumes that the correlated wave
function |�〉 is particular in such a way that the residual proton-
neutron interaction part of Ĥ deduced from Wick’s theorem
gives no contribution. This is the case for the correlated wave
function used in the pairing application of Sec. III. Then, let
us define the restricted Hamiltonian Hrestr. containing only the
terms that give a contribution with respect to the correlated
wave function that has been chosen. It can always be written
as the sum of a proton and a neutron contribution:

Ĥrestr. = Ĥπ + Ĥν . (C1)

In this case, Eq. (8) is equivalent to∑
α′

π

〈φαπ
|Ĥπ |φα′

π
〉Aα′

π αν
+
∑
α′

ν

〈φαν
|Ĥν |φα′

ν
〉Aαπ α′

ν

= EAαπ αν
. (C2)

Since the matrices associated with Ĥπ and Ĥν are Hermitians,
they can be diagonalized using unitary matrices Uπ and Uν :∑

α′
ν

Ĥν
ανα′

ν
Uν

α′
ν ,j

= Uν
αν,j

Eν
j , (C3)

∑
α′

π

Ĥπ
απ α′

π
Uπ

α′
π ,k = Uπ

απ ,kE
π
k . (C4)

A consequence of Eq. (C3) is∑
αν

Uν∗
αν,j

Ĥν
ανα′

ν
= Uν∗

α′
ν ,j

Eν
j . (C5)

Applying
∑

α Uν∗
αν,j

to Eq. (C2) gives

∑
α′

π

Ĥπ
απ α′

π

(∑
αν

Uν∗
αν,j

Aα′
π α′

ν

)
= (E − Eν

j

) (∑
αν

Uν∗
αν,j

Aαπ αν

)
.

(C6)

By comparing Eq. (C6) with Eq. (C4), one sees that if the
mixing coefficients A and the total energy E are solutions
of Eq. (C2), then the quantities

∑
α Uν∗

αν,j
Aα′

π α′
ν
, should be

proportional to one of the Uπ
α′

π ,k:∑
α′

ν

Uν∗
α′

ν ,j
Aα′

π α′
ν
= ξjkU

π
α′

π ,k, (C7)

where ξjk is a complex phase, and (C6) shows that

E = Eπ
k + Eν

j . (C8)

Using Eq. (C7),

Aα′
π α′

ν
=
∑

j

Uν
α′

ν ,j
ξjkU

π
α′

π ,k = Cπ
α′

ν
Uπ

α′
π ,k. (C9)

Therefore Aα′
π α′

ν
, solution of Eq. (C2) with the eigenvalue

E = Eπ
k + Eν

j , is proportional to Uπ
α′

π ,k .
In the same way, by exchanging proton and neutron indices,

one shows that Aα′
π α′

ν
= Cν

α′
π
Uν

α′
ν ,j

is an eigenvector of Eq. (C2)
with the eigenvalue E = Eπ

k + Eν
j . Then, Cπ

α′
ν

is necessarily
proportional to Uν

α′
ν ,j

. Taking into account the condition∑
α |Aαπ αν

|2 = 1, one finally obtains

Aαπ αν
= Uπ

απ ,kU
ν
αν,j

. (C10)

Consequently, with the form (C1) Ĥrestr., the mixing co-
efficients Aαπ αν

are products of a neutron and a proton
contribution.
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