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Shape coexistence and phase transitions in the platinum isotopes
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The matrix coherent-state approach of the interacting boson model with configuration mixing is used to study
the geometry of the platinum isotopes. With a parameter set determined in previous studies, it is found that the
absolute minimum of the potential for the Pt isotopes evolves from spherical to oblate and finally to prolate shapes
when the neutron number decreases from N = 126 (semi-magic) to N = 104 (mid-shell). Shape coexistence
is found in the isotopes 182,184,186,188Pt. A phase diagram is constructed that shows the coexistence region as a
function of the number of bosons and the strength of the mixing parameter.
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I. INTRODUCTION

The phenomenon of shape coexistence in nuclei has been
studied for decades and still is an active topic of research. Con-
version electron coincidence, recoil and recoil-decay tagging
techniques, heavy-ion-induced fusion-evaporation reactions,
and the study of the fine-structure of α decay have, for example,
allowed the identification of three low-lying 0+ states in 186Pb
[1], each interpreted in terms of a distinct shape, originating
from multiple particle-hole excitations across the Z = 82
proton shell gap. Coexisting shapes have also been proposed
to influence the yrast states in 174Pt [2] where mixing between
different nuclear configurations results in the observation of
a single mixed yrast band. Investigations in 176−182Pt have
suggested that the two lowest-lying 0+ of these isotopes are
formed from the mixing of two intrinsic states of different
deformation [3].

Calculations within a deformed mean-field approximation
have indicated the possibility to find close-lying oblate and
prolate minima next to the spherical ground-state configuration
of 186Pb [4]. In general, these studies have focused on the
properties of static potential energy surfaces (PESs) and only
recently it has become possible to implement the generator
coordinate method with symmetry restoration which yields
spectroscopic properties of nuclei, albeit with considerable
numerical effort (for an example in the neutron-deficient
Pb isotopes, see Ref. [5]). Shell-model studies [6] of the
coexistence phenomenon are even more numerically chal-
lenging because of the large spaces involved. The Interacting
Boson Model (IBM) [7,8], on the other hand, assumes a
truncated shell-model Hilbert space composed of correlated
like-nucleon pairs coupled to angular momentum L = 0 and 2,
which are subsequently approximated as bosons, and employs
an appropiate Hamiltonian in this space. This simplified
analysis makes possible a calculation consistent with both the
spectroscopic properties and the geometry of an isotope series.
In particular, for the Pt isotopes a transitional Hamiltonian can

be proposed that covers the range from U(5) vibrational to
SU(3) rotational nuclei.

The use of coherent states allows one to derive a PES
starting from an algebraic IBM Hamiltonian, which can in
turn be used to determine the equilibrium configurations of
the system and their corresponding shapes in terms of the β

and γ variables. In case there are close-lying configurations
that can mix, the appropriate algebraic framework was first
proposed by Duval and Barrett [9]. Their approach leads to
coexisting minima that can be associated with the presence
of intruder excitations [10,11], in particular at or near shell
closures. The origin of these intruder states can be traced
back to many-particle many-hole (p-h) excitations across shell
gaps [12]. Duval and Barrett [9] suggested the possibility of
including the simplest intruder 2p-2h configuration by adding
two extra bosons to the IBM and allowing this configuration
to mix with the regular (ground state) one with N bosons.
In the Pb isotopes, where a coexistence of spherical, oblate,
and prolate shapes seems to occur (in particular in 186Pb),
three configurations are required of a regular, a 2p-2h, and
a 4p-4h type. The configuration-mixing IBM has allowed a
simultaneous description of the whole series of Pb isotopes
with a single Hamiltonian [13]. To analyze the geometry
of such Hamiltonians, a matrix coherent-state method was
introduced [14,15] that allows a consistent description of shape
coexistence phenomena, as well as an analysis of the phase
diagrams and the transitional behavior of IBM Hamiltonians
[16,17].

In this article we use the matrix coherent-state method
to study the evolution of the shape and the phenomenon
of coexistence in the Pt isotopes and we present the phase
diagrams associated with the chain. The article is organized
as follows. In Sec. II the model Hamiltonian and the matrix
formulation of the problem are introduced. The results for the
shape potentials and phase diagrams in the 182−198Pt isotopes
are presented in Secs. III and IV. A brief summary and
conclusions are given in Sec. V.
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II. THE MODEL HAMILTONIAN

The Hamiltonian of the configuration-mixing IBM is

Ĥ = Ĥ0p−0h + Ĥ2p−2h + Ĥmix. (1)

This Hamiltonian acts in a Hilbert space that consists of the
sum of two symmetric U(6) representations [N ] ⊕ [N + 2],
corresponding to the 0p-0h and 2p-2h excitations, respectively.
The separate pieces of the Hamiltonian are

Ĥi = εi n̂d + κiQ̂i · Q̂i + κ ′
i L̂ · L̂, (2)

where Ĥi(i = 0 or 2) are the Hamiltonian operators acting
in the 0p-0h (regular) and 2p-2h (deformed) subspaces,
respectively. Furthermore, the operator n̂d counts the number
of d bosons, L̂ is the angular momentum operator, Q̂i is the
standard quadrupole operator of the IBM,

Q̂i,µ = (s†d̃ + d†s̃)(2)
µ + χi(d

†d̃)(2)
µ , (3)

and Ĥmix mixes the two configurations,

Ĥmix = ω[(s†s† + s̃ s̃)(0) + (d†d† + d̃d̃)(0)]. (4)

The parameters εi, κi , and χi in Eqs. (2) and (3) pertaining
to the 0p-0h (i = 0) and 2p-2h (i = 2) configurations and the
off-set energy � between the two configurations have been
taken from Ref. [18] without any modification and are shown
in Table I. (Note that the value of � = 1400 keV quoted in
Ref. [18] corresponds to half the off-set energy.) These pa-
rameters were extracted from a comprehensive fit to excitation
energies and B(E2) values in the 194Pt and 196Pt isotopes
for the regular N configuration and, based on the concept
of I -spin symmetry [19], from the W isotopes for the 2p-2h
N + 2 configuration. The intensity of the mixing is determined
by the parameter ω. We have taken for the calculation of PESs
the average value ω = 50 keV but for the phase diagram a
larger range has been considered to map the complete region.

The algebraic formalism does not provide directly a
geometric interpretation in terms of shapes but this can be
achieved with the theory of coherent states [20]. A geometric
interpretation is obtained by computing the expectation value
of the Hamiltonian in the ground coherent state, a procedure
that is known as the classical limit [21,22]. Hence a connection
was established between the IBM and the Bohr-Mottelson
geometrical model [23], giving an intrinsic geometric structure
to the former. With the coherent-state formalism the following
energy surface is obtained for a general IBM Hamiltonian,

E(N, β, γ ) = a
(0)
1 + N

1 + β2

(
a

(1)
1 β2 + a

(1)
2

) + N (N − 1)

(1 + β2)2

×(
a

(2)
1 β4 + a

(2)
2 β3 cos 3γ + a

(2)
3 β2 + a

(2)
4

)
, (5)

TABLE I. Parameters in the Hamiltonian (2) (in units of keV)
taken from Ref. [18].

εi κi χi
a κ ′

i �

i = 0 (0p-0h) 540 −27 0.25 0 –
i = 2 (2p-2h) 0 −22 −0.45 10 2800

aDimensionless.

where the a
(k)
i are fixed in terms of the parameters in the

Hamiltonian. For the Hamiltonian (2) the energy surface
E0(N, β, γ ) in the 0p-0h configuration is given by

Ei(N, β, γ ) = (εi + 6κ ′
i )

Nβ2

1 + β2

+ κi

[
N

1 + β2

(
5 + (

1 + χ2
i

)
β2

) + N (N − 1)

(1 + β2)2

×
(

2

7
χ2

i β4 − 4

√
2

7
χiβ

3 cos 3γ + 4β2

)]
, (6)

with i = 0. The classical limit of the Hamiltonian for the 2p-2h
configuration has the same form but with N → N + 2 and
i = 2. The nondiagonal matrix elements 	(β) are given by
the matrix elements of the mixing Hamiltonian (4) between
the ground coherent state, leading to

	(β) =
√

(N + 2)(N + 1)

1 + β2

(
ω + ω√

5
β2

)
. (7)

Alternatively, the mixing Hamiltonian can be defined with
a scalar product d · d instead of the tensor product as in
Eq. (4), leading to a β-independent classical limit of the mixing
term. We have followed here the original parametrization of
Ref. [18]. The two choices lead to results that are quantitatively
different but there are no qualitative differences in the PESs
and phase diagrams.

For the platinum isotopes, in particular for 182−204Pt, a
single set of parameters describes their PESs for N ranging
from 2 to 13 bosons (two proton boson holes and the neutron
boson holes counting from the closed shell N = 126 to
midshell at N = 104). The 0p-0h configuration corresponds
to N bosons whereas the 2p-2h excitations require two extra
bosons [9]. This leads to a 2 × 2 potential energy matrix
[14,15]:

E(β, γ ) =
(

E0(N, β, γ ) 	(β)

	(β) E2(N + 2, β, γ ) + �

)
, (8)

where � corresponds to the single-particle energy expended
in raising two protons from the lower (50–82) to the upper
(82–126) shell, corrected for the gain in energy due to pairing.
After numerical diagonalization of this matrix we obtain the
eigenpotentials. In fact, two eigenpotentials are obtained in
this way. The lowest of the two corresponds to the ground
state of the mixed system and is presented in the next section
for the various nuclei. The second eigenpotential corresponds
to an excited configuration. For example, if the nucleus
is predominantly spherical in its ground state, the second
eigenpotential will give the energy of the configuration, which
is predominantly 2p-2h.

III. POTENTIAL ENERGY SURFACES

In this section we present the PESs for several platinum
isotopes from A = 182 to 204; the phase diagram for the
entire chain is presented in the next section. Beginning with
the heavier isotopes, we show in Fig. 1 the energy surface
corresponding to the lowest eigenpotential for the semi-magic
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FIG. 1. (Color online) Potential energy for 204Pt. The upper part
shows the lowest eigenpotential of the matrix E(β, γ ) in Eq. (8). The
lower part shows the potential for γ = 0o as a function of β for the
regular (solid line) and 2p-2h (dot-dashed line) configurations.

nucleus 204Pt. The PES is almost identical to that of the regular
configuration and exhibits a completely spherical shape. The
2p-2h configuration has a prolate minimum, but being more
than 2.5 MeV higher in energy, it has a negligible contribution
to the mixed (eigen)surface. The large energy difference
between these configurations that is found in 204Pt decreases
when moving toward the mid-shell isotopes. We also observe
that the PES minima associated with the 0p-0h and 2p-2h
configurations become deeper when moving toward the lighter
isotopes as well as closer in energy. This can be seen in Fig. 2,
which displays the PES associated with 196Pt. The figure shows
two apparent minima in the 2p-2h configuration, but in the
β–γ plot of Fig. 3 it is seen that only one (namely, the one
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FIG. 2. Potential energy for γ = 0o as a function of β for 196Pt for
the regular (dot-dashed line) and 2p-2h (dashed line) configurations
and for the lowest (solid line) and highest (dotted line) mixed
configurations.

FIG. 3. (Color online) Potential energy surface in the β–γ plane
for the 2p-2h configuration in 196Pt.

with γ = 0o) is a real minimum while the other extremum,
with β < 0, is in fact a saddle point. This analysis shows that
each configuration contributes with one minimum and that, if
the surfaces are close in energy, their mixing can generate a
single surface exhibiting more than one minimum, in principle
allowing the phenomenon of coexistence.

The 194Pt isotope, corresponding to seven bosons, has an
almost spherical minimum but shows a tendency to be flat,
as can be seen in Fig. 4. The 2p-2h potential exhibits two
extrema in the γ = 0o projection but as in 196Pt the one
corresponding to oblate deformation is a saddle point. The
190−194Pt isotopes have a PES flatter than those of nuclei
closer to semi-magic 204Pt, leading to a region of shapes with
apparent γ instability. This feature is reminiscent of the E(5)
“critical point symmetry” recently proposed to describe critical
behavior [24,25].

In this region and going toward the lighter isotopes, we
find that the flat potential displays a small depression, making
them slightly oblate. The nucleus 192Pt is a good example of
this feature, as seen in Fig. 5. The absolute oblate minimum at
γ = 60o, in the upper part of the figure, at β = 0.344 is only
32 keV below the second minimum associated with a spherical
shape (lower part of the figure). This very flat potential of the
0p-0h configuration combined with the one corresponding to
2p-2h, lowered in energy due to pairing, makes the resultant
PES nearly γ unstable. Figure 6 makes the near-γ -instability
evident in case a stronger mixing is taken, ω = 200 keV. Near-
γ -instability is also found in 186Pt (11 bosons), where the
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FIG. 4. Potential energy for γ = 0o as a function of β for 194Pt.
Lines are as in Fig. 2.
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FIG. 5. (Color online) Potential energy for 192Pt. The upper part
shows the lowest eigenpotential of the matrix E(β, γ ) in Eq. (8). The
lower part shows the potential for γ = 0o as a function of β. Lines
are as in Fig. 2.

potential has a minimum at β = 0.617 (see Fig. 7). The phase
diagram presented in the next section shows that there is indeed
a large region in the ω–N space that corresponds to near-γ -
instability.

The PES for 188Pt is shown in Fig. 8. We see that in this
case the absolute minimum corresponds to an oblate shape.
The nucleus 188Pt has a potential that is deeper and not as flat
as the one for heavier isotopes. The oblate deformation arises
from the regular configuration while the 2p-2h configuration
is almost 200 keV higher in energy. The mixing makes that
difference smaller but still the lowest eigenvalue corresponds
to an oblate shape.

In isotopes lighter than 188Pt the PES shows two coex-
isting minima. In 186Pt the absolute minimum with oblate

FIG. 6. (Color online) Potential energy in the β–γ plane for 190Pt
with a strong mixing ω = 200 keV.

FIG. 7. (Color online) Potential energy plot in the β–γ plane for
186Pt with a strong mixing ω = 200 keV.

deformation is nearly 100 keV deeper than the prolate one,
while in 184Pt the absolute minimum is prolate, being 100 keV
deeper than the oblate one. The isotope 182Pt has a potential
with a prolate absolute prolate and a second oblate minimum
that is 400 keV higher in energy. We show Fig. 9 as a
representative example of this kind of coexistence, displaying
the PES of 182Pt. Level curves clearly show both minima and
the projection in γ = 0o displays the difference in energy
between them.

The predominance of a spherical shape in isotopes heavier
than 190Pt seems clear from the PES. The geometrical analysis
exhibits the way in which shape coexistence, present in
182−188Pt, disappears as the number of neutrons increases.
Isotopes heavier than 190Pt have a very flat potential, which
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FIG. 8. (Color online) Potential energy for 188Pt. The upper part
shows the lowest eigenpotential of the matrix E(β, γ ) in Eq. (8). The
lower part shows the potential for γ = 0o as a function of β. Lines
are as in Fig. 2.
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FIG. 9. (Color online) Potential energy for 182Pt. The upper part
shows the lowest eigenpotential of the matrix E(β, γ ) in Eq. (8). The
lower part shows the potential for γ = 0o as a function of β. Lines
are as in Fig. 2.

is characteristic of this region, as was first demonstrated by
Davidson et al. [3], Stuchbery et al. [26], and Bengtsson
et al. [27].

A more detailed analysis of the shape coexistence region
and the different phases for the Pt chain is presented in the
next section.

IV. PHASE DIAGRAM

The phase diagram for the Pt isotopes is shown in Fig. 10.
We plot the strength of the mixing parameter ω of Eq. (4) on
the vertical axis against the boson number N on the horizontal
axis. These are considered as control parameters with the boson
number, for the sake of clarity, taken as continuous. In the
application to the Pt isotopes of Ref. [18] the mixing parameter
ω was set to values between 0 and 50 keV. To map a larger
region, this parameter is varied between 0 and 400 keV in the
present work.

In the left-most region of Fig. 10 the absolute minimum
is spherical and the PES is completely dominated by the
0p-0h configuration. By increasing the number of bosons,
this configuration turns oblate while the 2p-2h configuration
goes down in energy. If the difference in energy between the
two configurations is small, a region of shape coexistence
results, first with the 0p-0h configuration lowest (oblate-
prolate coexistence) and for bigger N with a dominant 2p-2h
configuration (prolate-oblate coexistence). Isotopes with a
single prolate minimum are only possible for big mixing values
(ω > 200 keV). Around the (Maxwell) line separating the

FIG. 10. The phase diagram for the lowest eigenpotential of
Eq. (8) with the boson number N on the x axis and the mixing
parameter ω on the y axis. All other parameters are taken from the
Pt isotopes. The inset figures illustrate the character of the potential
in the different regions in the diagram that are separated by critical
lines. The red dots correspond to the Pt isotopes.

oblate-prolate and prolate-oblate coexistence regions, the two
minima have almost the same energy. This corresponds to a
γ -instability zone.

In a very recent article [17] it has been shown that in the
IBM with configuration mixing there are large regions of shape
coexistence. That work was carried out for mixing between
the exact U(5) limit (κ = 0) and the exact SO(6) or SU(3)
limits (i.e., ε = 0 and either χ = 0 or χ = √

7/2). As a result
coexistence of spherical and deformed shapes was found. In the
present study we have not taken these schematic parameters but
rather used realistic values as obtained from a fit to the overall
properties of the Pt isotopes. In particular, because in this
parametrization the 0p-0h configuration turns slightly oblate
for large N while the 2p-2h configuration is prolate deformed,
oblate-prolate coexistence becomes possible and is indeed
found for realistic values of the mixing parameter ω. The
possibility of oblate-prolate coexistence (and its associated γ

instability) was considered by Hellemans [28] in the context of
a schematic model of SU−(3)-SU+(3) mixing, and the present
results are an excellent example of this study.

V. CONCLUSIONS

In this article we have shown that the matrix coherent-state
method applied to the IBM with configuration mixing yields
results that are in close agreement with mean-field calcula-
tions, describing at the same time the known spectroscopic
properties of the Pt isotopes. We have presented results for
shape phase transitions in the chain of Pt isotopes from
A = 182 to 204. Large values of the mixing parameter can
produce a PES with near-γ -instability, despite of the fact that
no SO(6) Hamiltonian is used explicitly. We expect that the
measurement of intensities of two-nucleon transfer (one-boson
transfer) reactions between the Pt isotopes should produce a
strong signature for criticality, indicating the presence of shape
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coexistence and giving direct information on the actual mixing
of configurations [29].
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