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Grand Accélérateur National d’Ions Lourds, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5, France

(Received 21 December 2007; revised manuscript received 23 June 2008; published 6 August 2008)

We investigate whether isospin mixing can be determined in a model-independent way from the relative
strength of E1 transitions in mirror nuclei. The specific examples considered are the A = 31 and A = 35 mirror
pairs, where a serious discrepancy between the strengths of 7/2− → 5/2+ transitions in the respective mirror
nuclei has been observed. A theoretical analysis of the problem suggests that it ought to be possible to disentangle
the isospin mixing in the initial and final states given sufficient information on experimental matrix elements.
With this in mind, we obtain a lifetime for the relevant 7/2− state in 31S using the Doppler-shift attenuation
method. We then collate the available information on matrix elements to examine the level of isospin mixing for
both A = 31 and A = 35 mirror pairs.
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I. INTRODUCTION

The concept of isobaric spin (isospin) was introduced into
nuclear physics to represent the fact that the nuclear force is to
first order charge independent [1]. Were charge independence
obeyed in the strictest sense, then isobaric multiplets would be
degenerate in energy, and all bound nuclear states would
have a definite and pure isospin. Moreover, there would
be an exact correspondence between the wave function of
states in an isobaric multiplet. In fact, these degeneracies are
lifted by the action of isospin nonconserving interactions,
the most important of which is the Coulomb force. The
resulting separation of the members of an isobaric multiplet
is termed the Coulomb displacement energy (CDE). Taking
into account the substantial mass differences arising from
the CDE, there are also discrepancies between the excitation
energies of states in mirror nuclei as a function of angular
momentum at the level of 100 keV [2]; such deviations reflect
detailed nuclear structure effects such as the difference in
the alignment of proton-proton and neutron-neutron pairs
[2] and the electromagnetic spin-orbit interaction [3,4]. A
more general question is the extent to which the Coulomb
interaction can induce the breakdown of isospin purity, an issue
reviewed by Soper [5]. These impurities can be manifested in
a range of experimental scenarios including isospin-forbidden
particle decays from highly excited, particle-unbound states;
perturbation of electromagnetic matrix elements; and nuclear
β decay.

Isospin mixing and its effect on β-decay matrix elements
is of considerable interest in the context of tests of the
Conserved Vector Current (CVC) hypothesis [6]. Such tests
concern the β decay of Fermi superallowed emitters for
which the log f t value should have a fixed value if the
CVC hypothesis is correct. Small isospin breaking effects
lead to weak Gamow-Teller decay branches in competition
with the dominant superallowed branch and the influence of
such branches must be accounted for. Conventionally, the
relevant isospin mixing of the ground states is evaluated
using shell-model calculations; typical values being ∼0.5%
for mass 50 (fp-shell nuclei) rising to 1% or higher for A ≈ 70
(fpg shell) [7]. Approaches that could extract isospin mixing
from experimental data in a model-independent manner are,
therefore, of considerable interest.

An open question is to what extent isospin mixing may
be inferred from the impact it may have on electromagnetic
transition rates. Warburton and Weneser [8] reviewed this issue
nearly 40 years ago and discussed isospin mixing in the context
of a number of selection rules expected for both conjugate
and self-conjugate nuclei. Their first rule concerned the fact
that, between states with Tz �= 0, electromagnetic transitions
must obey the selection rule �T = 0,±1. A γ decay from a
T = 2 to T = 0 state, therefore, could only arise due to isospin
mixing of T = 1 components in initial or final states, or the
isotensor component of the Coulomb interaction. In practice,
the relevant T = 2 states lie at very high excitation energy,
and the relevant γ -ray transitions are high in energy. This
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poses an experimental challenge. Moreover, the fact that such
states are particle unbound further complicates the analysis.
Warburton and Weneser [8] also pointed out a number of
selection rules applying to self-conjugate (N = Z) nuclei. For
example, because E1 transitions are purely isovector in nature,
they are strictly forbidden between states of the same isopin
in Tz = 0 nuclei [9]. This behavior has been examined by
Farnea et al. [10] in the case of the 5− → 4+ transition in
64Ge, where this transition is found to be dominated by its
M2 component. The E1 component of this transition has the
very weak strength of ∼2.5 × 10−7 W.u. Calculations suggest
that the level of isospin mixing needed to account for the
observed E1 transition strength is α2 = 2.50%+1.0%

−0.7% [10]. A
second rule relating to self-conjugate nuclei, advanced by
Warburton and Weneser [8], is the weakness of �T = 0,M1
transitions in such nuclei. A good system for searching for
the role of isospin mixing, therefore, is an odd-odd N = Z

nucleus, because T = 0 and T = 1 states lie close together
near the ground state and accidental degeneracies are likely.
Lisetskiy et al. [11] made a detailed analysis of γ decays in the
odd-odd N = Z nucleus 54Co. In particular, they considered
the decays of a doublet of 4+ states with T = 0 and T = 1,
respectively, to a T = 0, 3+ state. Analysis of the E2/M1
multipole mixing ratios for these decays allowed the isospin
mixing to be quantified at ∼0.2% [11].

A further selection rule advanced by Warburton and
Weneser [8] is that corresponding E1 transitions in conjugate
nuclei (i.e., the mirror pair of nuclei, one with A protons and
B neutrons, the other with B protons and A neutrons) should
have equal strength. They showed that this rule was essentially
satisfied for E1 transitions in the conjugate nuclei 11C and 11B,
while there was a factor of two difference in the E1 transition
strengths for the decay of the 1/2+ excited states in 13C and
13N. There is a very large shift in the energy of the 1/2+ state in
13N attributable to the Thomas-Ehrman effect, which relates to
the greater radial extent of the proton wave function [12]. Such
an effect is especially pronounced for the s1/2 orbital [12]. The
nonequivalence of the wave functions for the 1/2+ states could
therefore explain the difference in E1 transition strengths. A
still more dramatic example was the case of the decay of the
1/2+ levels at 8.312 MeV in 15N and 7.550 MeV in 15O.
In this case, the E1 transition strengths differed by a factor
of 400, but here the situation is complex as the state in 15O is
unbound and so mixing effects may be very large [8]. Although
data on E1 transitions was limited at the time Warburton and
Weneser [8] wrote their review, the data appeared to show that,
for cases where both the decaying states under consideration
were bound, the respective E1 transitions had nearly equal
strength, even where important nuclear structure phenomena
like the Thomas-Ehrman shift were at work. Warburton and
Weneser [8] commented that it would be very interesting to
test this rule for heavier nuclei, where isospin mixing would
be expected to be larger; such data did not exist at that time,
and little deviation from this rule has shown up since. It was,
therefore, of great interest when Ekman et al. [3] in their study
of the T = 1/2 mirror nuclei 35Ar and 35Cl highlighted isospin
mixing as the possible origin of the marked difference in the
decay branching of the first 7/2− state in the respective nuclei.
In 35Ar, an E1 transition formed a strong decay branch from

the 7/2− state to the 5/2+ state, while in the well-studied stable
nucleus 35Cl, the analogous transition was almost completely
absent. In both nuclei, the respective 7/2− states were well
bound. Ekman et al. [3] suggested that the cancellation of
the E1 matrix element in 35Cl arose from isospin mixing,
in this case, between the dominant T = 1/2 and a weak
T = 3/2 component. They were unable, however, to quantify
this suggestion because absolute transition strengths were not
available for the relevant transitions in 35Ar. Behavior similar
to that reported for A = 35 was also found in the T = 1/2
mirror nuclei 31S and 31P [4,13]. Again, the decay pattern of
the first 7/2− state was found to change dramatically between
the mirror nuclei. In this case, a 2195-keV E1 transition clearly
present in 31P was found to have no counterpart in the decay
scheme of 31S. This is the reverse of the situation in the
A = 35 mirror pair where the E1 was found to disappear in
the Tz = 1/2 member of the pair. Again, the levels concerned
were all particle-bound and so the effects could not be
related to the effects of the loosely bound protons. In the
A = 31 example, as for the A = 35 mirror nuclei, the relevant
transition strengths were unavailable prior to the present work.
The motivation of the present work, therefore, was to obtain
transition strengths to quantify this phenomenon as well as to
examine how such information could be used to extract the
isospin mixing, if present.

II. ISOSPIN MIXING AND ELECTRIC DIPOLE
TRANSITIONS IN MIRROR NUCLEI

Let us consider, from a theoretical perspective, whether
E1 transitions between analog states of mirror nuclei can be
used to extract information on isospin mixing. This discussion
is formulated in general terms without explicit reference to
specific isobaric systems. As will be shown, the main result
of this analysis is that, provided sufficient B(E1) values
are known experimentally, a model-independent estimate of
isospin mixing can be obtained that does not rely on a
calculation of E1 matrix elements. Having set this challenge
to experiment, we review whether sufficient information is
available in either the A = 31 or A = 35 systems to obtain a
model-independent determination of isospin mixing.

We begin the discussion with reference to Fig. 1, which
shows a generic ensemble of isobaric analog states in Tz =

Ji1

Jf1

Ji1

Jf1

Ji

Jf

Ji2

Jf2

Ji2

Jf2
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FIG. 1. Schematic figure of isobaric analog states in Tz = ±3/2
and ±1/2 nuclei near the N = Z line. The arrows indicate the ten
possible E1 transitions from where information on the isospin mixing
can be extracted. The thick arrows correspond to the E1 transitions
known in the A = 31 and A = 35 nuclei (see text).
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±3/2 and ±1/2 nuclei near the N = Z line. We assume that
the B(E1) values between initial and final low-lying states
Ji and Jf in the nuclei with Tz = +1/2 and Tz = −1/2 are
known experimentally. These states have a dominant T = 1/2
component, but contain small admixtures of higher-lying states
with T = 3/2. The problem at hand is the following: What
additional experimental information is required to determine
the isospin mixing, which, for the present purposes, may be
different for the two states involved? In Fig. 1, one such
set of higher-lying states is shown; they necessarily have the
same angular momenta, Ji and Jf , as their low-lying siblings,
but carry predominantly isospin T = 3/2. Of course, these
higher-lying states may in turn contain T = 5/2 admixtures,
but as long as these are small they do not affect the subsequent
argument and they can be neglected. The figure shows the
simplest situation when only one higher-lying state for each
angular momentum Ji and Jf mixes with the T = 1/2 states.
If there are several such higher-lying states, each contribution
must be considered separately and gives rise to additional
isospin admixtures.

An observation of central importance to what follows is
that the electric dipole operator, to a very good approximation,
has isovector character; that is, it transforms as a pure vector
under rotations in isospin space. Its isoscalar part is totally
absent from an E1 transition internal to the nucleus. This
implies that, under the assumption of isospin symmetry, there
exist definite relations between transitions between isobaric
analog states. In particular, the B(E1) values of transitions
between corresponding states in mirror nuclei are identical
and, more generally, those between isobaric analog states
are proportional with proportionality factors that are related
to isospin Clebsch-Gordan coefficients. If isospin were an
exact symmetry, all E1 transition strengths could be expressed
in terms of only four matrix elements reduced in angular
momentum and in isospin that we denote as

M2Tf ,2Ti
≡ 〈Jf ; Tf |||T (1)(E1)|||Ji ; Ti〉. (1)

The triple bars indicate that the dependence on the initial
and final angular momentum projections Mi and Mf and
on the isospin projection Tz has been factored out. This
dependence is contained in the Clebsch-Gordan coefficients
〈Jf Mf 1µ|JiMi〉 and 〈Tf Tz 10|TiTz〉 (or, depending on the
convention, corresponding 3j symbols), where we use the
fact that the E1 transition operator has isovector character as
indicated with its superscript (1). The initial and final angular
momenta Ji and Jf are the same for all four reduced matrix
elements, but the isospins Ti and Tf can be 1/2 or 3/2. The
explicit expression for an arbitrary B(E1) value in terms of
the triply barred reduced matrix elements is

B(E1; JiTiTz → Jf Tf Tz)

= 1

2Ji + 1
〈Jf ; Tf Tz‖T (1)

0 (E1)‖Ji ; TiTz〉2, (2)

with 〈Jf ; Tf Tz‖T (1)
0 (E1)‖Ji ; TiTz〉

= (−)Tf −Tz

(
Tf 1 Ti

−Tz 0 Tz

)
M2Tf ,2Ti

, (3)

where the symbol between brackets is a 3j symbol. The
conclusion is that, if isospin is an exact symmetry, the B(E1)
values of the ten transitions indicated in Fig. 1 can be expressed
in terms of four quantities: M11,M13,M31, and M33. Note, in
particular, that M31 is different from M13.

If one allows for isospin mixing between the low- and high-
lying Ji and Jf states, a further two unknowns are introduced
that can be denoted as mixing angles φi and φf . The true low-
and high-lying initial states |J1i〉 and |J2i〉 can be expressed as
follows in terms of the isospin eigenstates:

|J1i〉 = cos φi |Ji ; T = 1/2〉 + sin φi |Ji ; T = 3/2〉,
(4)

|J2i〉 = − sin φi |Ji ; T = 1/2〉 + cos φi |Ji ; T = 3/2〉,

and similarly for the final states |J1f 〉 and |J2f 〉 in terms of the
mixing angle φf . As a consequence, the B(E1) values of the
ten transitions are modified and now depend on the four matrix
elements Mkl as well as on the two mixing angles φi and φf .
We find that the B(E1) values in the Tz = +1/2 nucleus are
given by

B(E1; J1i → J1f )

= 1

6(2Ji + 1)

(
M11 cos φf cos φi − M33√

10
sin φf sin φi

−M13 cos φf sin φi + M31 sin φf cos φi

)2

,

B(E1; J1i → J2f )

= 1

6(2Ji + 1)

(
−M11 sin φf cos φi − M33√

10
cos φf sin φi

+M13 sin φf sin φi + M31 cos φf cos φi

)2

,

(5)
B(E1; J2i → J1f )

= 1

6(2Ji + 1)

(
M11 cos φf sin φi + M33√

10
sin φf cos φi

+M13 cos φf cos φi + M31 sin φf sin φi

)2

,

B(E1; J2i → J2f )

= 1

6(2Ji + 1)

(
M11 sin φf sin φi − M33√

10
cos φf cos φi

+M13 sin φf cos φi−M31 cos φf sin φi

)2

.

In the Tz = −1/2 nucleus, the same expressions apply but with
the replacements Mkl 
→ −Mkl , if k = l, and Mkl 
→ Mkl , if
k �= l. Finally, in the Tz = ±3/2 nuclei the B(E1) values are
given by

B(E1; Ji → Jf )
3

20 (2Ji + 1)
(M33)2. (6)

If at least six (appropriate) B(E1) values are known, these
equations determine the matrix elements Mkl and the mixing
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angles φi and φf . If five B(E1) values are known, they
determine a relation between φi and φf .

To illustrate our method, we assume that the five transitions
that are indicated with thick arrows in Fig. 1 have known
B(E1) values. We can then eliminate the four unknown matrix
elements Mkl and we obtain the following equation in φi and
φf :

3[M(−1/2, 1, 1) − M(+1/2, 1, 1)

+M(+1/2, 1, 1) cos 2φf + M(+1/2, 1, 1) cos 2φi

−M(+1/2, 1, 2) sin 2φf − M(+1/2, 2, 1) sin 2φi]

= 4M(+3/2, 1, 1) sin φf sin φi, (7)

where M(Tz, k, l) is a shorthand notation for the square root
of a measured B(E1) value in a Tz nucleus according to

M(Tz, k, l) ≡ ±√
B(E1; Jik → Jf l). (8)

Equation (7) defines a relation between the mixing angles
φi and φf that is independent of all theoretical matrix
elementsMkl .

Note that the measured transition strengths do not pro-
vide information on the sign of the quantities M(Tz, k, l).
If five measured B(E1) values are known, this leads in
principle to 25 = 32 different choices. The problem can be
simplified as follows. First, we have that M(−1/2, 1, 1) ≈
−M(+1/2, 1, 1), so we may assume that these matrix elements
have the opposite sign. This also follows from Eq. (7)
for φi = φf = 0 (no isospin mixing). Furthermore, without
loss of generality, we may choose the sign of one matrix
element, and we take M(+1/2, 1, 1) and −M(−1/2, 1, 1)
as positive. We still are left with 23 = 8 possible choices of
the signs of M(1/2, 1, 2),M(+1/2, 2, 1), and M(+3/2, 1, 1).
A convenient way to run through all eight possibilities is
the following. We can always adopt a convention in Eq. (4)
such that cos φi, sin φi, cos φf , and sin φf are positive, which
corresponds to the domains 0 � φi � π/2 and 0 � φf � π/2.
A change of sign of M(+1/2, 1, 2) in Eq. (7) is equiva-
lent to the substitution φf 
→ π − φf . Similarly, changing
the sign of M(+1/2, 2, 1) is equivalent to φi 
→ π − φi .
Finally, M(+3/2, 1, 1) 
→ −M(+3/2, 1, 1) corresponds to
either φi 
→ φi + π or φf 
→ φf + π . We, therefore, conclude
that the entire set of solutions is scanned if 0 � φi � π and
0 � φf � 2π or if 0 � φi � 2π and 0 � φf � π . Beyond these
boundaries, solutions will repeat themselves. If, as is expected,
| sin φi | and | sin φf | are small, it is more convenient to scan
the domains −π/2 � φi � π/2 and −π/2 � φf � 3π/2. In this
convention there are two physical regions, either (φi, φf ) ≈
(0, 0) or (φi, φf ) ≈ (0, π ).

From an examination of the theoretical background to
this problem, it is clear that at least five B(E1) values are
required to assess the magnitude of the isospin mixing and six
B(E1) values to fix the mixing angles without ambiguity. The
present work focuses on the A = 31 and A = 35 cases. In the
former example, a B(E1) value is known for the 7/2− → 5/2+
transition in 31P from a previous lifetime measurement [14],
but lifetimes were only known for a few low-lying states in 31S.
The motivation of the present experimental work, therefore,

was to obtain lifetimes for levels in 31S to extract B(E1) values
for the transitions of interest.

III. LIFETIME MEASUREMENTS FOR THE A = 31
MIRROR NUCLEI

Lifetimes of excited states in 31S have been obtained in
the present work using the Doppler Shift Attenuation Method
(DSAM). An earlier study of the mirror nuclei 31S and 31P
used the 20Ne + 12C reaction [4]. While it would have been
desirable to repeat this reaction, which was known to give a
good population of the 7/2− state of interest, it was found that
it was difficult to get a reliable adhesion between a carbon foil
and a thick target backing. It was, therefore, decided to change
to the 16O + 16O reaction and make use of metal oxide on metal
targets. The Tandem accelerator from the ATLAS facility at
Argonne National Laboratory accelerated an 16O beam to an
energy of 29 MeV. The beam bombarded a 530 µg/cm2 thick
target of nickel monoxide on a backing of 3.5 mg/cm2 of nickel.
The resulting γ radiation was detected using the Gammasphere
array [15] consisting of 100 high-purity germanium detectors.
In this array, there were 17 different angular ring positions
that could be used to obtain DSAM lineshapes. The γ -ray
coincidence data were sorted into a series of matrices with γ

rays detected in all detectors on one axis and γ rays detected
in a specific ring on the other.

The Monte Carlo DSAM code “lineshape” was employed
to fit the observed lineshapes and determine lifetimes [16].
The slowing-down process in the target and backing was
modeled using the SRIM2008 stopping powers [17]. In a
DSAM analysis, the general procedure is to fit the lineshape
in angle-sorted spectra gated by transitions lying above the
transition of interest to remove the effect of side feeding. The
low population of the Tz = 1/2 nucleus 31S, however, meant
that it was not possible to gate on transitions above the level of
interest when obtaining lineshape spectra for the decay of the
7/2− level. It was, therefore, necessary to gate on transitions
below and include the effects of side feeding. The feeding of
the 7/2− level in 31S comes principally from a 1926-keV γ ray
deexciting a 9/2− state and a 2383-keV γ ray de-exciting an
11/2− level. In the case of 31P, the nucleus is populated to much
higher spin and the feeding pattern is complex. Ionescu-Bujor
et al. [18] have recently reported lifetimes for some of these
high-lying high spin states that feed the 7/2− level. In some
cases, these exceed 1 ps. Fortunately, these states do not
appear to be populated in 31S in our study and the 1926- and
2383-keV transitions decay from states with relatively short
lifetimes. Because the population of levels above appeared
negligible, we fit the lineshapes corresponding to the 1926-
and 2383-keV transitions using lineshape spectra produced
by gating below and obtained effective lifetimes of 245(45)
and 180(35) fs for the 9/2− and 11/2− levels, respectively.
These are in reasonable conformity with the lifetimes of
the mirror states in 31P, which have lifetimes of 55(17) and
120(50) fs, respectively. Lineshape spectra for the 1166-keV
7/2− → 5/2+ transition were obtained by summing spectra
gated by the 1249- and 2036-keV transitions. Figure 2 shows
the lineshape of the 1166-keV transition at 70◦, 90◦, and
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FIG. 2. Lineshapes for the 1166-keV γ ray in 31S shown for
70◦ (top), 90◦ (middle), and 110◦ (bottom). The fit obtained by the
lineshape program is the thick line. The spectra were obtained by
gating on the 1249- and 2036-keV transitions below the γ ray of
interest.

110◦. Fitting these lineshapes for the 1166-keV transition,
incorporating side feeding from the two discrete transitions,
led to a lifetime for the 7/2− state in 31S of 1.03(21) ps.

To examine the reliability of the methodology of gating
below the transition of interest, a lifetime was obtained for
the corresponding 7/2− state in 31P which decays by a
1136-keV γ ray for which the lifetime had been previously
measured to be 0.59(3) ps [14]. First, a gate was set on the
2394-keV transition above the level of interest and lineshapes
corresponding to the 1136-keV transition were fit. A lifetime
of 0.66(13) ps was obtained. Then, by using the sum of gated
spectra of the 2029- and 1266-keV transitions below the level
of interest, the lineshape of 1136-keV transition was fitted with
a consideration of the estimated effective lifetimes contributed
by the 2071-, 2365-, and 2394-keV transitions. In this case, the
lifetime extracted was 0.72(8) ps, consistent with that obtained
through gating above.

IV. B(E1) TRANSITION STRENGTHS

Having obtained a lifetime for the 7/2− level in 31S, we are
now able to calculate B(E1) transition rates for the transitions
deexciting both 7/2− states in 31P and 31S (see Table I). We
are only able to set an upper limit on the B(E1) strength for
the unobserved 2215-keV γ ray. It should be noted that this
ignores possible M2 admixtures, which become more likely as
the E1 strength is attenuated. In any case, the B(E1) strength
for the 7/2− → 5/2+ transition in 31P exceeds that of the
analogous transition in 31S by at least a factor of 40.

To put the present observations in context, let us return to the
case of the A = 35 mirror nuclei, where seemingly behavior

TABLE I. Table of B(E1) transition rates obtained for 31S from
lifetimes measured in the present work and 31P from the literature.
The 2215-keV transition is presently unobserved; an upper limit on
its branching ratio of 2% is obtained from previous work [4]. In all
cases, the transitions are assumed to have a negligble M2 component.

Nucleus Eγ (keV) Ii → If B(E1) (W.u.)

31S 1166 7/2− → 5/2+
2 6.1(1.2) × 10−4

2215 7/2− → 5/2+
1 <1.8 × 10−6

31P 1136 7/2− → 5/2+
2 4.5(8) × 10−4

2195 7/2− → 5/2+
1 8.2(6) × 10−5

opposite that of the A = 31 case is observed: a prominent
7/2− → 5/2+E1 transition is observed in the Tz = −1/2
nucleus, 35Ar, whereas this branch is seemingly very weak
in the mirror nucleus, 35Cl. In fact, the measured lifetime for
the 7/2− state in 35Cl indicates that the latter transition has
the extremely weak transition strength of 1.4(3) × 10−8 W.u.
This transition also exhibits a significant M2 component
(B(M2) = 6.3(37) × 10−3 W.u.) [19]), which is perhaps not
surprising given the extremely small E1 matrix element. The
lifetime of the 7/2− level in 35Ar is presently unknown. The
approach taken by Ekman et al. [3] was to assume that the M2
transition from the 7/2− state has the same transition strength
in each case (B(M2) = 0.28 W.u.). Following this approach,
B(E1) for the 1446-keV transition in 35Ar is 3 × 10−5,
which is 2000 times larger than the analogous transition in
35Cl. Ekman et al. [3] assume that isospin mixing is taking
place and that there are contributions to the matrix elements
diagonal and nondiagonal in T that have similar magnitude
(1.5 × 10−5 W.u.) and that cancel in the case of 35Cl and sum
in the case of 35Ar. We note that this analysis is not as detailed
as that presented in the present work. Moreover, while the
analysis by Ekman et al. [3] appears reasonable qualitatively,
it does lead to the conclusion that the two components diagonal
and nondiagonal in T would have to differ by less than
0.1 %, which would be an astonishing coincidence. Clearly,
a possible weakness in this analysis may be the assumption
that the M2 transitions in the mirror nuclei have the same
strength. Unlike E1 transitions, M2 transitions have both an
isoscalar and an isovector part. Warburton and Weneser [8]
suggest a “quasi-rule” for such transitions that, so long as they
are relatively strong, they should be of near-equal transition
strength in conjugate nuclei. However, the M2 transitions in
this case are not strong. Prosser and Harris [19] calculated M2
transition rates for the A = 35 mirror nuclei and predicted that
the 7/2− → 3/2+ transition in 35Ar should have B(M2) =
0.0032 W.u., compared to B(M2) = 0.185 W.u. in 35Cl. If
we use this predicted B(M2) strength for 35Ar, in conjunction
with the M2 branching ratios as measured by Ekman et al. [3],
then we conclude that the 1446-keV transition would have
B(E1) = 6.7(20) × 10−7 W.u. This reanalysis suggests that
the two E1 transitions differ in transition strength by a factor
of 50 rather than by a factor of 2000 as suggested by Ekman
et al. [3]. Both E1 transitions are seen to be extremely weak,
cf. B(E1) ≈ 2.5 × 10−7 W.u for the 5− → 4+ transition
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in 64Ge [10]. Moreover, the variation in transition strength
between the mirror nuclei is now of an order similar to that ob-
served in the A = 31 mirror pair, albeit it is the Tz = 1/2 mem-
ber that has the weaker B(E1) strength in A = 35. Clearly, it
would be very worthwhile to measure the lifetime of the 7/2−
state in 35Ar to verify the predicted B(M2) value. On the basis
of the predicted B(M2) value, this lifetime should be around
350 ps.

As discussed above, to begin to determine the level of
isospin mixing, we need additional matrix elements to de-
termine the isospin mixing, we now require at least three more
matrix elements corresponding to T = 3/2 → T = 1/2, T =
1/2 → T = 3/2, and T = 3/2 → T = 3/2 transitions. For
completeness, we review the available data for both the A = 31
and A = 35 cases.

For the T = 3/2 → T = 1/2 component, we can make use
of a recent series of detailed (p,γ ) studies on 30Si and 34S [20].
These measurements have identified the 1f7/2 isobaric analog
states in both 31P and 35Cl [20]. Their γ widths are 1.63(25) and
1.37(20) eV, respectively. These values may be combined with
accurate branching ratios for the 1f7/2 resonance in 31P [21]
and 35Cl [19], leading to B(E1) values for the 7/2−, T =
3/2 → 5/2+

1 , T = 1/2 transitions of 2.0(3) × 10−4 W.u. in
31P and 3.3(7) × 10−5 W.u. in 35Cl.

While the 1f7/2 analog states appear unique, which leads to
a relatively simple extraction of the relevant matrix elements,
the situation appears significantly more complex when we
attempt to obtain the T = 1/2 → T = 3/2 component. In this
case, we need to examine 5/2+, T = 3/2 → 7/2−, T = 1/2
transitions, but this is not straightforward because in both
31P and 35Cl there are a number of known (p,γ ) resonances
with Jπ = 5/2+. The question naturally arises, then, as to
which resonances to consider. To first order, we would expect
the most significant isospin mixing to take place between
analog states. Analog states should be connected by strong
M1 transitions. In 31P, the first 5/2+, T = 3/2 resonance is
split into two components at 8.032 and 8.105 MeV. These
components have a negligible γ branch to the T = 1/2, 7/2−
state [22]. There is a second 5/2+ resonance split into a
further five fine structure components between 9.009 and
9.131 MeV [23]. These levels have a more significant branch to
the T = 1/2, 7/2− state. If we sum all of these component γ

branches, we obtain B(E1) ≈ 3.4 × 10−4 W.u. [23]. While
the lower pair of resonances has a very weak M1 decay
to the 5/2+ state at 2234 keV, the two 5/2+ resonances at
9.067 and 9.116 MeV have strong M1 branches to the 5/2+
state. The upper set of resonances, therefore, appears the most
relevant for determining the required E1 transition strength.
To summarize, then, we have considered only the upper set
of resonances around 9 MeV as the relevant analog to the
T = 1/2, 5/2+ state and used the sum of the E1 branches from
this set of states in our analysis. The T = 1/2 → T = 3/2 and
T = 3/2 → T = 1/2 matrix elements in 31P, therefore, appear
to be of similar order, i.e., B(E1) ∼ 10−4 W.u. Indeed, these
are typical values for isovector E1 transitions.

Following a similar procedure, if we sum the measured
B(E1) strengths for 5/2+ resonances in the 34S(p,γ ) reaction
that correspond to states at 8.216, 8.893, and 9.081 MeV in

35Cl, we obtain ≈4.3 × 10−3 W.u. [24]. Each of these reso-
nances gives a similar strength to the total B(E1) probability.
The 8.893-MeV resonance has a strong M1 branch to the
5/2+, T = 1/2 state. In this case, therefore, the T = 1/2 →
T = 3/2 matrix element appears to considerably exceed the
T = 3/2 → T = 1/2 matrix element.

To obtain matrix elements for the T = 3/2 → T = 3/2
component, we need to turn to the Tz = 3/2 nuclei, 35S and
31Si, because in the Tz = 1/2 nuclei it would be difficult
to observe such isoscalar transitions in competition with
transitions to the T = 1/2 states. In the case of 35S, we have
an upper limit only for the strength of the 5/2+, T = 3/2 →
7/2−, T = 3/2 transition, with B(E1) < 1.5 × 10−3 W.u. The
5/2+ state involved is the analog of the upper of the set of 5/2+
resonances in 35Cl, which we considered when obtaining the
T = 1/2 → T = 3/2 matrix element.

For 31Si, the situation is more complicated because there is
a measured B(E1) value for the 5/2+, T = 3/2 → 7/2−, T =
3/2 transition of 6.0(13) × 10−4 W.u. The 5/2+ state involved
here, though, corresponds to the lower set of T = 3/2, 5/2+
resonances in 31P, which had negligible E1 branches to the T =
1/2, 7/2− state, as well as weak M1 transitions to the lowest
5/2+, T = 1/2 state. This inconsistency cautions against the
use of this set of values in any calculation. The extent of our
knowledge of relevant B(E1) strengths in the A = 31 and 35
systems is summarized in Fig. 3.

Using the matrix elements for the A = 31 and A = 35 cases
shown in Fig. 3, we can solve Eq. (7) graphically. It is important
to remember that, in the A = 31 isobars, the results of the
analysis will be rendered uncertain because we do not have
information on the relevant B(E1) value in 31Si. In the A = 35
isobars, on the other hand, we do not have an experimental
matrix element for the T = 1/2 → T = 1/2 component in
35Ar, for which we have been forced to rely on scaling from a
predicted B(M2) value [19].

Figure 4 illustrates the allowed values of the isospin mixing
angles φi and φf in the A = 31 nuclei. Because five B(E1)
values are known experimentally, only a relation between the
mixing angles can be established that corresponds to a curve
in the domains −π/2 � φi � π/2 and −π/2 � φf � 3π/2. In
addition, only an upper limit is known for the B(E1; 7/2− →
5/2+) value in 31S, and hence consistency with Eq. (7)
is imposed for the range 0 � B(E1; 7/2− → 5/2+) � 1.9 ×
10−6 W.u. This leads to the two closely spaced curves in Fig. 4
that meander through the entire allowed domain; the small
region between one curve and its immediately adjacent one
defines the mixing angles consistent with Eq. (7). We see from
Fig. 4 that none of the allowed solutions goes through the
regions with | sin φi,f | < 0.1, which corresponds with isospin
mixing smaller than 1% in both states. We conclude that no
coherent picture is obtained from the A = 31 data as regards
E1 transitions and isospin mixing, which is probably due
to our inconsistent use of analog transitions, as pointed out
above.

The situation is more encouraging in the A = 35 nuclei.
Again, many different values of (φi, φf ) are consistent with
Eq. (7), but we may focus our attention on the regions
(φi, φf ) ≈ (0, 0) or (φi, φf ) ≈ (0, π ). A band of allowed
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FIG. 3. (Color online) Simplified level schemes showing the states of interest in the A = 31 and A = 35 systems. The states are labeled
with their isospin using the convention (T , Tz). Transition strengths are shown where known. The manner in which these strengths were arrived
at is described in the text, in particular, those for the decay of the T = 1/2, 7/2− state in 35Ar, which were calculated not measured.

(φi, φf ) values going through the former region is indicated
in Fig. 5. The middle line is the solution of Eq. (7) with the
(largely) experimental matrix elements M(Tz, k, l) in the A =
35 isobars. The outer lines are consistent with this solution
to within 1σ deviation where the errors on all B(E1) values
have been taken into account. The sensitivity to the errors
on the different B(E1) values varies strongly. For example,

the solution is largely insensitive to the B(E1; 5/2+, 1/2 →
7/2−, 1/2) value in 35S, and the currently known upper limit
suffices for the present purpose; that is, the error on this
B(E1) value does not contribute significantly to the error in the
(φi, φf ) plot. For reducing the latter error, a better precision
is required for the 7/2−, 1/2 → 5/2+, 1/2 transition in 35Ar
and the 7/2−, 3/2 → 5/2+, 1/2 and 5/2+, 3/2 → 7/2−, 1/2

FIG. 4. Correlation plot between the isospin
mixing angles φi and φf consistent with Eq. (7)
with experimental information as available in the
A = 31 nuclei. The solution of Eq. (7) meanders
through the entire region −π/2 � φi � π/2 and
−π/2 � φf � 3π/2. The two closely spaced lines
correspond to the solution for the upper limit of the
B(E1; 7/2− → 5/2+) value in 31S and for a zero
value for this quantity, respectively. The region of
mixing (| sin φi,f | < 0.1) is indicated with the gray
rectangles.
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FIG. 5. Correlation plot between the isospin mixing angles φi and
φf consistent with Eq. (7) and the experimental information available
for the A = 35 nuclei. The thick line is the solution of Eq. (7) and the
outer lines are consistent with it to within 1σ deviation. The region of
small mixing (| sin φi,f | < 0.01) is indicated with the gray rectangle.

transitions in 35Cl. Moreover, an additional B(E1) value is
needed for pinning down the mixing angles unambiguously.

V. CONCLUSIONS

In conclusion, we examined theoretically whether isospin
mixing in bound nuclear levels can be obtained from con-
sideration of E1 transition strengths in analog systems. Five
B(E1) values are required to determine a relation between
the mixing angles of the initial and final states, while an
additional B(E1) value would be required to determine the
mixing of each state individually. We obtained a B(E1) value
for the 7/2−, 1/2 → 5/2+, 1/2 transition in 31S and collated
known B(E1) values for the A = 31 and A = 35 mirror pairs.
A solution was obtained in the A = 35 case, which was
consistent with less than 1% isospin mixing for both levels,
using a B(E1) value for the 7/2−, 1/2 → 5/2+, 1/2 transition
in 35Ar obtained from scaling to a calculated B(M2) value for a
transition from the same 7/2− level. Further work to determine
this matrix element experimentally would be very valuable in
confirming these initial conclusions. Moreover, measurements
of additional matrix elements in both systems, which would
likely involve challenging measurements perhaps involving
radioactive beams, are clearly desirable to extract the isospin
mixing of the individual states.
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