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Effective field theory with dibaryon degrees of freedom
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We propose a low energy effective field theory of QCD at the scale of pion mass for the NB = 2 sector, NB

being the baryon number, which contains two dibaryon fields in addition to the nucleons and pions. It has a
well-defined counting is renormalizable, and the nucleon-nucleon scattering amplitudes are manifestly unitary
at leading order. We work out a lower energy effective theory for nucleons with energy much lower than the
pion mass and three-momentum comparable to it, which also has a well-defined counting and is renormalizable.
The dibaryon fields must also be kept as explicit degrees of freedom in this theory. We calculate the scattering
amplitudes at next-to-leading order for the 1S0 and 3S1 channels in this framework and obtain an excellent
description of the phase shifts for center-of-mass energies in the 0–50 MeV range.
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I. INTRODUCTION

Since the original suggestion by Weinberg [1] that nuclear
forces could be understood within the framework of effective
field theories (EFTs) there has been an enormous development
of the subject (see Refs. [2–5] for recent reviews). A key
ingredient of the EFT formalism is that the cutoff dependence
that is introduced to smooth out ultraviolet (UV) singularities
can be absorbed by suitable counterterms, and hence any
dependence on physical scales much higher than the ones of the
problem at hand can be encoded in a few (unknown) constants.
To achieve this in a systematic manner, counting rules are also
necessary.

Weinberg’s suggestion consisted of two steps. The first
one was to calculate the nucleon-nucleon (NN ) potentials
order by order in chiral perturbation theory (χPT) from the
heavy baryon chiral Lagrangian (HBχL) [6]. The second
one was to introduce the potentials thus obtained in a
Lippmann-Schwinger (LS) equation. There is no doubt that
the first step can be carried out within an EFT framework: the
renormalized NN potentials are known at leading order (LO),
next-to-leading order (NLO), next-to-next-to-leading order
(NNLO) [7,8], and next-to-next-to-next-to-leading order [9],
and isospin breaking terms have also been taken care of [10].
These potentials have been evaluated using static propagators
for the nucleon fields. The use of nonrelativistic propagators
gives additional contributions starting at two loops, the leading
orders of which have been evaluated in Ref. [11]. The second
step, however, is delicate. The potentials obtained in the first
step are increasingly singular at short distances as we raise
the order of χPT at which they are calculated. Hence the
introduction of a regulator in the LS equation is compulsory.
If a finite cutoff is accepted and allowed to move between a
certain range, a very successful description of the phase shifts
in different partial waves is achieved within this approach
[7,8,12]. Nevertheless, even with the LO potential, it is not
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clear that the scattering amplitude thus obtained is cutoff
independent. An alternative to Weinberg’s approach, which
was free from renormalization problems, was proposed by
Kaplan, Savage, and Wise (KSW) [13,14]. The key ingredient
was to assume that contact interactions are enhanced with
respect to the standard chiral counting. However, when the
NN scattering amplitudes were worked out in this approach at
NNLO, a bad convergence of the series was observed, specially
in the 3S1 channel [15]. Since then, many proposals have been
put forward [16–42]. For instance, in Ref. [17] it is claimed
that the renormalization program can actually be carried out
in the Weinberg approach at LO if the potential is expanded
about the chiral limit. However, the removal of the cutoff in
this approach requires unconventional flows and additional
counterterms for higher partial waves [16].

Here we elaborate on the idea that the difficulties encoun-
tered so far in constructing a consistent and useful nucleon-
nucleon effective field theory (NNEFT) may be a consequence
of a misidentification of the low energy degrees of freedom.
We will assume the NNEFT for energy and momentum scales
much lower than �χ contains two dibaryon fields as explicit
degrees of freedom, with energy gaps (residual masses) of
the order of or smaller than the pion mass. If the dibaryon
fields are naively integrated out, one gets the enhanced contact
interactions of the KSW approach. We will argue that they
must be kept as explicit degrees of freedom.

The relation between dibaryon fields and the KSW ap-
proach was noted early [43]. Dibaryon fields have also been
used in EFT formulations of the three-body problem (see
Refs. [44–46] and references there in). However, they have
mostly been regarded as a convenient trick to carry out
calculations (see, for instance, Ref. [47]). What is new in
our approach is the assumption that they must be included
as explicit degrees in the NNEFT.1 They cannot be integrated
out if one wants to keep a natural counting. For a fundamental

1In a model dependent framework, the inclusion of dibaryon fields
as explicit degrees of freedom has already been advocated by some
authors [48–52].

0556-2813/2008/78(2)/024003(9) 024003-1 ©2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.78.024003
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field theory, their introduction should be irrelevant, since one
can build the appropriate quantum numbers of the dibaryon
out of the nucleon fields, and their inclusion does not affect
the symmetries of the theory. For an effective theory, however,
where calculations are necessarily organized in ratios of scales,
it is extremely important to keep the appropriate degrees of
freedom in the Lagrangian, even if they may appear redundant
at first sight. We hope this will be illustrated in the paper with
sufficient detail.

We will organize the paper as follows. In the next section,
we introduce the NNEFT with dibaryon fields and discuss
how the calculations must be organized. In Sec. III, we match
it to a lower energy effective theory for energies smaller than
the pion mass and momenta comparable to it. In Sec. IV, we
calculate the NN amplitudes at NLO. In Sec. V, we extract
the low energy constants from data. In Sec. VI, we critically
examine the output of the previous section and propose new
counting rules. In Sec. VII, we discuss our results, and
Sec. VIII is devoted to the conclusions.

II. NUCLEON-NUCLEON CHIRAL EFFECTIVE THEORY
WITH DIBARYON FIELDS

We will consider an effective theory for the NB = 2 sector
of QCD for energies much smaller than �χ about 2mN , with
mN being the nucleon mass. The usual degrees of freedom for
such a theory, namely, nucleons and pions, will be augmented
by the inclusion of two dibaryon fields: an isovector one
(Da

s ) with quantum numbers 1S0 and an isoscalar one ( �Dv)
with quantum numbers 3S1. Since mN ∼ �χ , a nonrelativistic
formulation of the nucleon fields is convenient [6]. Chiral
symmetry, and its breaking due to the quark masses in
QCD, constrains the possible interactions of the nucleons and
dibaryon fields with the pions. The sector without dibaryon
fields is the standard one [1], that is,

LπN = N †

(
iD0 − gA

(
�u · �σ

2

)
+

�D2

2mN

)
N

− CS

2
(N †N )2 − CT

2
(N † �σN )2 (2.1)

+ f 2
π

8
{Tr(∂µU †∂µU ) + m2

πTr(U † + U )},

U = e
2i πa τa

fπ , (2.2)

where u2 = U, uµ = i{u†, ∂µu},Dµ = (∂µ + 1
2 [u†, ∂µu]), πa

is the pion field, τ a is the isospin Pauli matrices, gA ∼ 1.25
is the axial vector coupling constant of the nucleon, and
fπ ∼ 132 MeV is the pion decay constant. This is the leading
order Lagrangian for the pions [O(p2)] and the pion-nucleon
interactions [O(p)], augmented by the kinetic term of the
nucleon (which is next-to-leading order for E ∼ p ∼ mπ , but
becomes leading order for E ∼ p2/2mN � mπ ).

The sector with dibaryon fields and no nucleons in the rest
frame of the dibaryons reads

LD = LO(p) + LO(p2), (2.3)

where LO(p) is the O(p) Lagrangian

LO(p) = 1
2 Tr[D†

s (−id0 + δ′
ms

)Ds] + �D†
v(−i∂0 + δ′

mv
) �Dv,

(2.4)

where Ds = Da
s τa and δ′

mi
, i = s, v are the dibaryon residual

masses, which must be much smaller than �χ , otherwise
the dibaryon should have been integrated out as the re-
maining resonances have been. The covariant derivative for
the scalar (isovector) dibaryon field is defined as d0Ds =
∂0Ds + 1

2 [[u, ∂0u],Ds]. LO(p2) is the O(p2) Lagrangian

LO(p2) = s1 Tr[Ds(uM†u + u†Mu†)D†
s ]

+ s2 Tr[D†
s (uM†u + u†Mu†)Ds]

+ s3 Tr[D†
sDsu0u0] + s4 Tr[DsD

†
s u0u0]

+ s5 Tr[D†
sDsuiui]

+ s6 Tr[DsD
†
s uiui] + s7 Tr[D†

s u0Dsu0]

+ s8 Tr[D†
s uiDsui]

+ v1 �D†
v · �Dv Tr[u†Mu† + uM†u]

+ v2 �D†
v · �Dv Tr[u0u0] + v3 �D†

v · �Dv Tr[uiui]

+ v4(Di†Dj + DiDj†) Tr[uiuj ], (2.5)

where M is the quark mass matrix, which we will take in
the isospin limit, namely, the average of the up and down
quark masses mq times the identity matrix. si, i = 1, . . . , 8
and vj , j = 1, . . . , 4 are low energy constants (LECs).

The dibaryon-nucleon interactions will only be needed at
leading order

LDN = As√
2

(N †σ 2τ aτ 2N∗)Ds,a + As√
2

(N�σ 2τ 2τ aN )D†
s,a

+ Av√
2

(N †τ 2 �σσ 2N∗) · �Dv + Av√
2

(N�τ 2σ 2 �σN ) · �D†
v,

(2.6)

where Ai ∼ �
−1/2
χ , and i = s, v.

The nucleon-nucleon scattering amplitude will be domi-
nated by the dibaryon field. At tree level it gives a contribution
∼1/mπ�χ (for energies ∼mπ ), which is parametrically larger
than the contribution arising from the four-nucleon interactions
∼1/�2

χ . The dibaryon field propagator gets an important
contribution to the self-energy due to the interaction with the
nucleons [Fig. 1(b)], which is always parametrically larger
than the energy E. As a consequence, the LO expression

)b()a(

FIG. 1. (a) LO diagram. The shaded circle stands for the resum-
mation of dibaryon self-energy. (b) Dibaryon self-energy diagram.
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for the dibaryon field propagator becomes [in dimensional
regularization (DR) and minimal subtraction (MS) scheme],

i

δ′
mi

+ i
A2

i mNp

π

, (2.7)

(p = √
mNE) rather than the tree level expression i/(−E +

δ′
mi

− iη). Note that expression (2.7), unlike the tree level
expression, has the correct positivity properties irrespective
of the sign chosen for the time derivative in Eq. (2.4). The
unconventional signs for the time derivatives in Eq. (2.4) are
chosen in this way in order to correctly reproduce the sign of
the effective ranges later on. They do not imply any violation of
unitarity, because the correct leading order expression for the
propagator is expression (2.7) and not the tree level one. From
expression (2.7), it follows that the leading contribution to the
NN scattering amplitude for energies ∼mπ is parametrically
∼1/m

1/2
π �

3/2
χ , namely, slightly suppressed with respect to

the tree level estimate for it, but still more important than
the tree level contribution from the four-nucleon interactions
(∼1/�2

χ ). The fact that a loop contribution always dominates
over a tree level one is kind of bizarre in an EFT framework.
It probably indicates that the first reliable approximation to
the true amplitude is the NLO one, namely, the first order in
which the tree level energy dependence is not neglected. It
also suggests that NLO contributions (and probably beyond)
should be resummed in some sort of self-energy. We will see
later on that unitarity provides the key ingredient to carrying
out these resummations.

Expression (2.7) implies that the dibaryon field should not
be integrated out unless p � δ′

mi
, instead of E � δ′

mi
as the

tree level expression suggests. If δ′
mi

� mπ , it should also be
kept as an explicit degree of freedom in the so-called pionless
EFT, as in Refs. [53–55].

Except for the above-mentioned contributions to the self-
energy of the dibaryon fields, which become LO, the calcula-
tion can be organized perturbatively in powers of 1/�χ . Hence
one expects that any UV divergence arising in higher order
calculations will be absorbed in a low energy constant of a
higher dimensional operator built out of nucleon, dibaryon, and
pion fields [note that the linear divergence in the self-energy
of the dibaryon fields due to the diagram in Fig. 1(b). can be
absorbed in δmi

]. The renormalized result may be recast in a
manifestly unitary form [41,56].

We shall restrict ourselves in the following to energies E ∼
m2

π/�χ � mπ , which implies nucleon three momenta ∼mπ .
We shall follow the strategy of [42], which was inspired in the
formalism of [57], and shall build a lower energy EFT with
no explicit pion fields: the effects due to the pions will be
encoded in the potentials (and redefinitions of the LECs). We
will present the calculation of the NN scattering amplitudes
at NLO. For these energies the LO contribution is ∼1/mπ�χ ,
which means that we are aiming at including all contributions
up to 1/�2

χ .

III. LOWER ENERGY EFFECTIVE THEORY

For energies E ∼ m2
π/�χ � mπ , the pion fields can be

integrated out. This integration produces nucleon-nucleon

potentials and redefinitions of low energy constants. Since
we are aiming at a NLO calculation, we must keep corrections
O(mπ/�χ ) and neglect higher order ones.

In the one-nucleon sector, pion loops produce corrections
that are O(m2

π/�2
χ ) and hence can be neglected. The same

holds true for the dibaryon sectors. However, both single-
nucleon and dibaryon sectors get a contribution O(mπ/�χ )
from counterterms proportional to the quark masses which
redefine the nucleon mass and the dibaryon residual masses.

In the two-nucleon sector, the one pion exchange is the
only relevant contribution at this order, which produces the
well-known one pion exchange (OPE) potential.

Pion loops in the dibaryon-nucleon vertices also produce
O(m2

π/�2
χ ) corrections, except for those that reduce to the

OPE potential correction to the dibaryon-nucleon vertex,
which are included in the effective theory and must not be
considered in the matching.

Hence the Lagrangian of the lower energy effective theory
at the NLO order reads as follows. The sector without dibaryon
fields reduces to the LO one in the Weinberg approach [1],

LπN = N †

(
i∂0 +

�∂2

2mN

)
N − CS

2
(N †N )2 − CT

2
(N † �σN )2

+ 1

2
N †σ i �τN (x1)Vij (x1 − x2)N †σ j �τN (x2), (3.1)

where Vij is the OPE potential

Vij (x1 − x2) = − g2
A

2f 2
π

∫
d3q

(2π )3

qiqj

�q2 + m2
π

e−i �q·(�x1−�x2). (3.2)

The sector with dibaryon fields and no nucleons in the rest
frame of the dibaryons reads

L′
D = D†

s,a(−i∂0 + δms
)Da

s + �D†
v(−i∂0 + δmv

) �Dv, (3.3)

where δmi
, i = s, v is the (redefined) dibaryon residual mass,

δms
= δ′

ms
+ 4mq(s1 + s2) − 2δmN,

(3.4)
δmv

= δ′
mv

+ 4mqv1 − 2δmN.

δmN is also proportional to mq and stands for the leading
mq corrections to nucleon mass (see, for instance, Ref. [58]),
which can be reshuffled into δmi

by local field redefinitions.
s1, s2, and v1 are the LECs introduced in Eq. (2.5). Note that
if δ′

mi
� mπ, then the quark mass dependence of δmi

is a
leading order effect. The dibaryon-nucleon interactions remain
the same as in Eq. (2.6).

The calculations in this EFT can be organized in ratios
E/p and p/�χ (recall mπ ∼ p). The UV divergences arising
at higher orders will be absorbed by local terms built out of
nucleon and dibaryon fields.

IV. SCATTERING AMPLITUDES AT NLO

The scattering amplitudes at LO are given by the diagrams
in Fig. 1. The corresponding amplitudes are,

Ai
−1 = − 1

1 + i
A2

i mNp

πδmi

4A2
i

δmi

, i = s, v. (4.1)

024003-3
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(a)

(b)

FIG. 2. NLO diagrams. (a) Diagrams with a one-to-one correspondence with the ones in the KSW approach. (b) Extra diagrams that have
been considered in our approach.

Subscripts are i = s, v, and superscripts (which appear below)
are i =1S0,

3S1 with the equivalence s = 1S0, v = 3S1. We
use DR and the MS scheme throughout. These amplitudes
formally coincide with the leading order of the effective range
expansion (ERE) with the scattering length given by ai =
A2

i mN

πδmi

, and hence they also coincide with the LO amplitudes in

the KSW approach identifying
δmi

4A2
i

with 1
Ci

0
+ mN µ

4π
. The bubble

resummation chain in the latter plays the role of the dibaryon
field. Notice, however, that the use of the dibaryon field makes
unnecessary the use of the power divergence subtraction (PDS)
scheme in order to keep a consistent counting for p ∼ mπ .
Furthermore, one must keep in mind that δmi

may contain a
leading order dependence on the quark masses if δmi

� mπ ,
whereas the LO scattering lengths in the KSW approach do
not depend on the quark masses.

At NLO, we have the diagrams in Fig. 2. The diagrams
in Fig. 2(a) have a one-to-one correspondence with those in
the KSW approach. We have checked that they give the same
contribution as in Ref. [14]. The diagrams in Fig. 2(b) are
new and produce the only computational difference between
the KSW approach and ours at this order. The insertion of
a three-momentum-dependent four-nucleon interaction in the
bubble chain in KSW corresponds to the tree level energy
dependence of the dibaryon field, which becomes NLO in our
approach as well, and the insertion of a quark-mass-dependent
four-nucleon interaction in the bubble chain corresponds to the
dibaryon mass shift due to Eq. (3.4), which may become LO in
our approach. Since the diagrams of Fig. 2(b) do not contribute
to the 3S1-3D1 mixing, we obtain the same expressions as
KSW for it, and hence we will not discuss it further. The
contributions of Fig. 2(b) to the scattering amplitudes in the
1S0 and 3S1 channels read

Ai
0 = Ci + iCi

(mNp

2π

)
Ai

−1 − Ci

(mNp

4π

)2(
Ai

−1

)2
,

(4.2)
i = s, v,

where Cs = CS − 3CT ,Cv = CS + CT , which produce the
following extra contributions to the phase shifts with respect

to the KSW approach:

δi
0 = Ci

mN p

4π

1 +
(

A2
i mNp

πδmi

)2 , i = s, v. (3)

V. LOW ENERGY CONSTANTS FROM DATA

In this section, we compare the output of our calculation
with data and extract the low energy constants. This is
important for the self-consistency of the approach: if the data
favor δmi

of the order of the pion mass or smaller, then the
introduction of the dibaryon field makes a lot of sense. If, on
the contrary, it delivers δmi

larger than the pion masses, then the
introduction of the dibaryon field should be irrelevant. In the
first case, if, in addition, δmi

� mπ, our approach is expected
to produce qualitative differences with respect to KSW, at least
as far as the quark mass dependence is concerned.

As discussed in the previous section, our final results for the
NLO amplitudes and phase shifts may be obtained from those
of the KSW approach, by removing the PDS subtractions and
adding Eq. (3). It turns out that this extra contribution [Eq.
(4.2)] can be written in a form resembling the quark mass
insertion in KSW [see Eq. (5.2) below]. As a consequence, the
following correspondence between our parameters and, for
instance, those of Ref. [14] exist once the PDS subtractions
are removed,

4A2
i

δmi

= Ci
0, Ci = −Di

2m
2
π ,

4A2
i

δmi

1

mNδmi

= Ci
2. (5.1)

Note that whereas there is indeed a one-to-one correspondence
between our parameters and those of the KSW approach, the
quark mass dependence of these parameters does not match,
which may become important for eventual extrapolations of
lattice data.

The fits to phase shift data obtained in this way are very
unstable, especially for the 1S0 channel. It is convenient to
write these amplitudes in a manifestly unitary form [41,56],
which is equivalent to the one described above at the order we
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are working. This is achieved by writing

Ai
0 = Ci( 4A2

i

δmi

)2

(
Ai

−1

)2
, i = s, v, (5.2)

and proceeding analogously for the pion contributions arising
from Fig. 2(a),

Ai
0,π = 	i( 4A2

i

δmi

)2

(
Ai

−1

)2
, i = s, v, (5.3)

where 	i, i = s, v stand for

	i = g2
A

2f 2
π

{(
A2

i mNmπ

πδmi

)2 [
1 − 1

4
ln

(
1 + 4p2

m2
π

)]

− m2
π

p2

(
A2

i mNp

πδmi

)
tan−1

(
2p

mπ

)

+ m2
π

4p2
ln

(
1 + 4p2

m2
π

)
− 1

}
. (5.4)

Thanks to the simple self-energy structure, it is easy to
recast these contributions into manifestly unitary expressions,
which lead to the following phase shifts,2

δi = − tan−1




(
A2

i
mN p

πδmi

)
1− E

δmi
+ Ci+	i(

4A2
i

δmi

)

 , i = s, v. (5.5)

Note that at the order we are working, the contribution
proportional to Ci can be absorbed into a redefinition of δmi

.
This can already be seen at the Lagrangian level. Indeed, a
local field redefinition of the dibaryon fields of the type D →
D + cNN , which respects the counting (i.e., c ∼ �

−3/2
χ ),

allows one to remove the four-nucleon terms at the only cost
of introducing higher order operators [44,45,47]. Nevertheless,
we will keep these terms for the fits in this section, because
the outcome will be illuminating. The results discussed in the
following text as well as the figures correspond to Eq. (5.5)
above.

A. Fitting the phase shifts

Fitting the expressions in Eq. (5.5) to the Nijmegen data
for the phase shifts instead of the expressions in Sec. IV leads
to much more stable results and a very good agreement with
data at NLO. We restrict ourselves to energies in the range
0–50 MeV, for which our lower energy EFT should hold. We
present the results of the fit for the LO and the NLO expressions
in order to keep track of the evolution of the parameters. For
the 1S0 channel at LO we obtain,

A2
s

δms

= −3.20 × 10−5 MeV−2, (5.6)

2The unitarization is only approximate for the 3S1 channel, since
coupled-channel effects are neglected [41,56].

0 10 20 30 40 50

E(MeV)

0

20

40

60

80

δ

Nijmegen data
LO
NLO
Fit

FIG. 3. 1S0 phase shift. The solid line shows the Nijmegen data.
The dotted curve corresponds to fitting at LO the scattering length,
while the dashed line corresponds to fitting at NLO the scattering
length, the effective range, and the first shape parameter (v2s). The
dot-dashed curve corresponds to fitting δ in the energy range shown.

and the fit is rather poor. At NLO, however, the fit becomes
extremely good (Fig. 3), we obtain

Cs = −1.225 × 10−4 MeV−2, As = 0.0275 MeV−1/2,
(5.7)

δms
= 21.2 MeV,

A2
s

δms

= 3.56 × 10−5 MeV−2,

For the 3S1 channel at LO, we already obtain a reasonable
fit with

A2
v

δmv

= 2.57 × 10−4 MeV−2, (5.8)

which becomes better at NLO (Fig. 4) with

Cv = −0.228 × 10−4 MeV−2, Av = 0.0332 MeV−1/2,
(5.9)

δmv
= 32.0 MeV,

A2
v

δmv

= 0.344 × 10−4 MeV−2.

We observe that the values for δmi
are small, namely, δmi

∼
m2

π/�χ � mπ . This explains the large variations of A2
i /δmi

in
going from LO to NLO: δmi

− δ′
mi

is not a small correction to
δ′
mi

in Eq. (3.4) but a quantity of similar size. A2
i take reasonable

values ∼1/�χ ∼ 1/mN , and CS and CT take values larger
than expected with the size assignment ∼1/�2

χ . In fact, a size
assignment ∼1/�χmπ appears to be more appropriate. Note
that such a size assignment would not allow us to remove these
terms by a local field redefinition which respects the counting,
such as the one discussed after Eq. (5.5). In fact, if one sets
Cs = 0, the good fit to data for the 1S0 channel is spoiled. We
will return to this point in Sec. IV.

If we wish to analyze the convergence of the EFT results
for the phase shifts, fitting the LECs to data at each order
may not be the optimal way to proceed. Since the EFT should
work better the lower the energy is, it appears reasonable to
us to extract the LECs from the ERE, as advocated by some
authors [24,25].
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JOAN SOTO AND JAUME TARRÚS PHYSICAL REVIEW C 78, 024003 (2008)
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E(MeV)

0
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100
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δ

Nijmegen data
LO
NLO
Fit

FIG. 4. Same as Fig. 3, but for the 3S1 phase shift.

B. Inputting the ERE parameters

At LO the scattering lengths as = −23.7 fm and av =
5.42 fm are sufficient as an input. We obtain

A2
s

δms

= −1.61 × 10−3 MeV−2,

(5.10)
A2

v

δmv

= 3.68 × 10−4 MeV−2.

At NLO we need in addition the effective ranges rs =
2.67 fm and rv = 1.83 fm and the shape parameters v2s =
−0.476 fm3 and v2v = −0.131 fm3 [59]. We obtain

Cs = −0.874 · 10−4 MeV−2, As = 0.0239 MeV−1/2,
(5.11)

δms
= 18.9 MeV,

A2
s

δms

= 3.02 × 10−5 MeV−2,

Cv = −0.768 × 10−4 MeV−2, Av = 0.0292 MeV−1/2,
(5.12)

δmv
= 19.0 MeV,

A2
v

δmv

= 4.49 × 10−5 MeV−2.

From the plots in Figs. 3 and 4, we see that inputting
the parameters from the ERE produces a less satisfactory
description of data than the fits. Nevertheless, it might provide
a more convenient procedure for analyzing the convergence of
the series. It also produces smaller values of δmi

, which make
the contributions of the dibaryon fields more important at low
energies.

VI. RETHINKING THE COUNTING

The numbers for δmi
, i = s, v, of tens of MeV, clearly

indicate that the dibaryon fields must be kept as explicit degrees
of freedom essentially at all energies (only for E � δ2

mi
/�χ ∼

1 MeV is it justified to integrate them out). In addition,
since δmi

∼ m2
π/�χ , it implies that δ′

mi
<∼ m2

π/�χ , and hence
of size comparable to the NLO contributions. This suggests
that the actual LO of the dibaryon field propagator should
be π/A2mNp for p ∼ mπ rather than expression (2.7). This

expansion will fail at very low energies, but the manifestly
unitary version of it (beyond leading order) is expected to
produce sensible results in the very low energy region as well.
This can be checked from our expressions (5.5) by keeping
only the dependences in δmi

which gives rise to LO corrections
in the above counting [that is, dropping the terms with Ci and
keeping only the first term in Eq. (5.4)], namely,

δi = − tan−1


 A2

i mN p

πδmi

1 − E
δmi

+ g2
AA2

i m
2
N m2

π

8f 2
π π2δmi

[
1 − 1

4 ln
(
1 + 4p2

m2
π

)]

 ,

(6.1)
i = s, v.

Fits to data in this case, shown in Fig. 5, are only slightly worse
than those displayed in Figs. 3 and 4. They deliver

As = 0.0305 MeV−1/2, δms
= −19.4 MeV,

A2
s

δms

= −4.82 × 10−5 MeV−2, Av = 0.0365 MeV−1/2,

δmv
= 0.400 MeV,

A2
v

δmv

= 0.00333 MeV−2. (6.2)

From the numbers above, it is clear that this expansion is
expected to work better for the 3S1 channel than for the 1S0

one. It is also interesting to note that the numbers obtained for
Ci from the fits in Sec. V, namely, Ci ∼ 1/�χmπ , produce
in Eq. (5.5) the expected size for a correction O(mπ/�χ )
to the formula (6.1) above. Then the Ci in Eq. (5.5) appear
to be simulating next order corrections to the phase shifts.
This is also so for the second term in Eq. (5.4) (the last
terms in it give rise to next-to-next order corrections). For the
1S0 channel, this is specially important: if one sets Cs = 0 in
Eq. (5.5) but retains the second term (or the full expression)
in Eq. (5.4), no good fit to data is achieved. Hence, both terms
must be consistently neglected (or taken into account).

To evaluate the impact of recasting the amplitude in a
manifestly unitary expression, let us expand the formula (6.1)
around δmi

= 0 up to NLO terms, i.e., tan−1(x) ≈ π
2 − 1

x
, and

fit this expression to data in the energy range 2–50 MeV. The
expanded expressions still produce very good fits in this energy
range (see Fig. 5) and deliver similar values for the parameters:

As = 0.0343 MeV−1/2, δms
= −23.8 MeV,

A2
s

δms

= −4.96 × 10−5 MeV−2, Av = 0.0367 MeV−1/2, (6.3)

δmv
= 0.404 MeV,

A2
v

δmv

= 0.00333 MeV−2.

As mentioned before, this expansion breaks down at very
low energies. The manifestly unitary formula (6.1) essentially
fixes up this failure. Alternatively, at these low energies one
should change the counting to p ∼ δmi

� mπ . Then one can
match our lower energy EFT to an even lower energy EFT with
only contact interactions between nucleons (rather than finite
range potentials like Yukawa’s), and between nucleons and
dibaryons. In fact, it is within this very low energy EFT that
dibaryon fields have mostly been considered in the literature
[44,47,53]. It would be interesting to have the explicit relation
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FIG. 5. Phase shifts 3S1 (a) and 1S0 (b). The solid line shows the
Nijmegen data. The dashed and dotted curves correspond to the fit
in the range 2–50 MeV of Eq. (6.1) and its expanded version (as
explained in the text), respectively. The expanded expression fails
to reproduce the data at very low energies while it fits better than
the full expression at p ∼ mπ . Notice that the expanded expressions
for the 1S0 (3S1) channel tend to −∞ (∞) as the energy tends to
zero.

between the parameters in our fundamental theory and the
ones in this very low energy EFT, which is left for future
work.

VII. DISCUSSION

Let us first elaborate on the apparent contradiction between
our hypothesis that dibaryon fields must be considered fun-
damental degrees of freedom and Weinberg’s claim that the
deuteron is not an elementary particle [60]. The point is that
one should not identify the 3S1 dibaryon with the deuteron.
We can substantiate this statement by computing the value of
Z = |〈
| �Dv|d〉|2 (d stands for the deuteron), the projection
of the dibaryon field on the deuteron, from the LO dibaryon

propagator:∫
d4x eip·x〈
|T {

Di
v(0)Dj

v

†
(x)

}|
〉|E=p0→Ed

= iZδij

E − Ed + iε
+ · · · , (7.1)

where Ed is the binding energy of the deuteron. At LO,∫
d4x eip·x〈
|T {

Di
v(0)Dj

v

†
(x)

}|
〉

= iδij

δm + i
A2mNp

π

= iδij

δm − A2mN

π

√−mN (E + iε)
, (7.2)

from which one easily obtains

Z = lim
E→Ed

δm + A2mN

√−mN (E+iε)
π

A4m3
N

π2

= δm + |δm|
A4m3

N

π2

� 1. (7.3)

Hence the projection of the dibaryon field on the physical
state, i.e., the deuteron, is parametrically small, so there is no
contradiction between Weinberg’s statement that the deuteron
is mainly a nucleon-nucleon bound state and considering
dibaryons as basic degrees of freedom. This is possible because
the interaction of the dibaryon with the nucleons is a leading
order effect.

Let us next discuss the quark mass dependence of the
scattering lengths a in our approach. At leading nonvanishing
order, they read

mN

a
∼ c + c′mq + c′′mq ln mq, (7.4)

(c, c′, and c′′ stand for quantities that do not depend on the
quark masses) in which all three terms are equally important
[the chiral log arises from the counterterm of the rightmost
diagram in Fig. 2(a)]. The most important correction to this
formula comes from a particular momentum region, uncovered
in Ref. [61] and recently discussed in Ref. [11], of two-loop
self-energy diagrams of the dibaryon fields which produces
terms proportional to m

5/4
q . Hence, the lattice results for the

scattering lengths [62,63] are expected to be very sensitive to
the quark masses used.

Let us finally mention that the inclusion of dibaryon fields
as fundamental degrees of freedom may help us understand
certain enhancements in N -body forces. In the Weinberg’s
original counting [1], N -body forces were suppressed by
powers of �4−3N

χ . However, the introduction of a dibaryon
field allows us to introduce local terms in the baryon number
sector N which are only suppressed by �

4−3N/2
χ if N is

even or �
(5−3N)/2
χ if N is odd, which indicates that N -body

forces are expected to be enhanced with respect to Weinberg’s
counting. To illustrate this, consider, for instance, a term
rD†N †ND, r ∼ 1/�2

χ . If the dibaryon field is integrated out
and the outcome is expanded considering the momenta small,
a six-nucleon contact term r ′N †N †N †NNN, r ′ ∼ 1/(�3

χδ2
m),

is induced, which is indeed enhanced with respect to the
Weinberg’s counting (δm � �χ ). It is interesting to note that
this term is of the same “unnatural” size as the one found
in Ref. [64], if the cutoff � and the coupling constant g are
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taken of natural size, namely, � ∼ �χ and g2 ∼ 1/�χ , in that
reference.

VIII. CONCLUSIONS

We have proposed a NNEFT at the energy scale of the
pion mass, which has two dibaryon fields as explicit degrees
of freedom in addition to the nucleons and pions. We have
matched it to a lower energy effective theory in which the
pion fields have been integrated out. We have pointed out
that different counting rules are required for p <∼ m2

π/�χ

and for p ∼ mπ , and have focused on the latter case. Both
effective theories are renormalizable and give rise to manifestly
unitary amplitudes at leading order. We have calculated these
amplitudes at NLO and showed that they produce a very good
description of the phase shift in the energy range 5–50 MeV.
Once unitarized, the good description extends to the full range
of 0–50 MeV. The residual masses delivered by the fits are

small, which indicates that the dibaryon fields must also be
kept as explicit degrees of freedom at low energies.
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Gestió d’Ajudes Universitaries i de Recerca (AGAUR) of the
Generalitat de Catalunya.

[1] S. Weinberg, Phys. Lett. B251, 288 (1990); Nucl. Phys. B363, 3
(1991); Phys. Lett. B295, 114 (1992).

[2] P. F. Bedaque and U. van Kolck, Annu. Rev. Nucl. Part. Sci. 52,
339 (2002).

[3] E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006).
[4] H. W. Hammer, N. Kalantar-Nayestanaki, and D. R. Phillips,

arXiv:nucl-th/0611084.
[5] R. Machleidt, arXiv:0704.0807 [nucl-th].
[6] E. Jenkins and A. V. Manohar, Phys. Lett. B255, 558 (1991).
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