
PHYSICAL REVIEW C 78, 024002 (2008)

Poincaré invariant three-body scattering at intermediate energies
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The Faddeev equation for three-nucleon scattering, based on an exactly Poincaré invariant formulation of
quantum mechanics, is solved for projectile energies up to 2 GeV. As in the nonrelativistic three-body problem,
the three-body dynamics is determined, up to three-body interactions, by the two-body dynamics and cluster
properties. The two-body interactions are determined, up to a unitary scattering equivalence, by two-body
scattering data, which in our application are generated by a nonrelativistic Malfliet-Tjon interaction. The
Faddeev equation is directly solved in a kinematic momentum representation without employing a partial-wave
decomposition. The solution of the Faddeev equation is generated using Padé summation, and the numerical
feasibility and stability of the solution is demonstrated. Scattering observables for elastic and breakup scattering
are calculated for projectile energies in the intermediate energy range up to 2 GeV, and compared with their
nonrelativistic counterparts. The convergence of the multiple scattering series is investigated as a function of the
projectile energy in different scattering observables and configurations. The complementary roles of kinematic
and dynamical contributions to our Poincaré invariant model are investigated. Approximations to the two-body
interaction embedded in the three-particle space are compared with the exact treatment.
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I. INTRODUCTION

The lightest nuclei can be accurately modeled as systems
of nucleons interacting via effective two- and three-body
forces motivated, e.g., by meson exchange. This picture is
expected to break down at a higher energy scale, where the
physics is more efficiently described in terms of subnuclear
degrees of freedom. Few-body methods are an essential tool
for determining model Hamiltonians that describe low-energy
nuclear physics. Few-body methods have the potential to be
equally as useful for modeling light nuclei as few-degree of
freedom systems at intermediate energies. To successfully do
this, a number of challenges need to be addressed. These
include replacing the nonrelativistic theory with a relativistic
one and overcoming limitations imposed by interactions fit to
elastic nucleon-nucleon (NN ) scattering data, including new
degrees of freedom that appear above the pion production
threshold, as well as solving numerical problems related to
the proliferation of partial waves characteristic of scattering
calculations at higher energies. Thus the intermediate energy
regime is a new territory for few-body calculations that waits
to be explored.

In this paper we address two of these challenges. We
demonstrate that it is now possible to perform converged
three-body scattering calculations at energies up to 2 GeV
laboratory kinetic energy. Key elements are a consistent
implementation of a Poincaré symmetric quantum theory [1]
and the use of direct integration methods that avoid the
partial-wave decomposition, successfully applied below the
pion-production threshold [2]. In a series of publications [3–5],
the technique for solving the nonrelativistic momentum-space
Faddeev equation without partial waves has been mastered for

bound as well as scattering states. For projectile energies of a
GeV or more, the partial-wave expansions, which are efficient
at low energies, become increasingly more complicated as
the energy is increased. Direct integration methods have clear
advantages at intermediate energies.

The framework used in this paper is one of two approaches
that have been successfully applied to model realistic relativis-
tic few-body systems. Field theory motivated approaches are
based on few-body extensions of the Bethe-Salpeter equation.
The structure of the equations is dictated by quantum field
theory, while the input uses a combination phenomenology
and theoretically motivated assumptions. Quasipotential re-
ductions of these equations simplify the numerical problem
without making any compromises on the physics input. The
first exact realistic treatment of the relativistic three-nucleon
bound state problem by Stadler and Gross [6] was based on the
Gross equation, which is a quasipotential equation that puts
two of the three nucleons on their mass shells. The alternative
treatment of relativistic few-body dynamics used in this paper
builds on the success of nonrelativistic few-nucleon physics.
The theoretical foundation is few-body quantum mechanics
of particles where the Galilean symmetry of nonrelativistic
quantum mechanics is replaced by a Poincaré symmetry. The
relation between the two- and three-body dynamics is fixed,
up to three-body interactions by cluster properties, while the
two-body input can be constructed from the same interactions
that fit experimental data in the nonrelativistic two-body
problem.

In 1939, Wigner [1] showed that Poincaré invariance of a
quantum theory is equivalent to the existence of a unitary
representation of the Poincaré group on the Hilbert space
of the quantum theory. Dirac [7] demonstrated the nonlinear
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difficulties in constructing dynamical representations of the
Poincaré group. Bakamjian and Thomas [8] solved this
problem for N = 2, Coester [9] extended this to N = 3 with
S-matrix cluster properties, and Sokolov [10] and Coester and
Polyzou [11] constructed a complete solution for any fixed
number of particles consistent with cluster properties and a
spectral condition. These constructions provide an example of
a class of theories consistent with the axioms of quantum field
theory [12], except for microscopic locality, which requires
a theory with an infinite number of degrees of freedom and
cannot be tested experimentally. The model solved in this
paper is based directly on the three-body construction given by
Coester in 1965 [9]. This formalism has no direct connection
to quantum field theory or quasipotential equations; it is
similar in spirit to the nonrelativistic three-body problem,
where two-body interactions fit to scattering data and cluster
properties fix the three-body Hamiltonian up to three-body
forces. The eventual goal is to have a mathematical model that
can provide a quantitative description of few-nucleon systems
at energies of a few GeV. We use our model to explore the
role of Poincaré invariance in strongly interacting few-body
systems and the validity of various approximation methods
that are employed at these energies. The advantage of this
approach is that Poincaré invariance, cluster properties, and
the spectral condition are realized exactly.

The dynamical model in this paper is given by a dy-
namical unitary representation of the Poincaré group on the
three-nucleon Hilbert space. The mass Casimir operator of
this representation replaces the nonrelativistic center-of-mass
Hamiltonian. Time-dependent scattering theory can be used
to derive expressions for on-shell S-matrix elements in terms
of “transition operators” constructed directly in terms of the
resolvent of the mass Casimir operator and the interactions
appearing in that operator. The Faddeev equation can be
formulated and the solution can be used to construct these
transition operators. As in the nonrelativistic case, the Faddeev
equation has a compact iterated kernel, which implies that it
can be uniformly approximated by a finite matrix.

The Faddeev equation in the relativistic theory has the same
operator structure as the Faddeev equation in the nonrelativistic
theory; however, there are several new complications that
must be overcome. The first is that the three-body mass
Casimir operator is a nonlinear function of the subsystem
mass operators, so the two-body interactions appear in
the three-body mass operator in a nonlinear manner. This
requires developing techniques for treating square roots of
noncommuting operators [13]. A second complication is that
the permutation operators in the relativistic case involve
coupling irreducible representations of the Poincaré group
in different orders using Clebsch-Gordan coefficients for
the Poincaré group; the permutation operators are exactly
Racah coefficient for the Poincaré group, which have a
more complicated spin and momentum dependence than the
nonrelativistic permutation operators. These operators play
an important role in constructing the interactions that appear
in the mass Casimir operator. A third complication is that
high precision two-body interactions [14–16] are normally
associated with nonrelativistic two-body problems; there is
no comparable fit in the relativistic case. This problem is

addressed by a method employed to treat the relativistic many-
body problem [17]. Finally, the group theoretic method used
for solving the nonlinear problem of adding interactions in a
Poincaré invariant manner does not satisfy cluster properties;
this has to be repaired with an interaction-dependent unitary
transformation [11]. The resolution of all of these issues in
the context of our three-nucleon model is discussed in detail
in Ref. [18], where we constructed the Faddeev kernel and
performed a first-order calculation in the multiple scattering
series. In this paper, we complete what we started in Ref. [18]
by providing a fully converged solution to the Faddeev
equation for laboratory kinetic energies up to 2 GeV.

While the method that we use addresses the problem of how
to incorporate high-precision interactions into our framework
in a manner that reproduces the experimental two-body scat-
tering matrix elements, in our calculations we actually use the
Malfliet-Tjon [19] interaction, which is linear combinations of
Yukawa interactions that commute with the spin. In the context
of our general framework, this is equivalent to assuming that
the measured scattering data are generated by the associated
nonrelativistic two-body model. The Malfliet-Tjon interaction
is often used in benchmark calculations because it leads to a
two-body bound state wave function with the same symmetry
as the spatial part of the wave function in realistic models of
the deuteron. In addition, its core is sufficiently hard that it
provides a robust test of numerical methods for computing the
momentum-dependent part of the three-body wave functions.
It simplifies our calculations because it is a spin-independent
interaction. We want to point out that the relativistic Faddeev
equation with high-precision spin-dependent interactions has
been solved below the pion-production threshold in a partial-
wave basis [20–22]. This method becomes more inefficient
when energy is increased above 250 MeV.

This article is organized as follows. In Sec. II, the
formulation of the Poincaré invariant Faddeev equation is
given, and numerical aspects for computing the Faddeev kernel
are discussed. In Secs. III and IV, we present calculations
for elastic and breakup processes in the intermediate energy
regime from 0.2 to 1.5 GeV. Our focus here is the investigation
of the convergence of the multiple scattering series as a func-
tion of projectile kinetic energy. We compare our calculations
with selected breakup observables and investigate a simple
approximation of the embedding of the two-body interaction
into the three-body problem.

II. SOLVING THE RELATIVISTIC FADDEEV EQUATION

The dynamics in Poincaré invariant quantum mechanics
is given by the mass Casimir operator of a dynamical
representation of the Poincaré group. This mass operator
plays the same role in the relativistic theory as the center-
of-mass Hamiltonian plays in the nonrelativistic theory. In
this framework, the Faddeev equation is a reformulation
of the scattering eigenvalue problem (including asymptotic
conditions) as an integral equation with a compact iterated
kernel, which can be uniformly approximated by a finite
dimensional matrix. Unlike other relativistic integral equation
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methods, it has no relation to Bethe-Salpeter or quasipotential
equations.

A detailed formulation of three-body scattering in Poincarè
invariant quantum mechanics has been given in Ref. [18],
where the driving term and kernel in the relativistic Faddeev
equation was used to estimate cross sections for elastic as well
as breakup scattering to leading order in the multiple scattering
series. This is now being complemented by a complete solution
of the relativistic Faddeev equation based on the numerical
techniques previously used to solve the nonrelativistic Faddeev
equation [3]. For the convenience of the reader, essential
equations are repeated; but for the detailed derivation of the
expressions, we refer the reader to Ref. [18].

Abstractly, the Faddeev equation in our Poincaré invariant
model has the same form as in the Galilean invariant case. The
symmetrized transition operators U (z) for elastic scattering
and U0(z) for breakup reactions can be expressed in terms of
the solution T (z) of the symmetrized Faddeev equation

U (z) = P (z − M0) + PT (z),
(2.1)

U0(z) = (1 + P ) T (z),

where M0 is the invariant mass operator for three noninter-
acting particles, and the permutation operator P is given by
P = P12P23 + P13P23. The operator T (z) is the solution to the
symmetrized Faddeev equation

T (z) = T1(z)P + T1(z)P (z − M0)−1T (z), (2.2)

where the operator T1(z) is the solution of

T1(z) = V1 + V1(z − M0)−1T1(z). (2.3)

In Eq. (2.3), V1 = V23 = M23 − M0 is the two-body interac-
tion embedded in the three-body Hilbert space, and M23 is
the invariant mass operator for two-interacting particles and
a spectator. The interaction V1 is related to a two-body NN

interaction, v23, fit to scattering data by

V1 =
√

4
(
k2

1 + m2
n

) + 4mnv23 + q2
1 −

√
4
(
k2

1 + m2
n

) + q2
1,

(2.4)

where ki and qi are the Poincaré-Jacobi momenta defined
below. The computation of the kernel of Eq. (2.3) is nontrivial;
we compute it exactly using techniques based on formal
scattering theory, which are discussed in detail in Refs. [13,18].

Dynamical representations of the Poincaré group are
constructed by diagonalizing the interacting mass Casimir
operator

M = M0 + V1 + V2 + V3, (2.5)

which is rotationally and translationally invariant, in a nonin-
teracting irreducible representation of the Poincaré group [18].
The resulting eigenstates transform irreducibly with respect to
a representation in which the mass Casimir is the interacting
mass operator (2.5). In our direct integration approach, the
SU(2) little group is uncoupled to obtain vectors that Wigner
rotate together under kinematic Lorentz transformation and
permutations, allowing us to realize the dynamical symmetry
without directly using a partial-wave analysis. Having estab-
lished the connection of the mass operator to the dynamical

representation of the Poincaré group, three-body scatter-
ing observables can be calculated by solving the Faddeev
equation (2.2).

The vector variables obtained by this uncoupling process
are also the natural variables to use in the Faddeev equations.
These variables are similar to the standard nonrelativistic
Jacobi momenta, which are defined by transforming the single-
particle momenta pi to the rest frame of the three-body system
using a Galilean boost. The corresponding Poincaré-Jacobi
momenta (qi , ki) are defined by replacing the Galilean boosts
by rotationless Lorentz boosts B−1(P/M0) and pi by the
single-particle (on-shell) four-momenta pi :

qi = B−1(P/M0)pi = (√
q2

i + m2
n, qi

)
, (2.6)

and

ki = B−1[(qj + qk)/m0jk] 1
2 (qj − qk) = (0, ki), (2.7)

where M0 is the invariant mass of the noninteracting three-
particle system, and m0jk is the invariant mass of the pair of
noninteracting particles with momenta qj and qk . Because the
arguments of the boost in Eqs. (2.6) and (2.7) are operators,
rather than fixed parameters, the Poincaré-Jacobi momenta
are not four vectors: instead, they all undergo identical Wigner
rotations under Lorentz transformations. Explicit forms of the
relations (2.6) and (2.7) are

qi = pi + P
M0

(
P · pi

M0 +
√

M0 + P2
−

√
m2 + p2

i

)
, (2.8)

q ≡ qi = −(qj + qk),

k ≡ ki = kjk = 1

2
(qj − qk)

− 1

2
(qj + qk)

(
Ej −Ek

Ej +Ek +√
(Ej +Ek)2 − (qj + qk)2

)
,

(2.9)

where Ei ≡ E(qi) =
√

m2 + qi
2. In addition, the transforma-

tion from eigenstates labeled by single-particle momenta pi to
eigenstates labeled by Poincaré-Jacobi momenta is

|p1, p2, p3〉 =
∣∣∣∣ ∂(P, k, q)

∂(p1, p2, p3)

∣∣∣∣1/2

|P, k, q〉, (2.10)

where for P = 0 the Jacobian becomes∣∣∣∣ ∂(P, k, q)

∂(p1, p2, p3)

∣∣∣∣1/2

|P=0

=
(√

[E(q2) + E(q3)]2 − q2 [E(q2) + E(q3)]

4E(q2)E(q3)

)1/2

. (2.11)

This Jacobian appears in the expressions for the permutation
operators.

In the above expression, we chose, without loss of gener-
ality, particle 1 as the spectator. The matrix elements of the
permutation operator are then explicitly calculated as

〈k′, q′|P |k, q〉 = N (q′, q)
[
δ
(
k′ − q − 1

2 q′ C(q, q′)
)

× δ
(
k + q′ + 1

2 q C(q′, q)
)
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+ δ
(
k′ + q + 1

2 q′ C(q, q′)
)

× δ
(
p − q′ − 1

2 q C(q′, q)
)]

, (2.12)

where the function N (q′, q) contains the product of two
Jacobians and reads

N (q, q′) ≡ N (q, q ′, x ′) =
√

E(q) + E(q + q′)
√

E(q′) + E(q + q′)
4E(q + q′)

×
4
√

[E(q) + E(q + q′)]2 − q′2 4
√

[E(q′) + E(q + q′)]2 − q2

√
E(q)E(q′)

, (2.13)

with x ′ = q̂ · q̂′. The function C(q, q′) is calculated as

C(q′, q) ≡ C(q ′, q, x ′) = 1 + E(q′) − E(q′ + q)

E(q′) + E(q′ + q) +
√

[E(q′) + E(q′ + q)]2 − q2
. (2.14)

These permutation operators, which change the order of
coupling, are essentially Racah coefficients for the Poincaré
group. In the nonrelativistic case, the functions N (q′, q) and
C(q′, q) both reduce to the constant 1 and have the relatively
compact form of the matrix elements of P given in, e.g.,
Refs. [3,5].

In this paper, we call the modifications of the Faddeev
equation associated with use of Poincaré Jacobi momenta and
the associated permutation operators “kinematic corrections.”

In matrix form, the Faddeev equation, Eq. (2.2), reads

〈k, q‖T ‖ϕd, q0〉 = 〈k, q‖T1P ‖ϕd, q0〉

+ 〈k, q‖T1P (z − M0)−1T ‖ϕd, q0〉,
(2.15)

where we have factored out a delta function in the total
momentum and set P = 0. The “dynamical modifications”
that appear in this relativistic form of the Faddeev equation
are contained in the the operator 〈k, q|T1(z)|k′, q〉, which
is constructed by solving Eq. (2.3) using the embedded
interaction (2.4). The solution of this equation is needed fully
off-shell, and the methods of computation are discussed in
Ref. [18]. Inserting complete sets of states in Eq. (2.2) and
explicitly evaluating the permutation operator leads to

〈k, q‖T (W)‖ϕd, q0〉 = N (q, q0) Ts

(
k, q0 + 1

2
q C(q0, q), q; ε

)
ϕd

(
q + 1

2
q0 C(q, q0)

)
+

∫
d3q ′ N (q, q′)

Ts

(
k, q′ + 1

2 qC(q′, q), q; ε
) 〈

q + 1
2 q′C(q, q′), q′‖T (W)‖ϕdq0

〉
W − (

√
m2 + q2 +

√
m2 + q′2 +

√
m2 + (q + q′)2) + iε

. (2.16)

The quantities W and q0 are determined by the laboratory
kinetic energy Elab of the incident nucleon,

W2 = (m + md )2 + 2mdElab. (2.17)

The nucleon rest mass is given by m, the rest mass of the
deuteron is md = 2m − εd , where εd is the deuteron binding
energy. The Poincaré-Jacobi momentum between projectile

and target, q0, is related to Elab by

q2
0 = m2

dElab

W2
(Elab + 2m). (2.18)

The invariant parametric energy ε which enters the two-body
t matrix is given by ε = W −

√
m2 + q2. Since we consider

bosons, we introduce the symmetrized two-body transition
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matrix Ts

Ts(k, k′, q; ε) = T1(k, k′, q; ε) + T1(−k, k′, q; ε)

= T1(k, k′, q; ε) + T1(k,−k′, q; ε). (2.19)

This two-body t matrix has a simple pole at W =
√

m2 + q2 +√
m2

d + q2. Thus, for the practical calculation, we need to take

this pole explicitly into consideration by defining

T̂s = (
W −

√
m2 + q2 −

√
m2

d + q2
)
Ts,

(2.20)

T̂ = (
W −

√
m2 + q2 −

√
m2

d + q2
)
T ,

and solving Eq. (2.16) for T̂ ,

〈k, q‖T̂ (W)‖ϕd, q0〉 = N (q, q0)T̂s

(
k, q0 + 1

2
q C(q0, q), q; ε

)
ϕd

(
q + 1

2
q0 C(q, q0)

)
+

∫
d3q ′N (q, q′)

T̂s

(
k, q′ + 1

2 qC(q′, q), q; ε
)

W − (√
m2 + q′2 +

√
m2

d + q′2) + iε

×
〈
q + 1

2 q′C(q, q′), q′‖T̂ ‖ϕdq0
〉

W − (√
m2 + q2 +

√
m2 + q′2 +

√
m2 + (q + q′)2

) + iε
. (2.21)

For the explicit calculation, we introduce the independent
variables [3]

k = |k|, q = |q|, xk = k̂ · q̂0, xq = q̂ · q̂0,
(2.22)

x
q0
kq = ̂(q0 × q) · ̂(q0 × k),

so that 〈k, q|T̂ |ϕd, q0〉 = T̂ (k, xk, x
q0
kq, xq, q), is a function of

five variables. In the variables of Eq. (2.22) and defining

ykq = xkxq +
√

1 − x2
k

√
1 − x2

qx
q0
kq , the final expression for

Eq. (2.16) reads

T̂ (k, xk, x
q0
kq, xq, q) = N (q, q0, xq )ϕd

(∣∣∣∣q + 1

2
q0 C(q, q0)

∣∣∣∣)
× T̂s

(
k,

∣∣∣∣q0 + 1

2
q C(q0, q)

∣∣∣∣ , yk,q0+ 1
2 q C(q0,q); W −

√
m2 + q2

)

+
∫

d3q ′N (q, q ′, x ′)
T̂s

(
k, |q′ + 1

2 q C(q′, q)|, yk,q′+ 1
2 q C(q′,q); W −

√
m2 + q2

)
W − (√

m2 + q′2 +
√

m2
d + q′2) + iε

×
T̂

(|q + 1
2 q′C(q, q′)|, yq+ 1

2 q′C(q,q′),q0
, x

q0

q+ 1
2 q′C(q,q′),q ′ , yq ′q0 , q

′)
W − (

√
m2 + q2 +

√
m2 + q′2 +

√
m2 + q2 + q ′2 + 2qq ′x ′) + iε

. (2.23)

While the deuteron pole can be numerically taken care of with
a single subtraction in the q ′ integration, the free three-nucleon
propagator in the second term under the integral of Eq. (2.23)
contains singularities depending on q ′ as well as x ′ leading to a
singular region in the q − q ′ plane. To simplify the calculation,
we carry out the integration of the kernel in a frame in which
the z axis is along the direction of q. In this frame, x ′ = q̂′ · q̂
and φ′ is the azimuthal angle of q′. With these definitions, one
has

yq ′q0 = xqx
′ +

√
1 − x2

q

√
1 − x ′2 cos(φq0 − φ′),

(2.24)

ykq ′ = xpx ′ +
√

1 − x2
k

√
1 − x ′2 cos(φk − φ′),

where φk and φq0 are the azimuthal angles of k and q0 in the
frame described above. Since there is a freedom in choosing
the x axis, we may place q0 in the xz plane, this gives φq0 = 0.
With this choice, φk is evaluated as

cos φk = xk − ykqxq√
1 − y2

kq

√
1 − x2

q

. (25)

Explicit definitions of the remaining variables appearing in
Eq. (2.23) are given in the Appendix.

For the integration of the 3N propagator, each singularity in
the x ′ integration (for fixed q ′) is explicitly taken into account
by a subtraction. However, this leads to logarithmic singu-
larities in q ′ at the boundaries x ′ = ±1. These we integrate
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in the semianalytic fashion introduced in Ref. [3] by using
cubic Hermite splines. While using cubic Hermite splines is
advantageous in dealing with the logarithmic singularities, this
method is not as effective as Gauss-Legendre quadrature when
integrating over large, nonsingular regions. Thus, to make the
most efficient use of both methods, we divide the interval
of the q ′ integration into several integration regions, and we
use Gauss-Legendre quadrature in the nonsingular integrals
while keeping the cubic Hermite splines in the small regions
around the singularities. With this procedure, we are able to
successfully integrate over the Faddeev kernel with sufficient
accuracy. For the final solution of Eq. (2.23), the kernel is
successively applied, and the resulting terms are summed up
as Padé sums. At the higher energies, we will also carry out
the Neumann sum.

Our explicit calculations are based on a simple interaction
of Malfliet-Tjon type consisting of a superposition of an
attractive and repulsive Yukawa interaction that supports a
bound state with the deuteron binding energy. The parameters
of this nonrelativistic interaction are given in Ref. [3]. To
obtain a relativistic interaction that is phase shift equivalent
with the nonrelativistic one, we employ a scheme in which 4m

multiplied with the interaction is added to the square of the
noninteracting two-body mass operator. This procedure was
introduced by Coester, Pieper, and Serduke [17] and used here
in the form given in Ref. [13]. It guarantees that differences in
the relativistic and nonrelativistic calculations first appear in
the three-body calculations.

Before entering a detailed study on relativistic effects,
we want to present further details on the numerical quality
of our solution of the relativistic Faddeev equation. One
internal consistency check of the solution is provided by the
optical theorem, which states that the total cross section, being
the sum of the total elastic cross section, σel, and the total
breakup cross section, σbr, must be equal to the imaginary
part of the transition operator for elastic scattering U in the
forward direction. In the center-of-momentum (c.m.) frame,
this relation reads

σel + σbr = σtot = −16π3 En(q0)Ed (q0)

q0W
Im(U (q0, x = 1)).

(2.26)

Listed in Table I are our fully relativistic calculations of the
total cross sections for elastic scattering and breakup reaction
for projectile energies from 0.1 to 2.0 GeV, together with the
total cross sections. The total cross sections are calculated as
the sum of the elastic and breakup cross sections, σtot, and
via the optical theorem, σop, from the imaginary part of the
operator U in the forward direction, x = 1. A comparison of
those two numbers for the total cross section shows that our
calculations fulfill the optical theorem to about 1% or better
up to 1 GeV. This error increases to about 3% at 2 GeV.
Here we did not push the calculations any farther, since our
model potential is too simple to take it to much higher energies
anyway. For the sake of showing the numerical quality of our
calculations, we included 2 GeV in Table I, but we do not show
any further observables at this energy.

The transition amplitude of Eq. (2.23) is a function of five
variables and is the solution of an integral equation in three

TABLE I. Total elastic and breakup cross sections together with
the total cross section extracted via the optical theorem calculated
from a Malfliet-Tjon type potential as function of the projectile
laboratory kinetic energy.

Elab (GeV) σop (mb) σtot (mb) σel (mb) σbr(mb)

0.1 349.4 350.6 273.4 77.2
0.2 195.1 194.6 158.6 36.0
0.5 106.2 106.8 72.2 34.6
0.8 74.2 74.5 46.6 27.9
1.0 62.3 61.8 37.7 24.1
1.2 54.6 55.3 33.0 22.3
1.5 43.7 44.9 26.0 18.9
2.0 33.0 34.1 18.9 15.2

dimensions. Thus, in the calculation the dependence of the
result on the various choices of grids has to be considered. As
far as the momentum grids are concerned, the accuracy of the
calculation is most sensitive to the q grid, as already found
in Ref. [3]. In Fig. 1, we show the dependence of the relative
error 	q = σop−σtot

σop
× 100 in the optical theorem as function of

the size of the q grid, Nq , for a calculation at 1 GeV projectile
laboratory kinetic energy. The slope of 	q shows that indeed
the accuracy of the calculation is strongly influenced by the
size of this grid. For our calculation, Nq = 50 is sufficient at
1 GeV. Next, we consider the sensitivity of the calculation to
the size of different angle grids. In Table II, we give the cross
sections for elastic scattering and breakup reactions together
with the total cross section σop extracted from the optical
theorem when varying the size of the different angle grids.
We can see that the results are most sensitive with respect to
the grids in xq and x ′. It is common wisdom in calculations
using an angular momentum basis that as the energy of the
projectile increases, the number of partial waves needed to
obtain a converged result increases rather quickly. In our
three-dimensional calculations, all partial waves are included.
The increase in energy manifests itself in a two-body t matrix
acquiring a more pronounced peak structure in the forward and
backward directions with respect to the angle between the two
momentum vectors [23]. This peak structure at xq = ±1 must
be adequately covered in calculations at higher energies to
ensure converged results. In Fig. 2, we show the relative error
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FIG. 1. (Color online) Percent error 	q = σop−σtot

σop
× 100 in the

optical theorem as a function of the grid points in the momentum q

for a calculation at 1.0 GeV.
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TABLE II. Relativistic total elastic cross section, total breakup cross section, and total cross section extracted via the optical theorem
calculated from a Malfliet-Tjon type potential at 1 GeV as function of the grid points. The double prime quantities are the integration variables.

Elab (GeV) q xq xq0
pq xp p q ′ x ′ φ′′ σop (mb) σtot (mb) σel (mb) σbr (mb)

1.0 50 28 12 20 50 50 20 20 0.6154 × 102 0.6069 × 102 0.3678 × 102 0.2391 × 102

1.0 50 32 12 20 50 50 20 20 0.6225 × 102 0.6184 × 102 0.3774 × 102 0.2411 × 102

1.0 50 36 12 20 50 50 20 20 0.6257 × 102 0.6233 × 102 0.3812 × 102 0.2421 × 102

1.0 50 40 12 20 50 50 20 20 0.6250 × 102 0.6229 × 102 0.3809 × 102 0.2420 × 102

1.0 50 32 12 20 50 50 20 20 0.6225 × 102 0.6184 × 102 0.3774 × 102 0.2411 × 102

1.0 50 32 12 20 50 50 24 20 0.6194 × 102 0.6153 × 102 0.3753 × 102 0.2400 × 102

1.0 50 32 12 20 50 50 28 20 0.6199 × 102 0.6133 × 102 0.3744 × 102 0.2389 × 102

1.0 50 32 12 20 50 50 32 20 0.6187 × 102 0.6136 × 102 0.3746 × 102 0.2390 × 102

1.0 50 32 12 20 50 50 20 20 0.6225 × 102 0.6184 × 102 0.3774 × 102 0.2411 × 102

1.0 50 32 16 20 50 50 20 20 0.6225 × 102 0.6184 × 102 0.3773 × 102 0.2411 × 102

1.0 50 32 12 24 50 50 20 20 0.6225 × 102 0.6177 × 102 0.3777 × 102 0.2400 × 102

1.0 50 32 12 20 50 50 20 24 0.6221 × 102 0.6180 × 102 0.3773 × 102 0.2408 × 102

	x = σop−σtot

σop
× 100 in the optical theorem as a function of the

size of the xq grid for three different projectile laboratory
kinetic energies. The necessity of increasing the xq grid
with increasing projectile energy is clearly seen. Whereas for
0.2 GeV Nxq

= 24 is clearly sufficient, at 0.5 GeV one needs
already at least 28 points, whereas at 1 GeV a minimum of
36 points is required. This conclusion is also reached in our
Table III, which shows the relativistic differential cross section
at selected angles while varying the xq grid. Note that the angle
xq is related to the angular momentum of the relative motion
between the spectator and the interacting pair. The angle xp,
which is related to the angular momentum of the interacting

pair, is not nearly as sensitive as xq . In Table II, we vary the
xp grid from 20 to 24 points and see hardly any difference.

It is illustrative to contrast the computational algorithm for
direct integration with the experience gained when using a
partial-wave basis in the 3N system. Our experience tells us
that at Elab = 200 MeV, the total angular momentum of the
2N subsystem j needs to be jmax = 5 to reach convergence.
Furthermore, the maximum total angular momentum J of the
3N system required to reach convergence is Jmax = 25/2.
Let us assume that Jmax = jmax + Imax, where Imax = si + λ

is the maximal angular momentum of the projectile nucleon
with respect to the target pair, s1 is the spin of the projectile,

TABLE III. Relativistic elastic differential cross sections for selected scattering angles calculated at 1 GeV for a
Malfliet-Tjon type potential as function of the size of the xq grid. The last column indicates the percent difference
with respect to the calculations for the corresponding angle in the rows above.

Elab (GeV) q xq xq0
pq xp p q ′ x ′ φ′′ θ (deg) dσ

d�
(mb/sr) 	 (%)

1.0 50 28 12 20 50 50 20 20 0.0 0.6123 × 103

21.8 0.1142 × 101

62.1 0.1159 × 10−2

102.3 0.4193 × 10−2

151.5 0.1233 × 10−2

1.0 50 32 12 20 50 50 20 20 0.0 0.6266 × 103 2.3
21.8 0.1149 × 101 0.6
62.1 0.1268 × 10−2 8.5

102.3 0.4117 × 10−2 1.9
151.5 0.1233 × 10−2 0.001

1.0 50 36 12 20 50 50 20 20 0.0 0.6318 × 103 0.8
21.8 0.1170 × 101 1.8
62.1 0.1234 × 10−2 2.8

102.3 0.4127 × 10−2 0.2
151.5 0.1230 × 10−2 0.2

1.0 50 40 12 20 50 50 20 20 0.0 0.6319 × 103 0.02
21.8 0.1169 × 101 0.1
62.1 0.1234 × 10−2 0.01

102.3 0.4201 × 10−2 1.8
151.5 0.1234 × 10−2 0.03

024002-7
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FIG. 2. (Color online) Percent error 	x = σop−σtot

σop
× 100 in the

optical theorem as a function of the grid points in the angle
grid xq , when this grid is increased successively by four Gauss-
Legendre points. The different curves correspond to the three different
laboratory projectile energies in GeV, indicated in the legend.

and λ is the relative orbital angular momentum between the
projectile and target pair. This leads to Imax = 15/2 for a
3N scattering calculation at Elab = 200 MeV. Disregarding
the spin degree of freedom for the three nucleons, leading
to the three-boson model under consideration here, we find
that Jmax = 12 with lmax = 5 and λmax = 7 are necessary for a
converged calculation at Elab = 200 MeV. In the three-boson
case, l and λ take the roles of j and I .

To estimate the corresponding maximal number of angular
momenta needed for Elab = 1 GeV, one needs the effec-
tive deuteron radius r0, which leads to λmax = 7 at Elab =
200 MeV. Nonrelativistically, the 3N c.m. energy is given
as 3/4q2

0 = 2/3Elab, leading to q0 � 400 MeV/c at Elab =
200 MeV and q0 � 900 MeV/c at Elab = 1 GeV. If we
roughly set λmax = q0 × r0, then we find at Elab = 200 MeV
a value r0 � 3.5 fm, which appears reasonable. Applying the
same value at Elab = 1 GeV then leads to λmax = 15. Using
our experience in calculating the NN system in the GeV
regime [24], where one needs for converged NN observables
at least jmax = 14 at 1 GeV, we estimate that a converged
partial-wave 3N calculation of the three-boson system would
need Jmax = lmax + λmax = 14 + 15 = 29.

Let us now regard the two cases: (a) Elab = 200 MeV,
lmax = 5, λmax = 7, Jmax = 12, and (b) Elab = 1 GeV, lmax =
14, λmax = 15, Jmax = 29 in a partial-wave decomposition. To
illustrate the tremendous number of partial waves needed in
case (b) compared to the feasible case (a) it is sufficient to
consider simple algebra for different values of J . Take for
example J = 5. Then simple counting yields 30 different l-λ
combinations in case (a) and 125 in case (b). For J = 10,
this number increases in case (b) to 160. Moreover, since the
number of total J ’s at 1 GeV is more than twice the number
of J ’s at 200 MeV, it appears quite unreasonable to enforce a
partial-wave decomposition at energies far above 200 MeV
in the three-boson (nucleon) system. In addition, it would
also be numerically very demanding to evaluate the various
ingredients in the Faddeev equation reliably for the very high
angular momenta.

III. RESULTS AND DISCUSSION

In the following, we present our results for elastic and
breakup scattering in the energy regime from about 200 to
1500 MeV laboratory projectile kinetic energy. We start with
a comparison of our model calculation to calculations based
on a realistic NN force at lower energies to show that even
though our model is very simple, we see similar features in
the cross sections. Then we study relativistic effects at higher
energies. There are several questions we want to address. First,
we want to identify scattering observables that are sensitive
to the difference between the relativistic and nonrelativistic
formulations of the three-body problems and to study the size
of those relativistic effects as a function of increasing energy.
This can at present only be done with our model interaction.
Second, we want to study the convergence properties of
the Faddeev multiple scattering series as a function of the
projectile kinetic energy. Here, the question of interest is
whether, once the energy is high enough, it is sufficient to only
consider the first few terms in the multiple scattering series. In
addition, we also want to study some approximations to our
relativistic scheme.

A. Comparison with calculations based on a realistic N N
interaction at 200 MeV

The laboratory kinetic energy of 200 MeV is a perfect
energy to study if the features of the 3N system we find based
on our model interaction are also present in calculations based
on a realistic model of the NN interaction, which describes
the NN observables with high accuracy. The so-called high-
precision interactions are fitted up to about 350 MeV, but
strictly speaking, they are only valid below the pion-production
threshold. We also know [20–22] that relativistic effects are
already visible at 200 MeV.

We choose the CD-Bonn interaction [15] for this com-
parison. In Fig. 3, we show the np total cross section
extracted from the SAID database [25] together with the total
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FIG. 3. (Color online) Neutron-proton differential cross section
as a function of the projectile laboratory kinetic energy. The solid
line represents the “experimental” cross section obtained from the
SAID data base [25], and the dashed line shows the two-body cross
section obtained from the Malfliet-Tjon-III potential [23] used in our
calculations.
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FIG. 4. (Color online) Three-nucleon scattering at Elab = 200 MeV. The left column shows results obtained from the Malfliet-Tjon-III
potential assuming boson symmetry and no partial-wave decomposition, the right column shows the corresponding realistic calculations
obtained with the CD-Bonn [15] potential where partial-wave decomposition is applied. The top row displays the differential cross section for
elastic scattering, the middle row shows the breakup cross section for inclusive scattering for the laboratory angle θ1 = 18◦ of the outgoing
particle. The bottom row shows the five-fold differential for exclusive breakup reaction as function of the arc-length S. The laboratory angles of
the outgoing particles are θ1 = θ2 = 37◦, and φ12 = 180◦. The fully relativistic converged Faddeev calculations are given by the solid lines (R),
the corresponding nonrelativistic calculations by the long-dashed lines (NR). In addition the relativistic (dash-dot) and nonrelativistic (dotted)
first-order calculations are shown.

cross section obtained from the Malfliet-Tjon-III (MT-III)
interaction assuming bosonic symmetry. The parameters of
the MT-III interaction [3] are adjusted such that a two-body
bound state at Ed = 2.23 MeV is supported. Figure 3 shows
that the experimental np total cross section falls slightly below
the two-body cross section predicted by our model at energies
smaller than Elab � 300 MeV, is about equal between 300
and 400 MeV, and then reaches a constant value from about
600 MeV on, while our model prediction continues to decrease.
The slight rise of the experimental value around 600 MeV is
a manifestation of the influence of the 	(1232) resonance
in the NN system. The CD-Bonn interaction is fitted to
NN observables to about 350 MeV laboratory projectile
energy and thus coincides with the SAID result up to that
energy.

In Fig. 4, we show a comparison of elastic and breakup
cross sections at 200 MeV projectile laboratory energy
for the three-dimensional calculations based on our MT-III
model interaction and calculations based on a partial-wave
decomposition employing the CD-Bonn potential. The top
row displays the differential cross section. We see that in both
cases the difference between the fully relativistic calculation
and the nonrelativistic one is overall quite small and mostly
visible at the backward angles, an observation already made in
Ref. [20]. The differential cross section in the forward direction
is much larger for our model interaction, which is consistent
with the larger two-body total cross section. In addition, there
are more diffraction minima in the bosonic case than in the
fermionic case; however, the minimum at around 130◦ is
present in both calculations. In the middle row, we display
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LIN, ELSTER, POLYZOU, WITAŁA, AND GLÖCKLE PHYSICAL REVIEW C 78, 024002 (2008)

the cross section for inclusive breakup scattering as a function
of the laboratory kinetic energy of the ejected particle at fixed
laboratory angle of 18◦. Both cross sections are qualitatively
similar, the fully converged Faddeev calculation gives a lower
cross section than the first-order calculation, indicating the
importance of rescattering contributions at this low energy.
The difference between the relativistic and nonrelativistic
calculations is quite small in both cases. In the calculation
based on the CD-Bonn interaction, the final-state interaction
(FSI) peak is more pronounced due to the virtual bound state
in the 1S0 state. The latter is absent in the MT-III model. The
bottom row shows the five-fold differential cross section as
a function of the arc-length S for configuration in which the
laboratory angles θ1 = θ2 = 37◦ are measured in the scattering
plane (φ12 = 180◦). The position of the peaks is identical for
both calculations, which is a manifestation of the fact that peak
structures are given by the kinematics of the problem. In both
cases, the relativistic calculation gives a significantly larger
cross section for the central peak at S ≈ 140 MeV than the
nonrelativistic result, an increase by a factor of ∼1.5 for the
full partial-wave calculation and by a factor of ∼2 for the full
three-dimensional calculation. This increase is already present
in both first-order calculations. For the MT-III model, this
trend is the same for all other peaks, whereas for the CD-Bonn
model, the nonrelativistic calculations gives a slightly larger
cross section than the relativistic one in the peaks at small and
large values of arc-length S.

Summarizing, the comparison of the cross sections obtained
from our model interaction MT-III with those given by a
realistic NN interaction such as CD-Bonn at 200 MeV
indicates that despite our model being quite simple, the
qualitative features of especially the breakup cross sections
are very similar. The differences between the fully relativistic
calculations and their nonrelativistic counterparts are still quite
small at this low energy for elastic scattering and inclusive
breakup. For the exclusive breakup, however, even at this
energy complete configurations with large changes of the
nonrelativistic cross section due to relativity can be found.
This sensitivity of the complete breakup to relativistic effects
has already been observed in Refs. [21,22].

B. Elastic scattering at intermediate energies

Starting from our model interaction, we now consider three-
body scattering in the energy regime up to 1.5 GeV. The total
cross section for elastic scattering is related to the symmetrized
transition operator U of Eq. (2.1) via

σel = (2π )4
∫

d�
E2

n(q0)E2
d (q0)

W2
|〈ϕd, q̂q0|U |ϕd, q0〉|2. (3.1)

In Fig. 5, we display the total cross section for elastic
scattering as a function of the projectile kinetic energy up
to 1.5 GeV obtained from our fully converged relativistic
Faddeev calculation as well as the one obtained from the
first-order term. It is obvious that, especially for energies
below 300 MeV, the contribution of the rescattering terms
is huge. Since the logarithmic scale from the top panel is
unsuited to extracting detailed information about the size of
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FIG. 5. (Color online) Total cross section for elastic scattering
as function of the projectile kinetic energy (top panel). The fully
relativistic Faddeev calculation is shown as solid line, the corre-
sponding first-order term by the short dashed line. Calculations
which only use relativistic kinematics, i.e., the Lorentz transformation
between laboratory and c.m. frame together with the relativistic
phase-space factor (labeled Rkin) are given as dotted line for a full
Faddeev calculation and as short-dashed line for the first-order term.
Calculations that only take into account the Lorentz transformations
between the laboratory and c.m. frame (labeled NRc.m.) are shown as
a dotted line for the full Faddeev calculation and as a dash-dotted
line for the first-order one. The middle panel shows the relative
difference between the fully relativistic Faddeev calculation and the
nonrelativistic one (solid line) together with the difference to the
nonrelativistic calculation if only relativistic kinematics is considered.
The bottom panel shows the corresponding relative differences when
only the first-order term is taken into account.

relativistic effects, we show in the lower two panels the relative
difference of the relativistic calculations with respect to their
nonrelativistic counterparts. The bottom panel displays the
relative difference between the relativistic first-order term and
its nonrelativistic counterpart as a dotted line. Essentially,
the first-order calculation does not show any effect. This is
theoretically consistent when having in mind that in first order
(T 1st = tP ) only the two-body t matrix enters into the cross
section. The relativistic two-body t matrix is constructed to
be phase-shift equivalent to the nonrelativistic one via the
Coester-Pieper-Serduke (CPS) method [13,17]. Thus, seeing
no difference between the fully relativistic and the corre-
sponding nonrelativistic calculations indicates that relativistic
effects are taken into account consistently at the two-body
level. Making the same comparison with fully converged
Faddeev calculations (solid line in the middle panel) indicates
that relativistic effects in the three-body problem increase the
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elastic scattering total cross section with increasing energy. At
our highest energy, 1.5 GeV, this increase is about 8.3%.

Often only effects due to relativistic kinematics are taken
into account. Here we have the opportunity to study the conse-
quences of such a simple approximation. For the calculations
labeled Rkin we only consider the Lorentz transformations
from laboratory to c.m. frame and the relativistic phase-space
factor of Eq. (3.1), whereas the matrix elements of the operator
U are calculated from the solution of the nonrelativistic
Faddeev equation. The relative difference between this calcula-
tion and a completely nonrelativistic calculation is indicated by
the short-dashed line in the bottom panel of Fig. 5, where only
the first-order term is considered. The triple-dotted curve in the
middle panel is the same comparison, but now between fully
converged Faddeev calculations. For both, full and first-order
calculations, the effect is huge. To understand better which
piece of the kinematics included is responsible for this large
enhancement of the cross section, we also plot in Fig. 5
calculations (labeled NRc.m.) that only contain the Lorentz
transformation between the laboratory and c.m. frame, but
carry the nonrelativistic phase-space factor in Eq. (3.1). The
dash-dotted line in the lower panel shows the first-order
calculation, and the dotted line in the middle panel the full
Faddeev calculation. Using a Lorentz transformation in the
change of frames has the effect that the two-body t matrix is
calculated at a slightly different c.m. momentum q0, and thus
there is a small effect, about a 5% underestimation of the total
cross section. The huge effect is entirely due to the relativistic
phase-space factor, and the relativistic dynamics then has an
equally large effect of the opposite sign. This interplay of
increasing effects due to relativistic phase-space factor and
decreasing effects due to relativistic dynamics has been already

observed in the partial-wave-based Faddeev calculations with
realistic interactions [20]. It led for the elastic scattering cross
section at 250 MeV to relativistic effects which were relatively
small and restricted to backward angles. Recent measurements
of the neutron-deuteron (nd) differential cross section at
248 MeV [26] indicate that for discrepancies of theoretical
prediction in this observable, short-range components of a
three-nucleon force are equally important.

The problem with approximating relativistic effects only
through kinematics and phase-space factors can be easily
understood in the 2+1 body problem, where the phase
equivalence is achieved by choosing the invariant mass as
a function of the nonrelativistic two-body Hamiltonian, M =
f (h). The eigenvalues equation for the scattering problems

|ψ〉 = 1

f (w) − f (h0) + i0+ (f (h) − f (h0))|ψ〉,
(3.2)

|ψ〉 = 1

w − h0 + i0+ (h − h0)|ψ〉,

are equivalent, but the replacement of f (w) by w must be
compensated by replacing the interaction f (h) − f (h0) by h −
h0. Including only kinematic relativistic effects is equivalent
to making the replacement h0 → f (h0) without making the
compensating replacement v = h − h0 → f (h) − f (h0).

We also study a more sophisticated approximation to
the relativistic dynamics. In Ref. [18] we described in
detail how we obtain the transition amplitude of the 2N

subsystem, T1(k, k′, q; z) ≡ 〈k|T1(q; z)|k′〉, embedded in the
three-particle Hilbert space which enters the Faddeev equation,
Eq. (2.15). The fully off-shell amplitude is the solution of a
first resolvent type equation [13] given by

〈k|T1(q; z)|k′〉 = 〈k|T1(q; z′|k′〉

−
∫

dk′′〈k|T1(q; z)|k′′〉
(

1

z −
√

4(m2 + k′′2) + q2
− 1

z′ −
√

4(m2 + k′′2) + q2

)
〈k′′|T1(q; z′)|k′〉. (3.3)

Here T1(z′) is taken to be the right half-shell with z′ =√
4(m2 + k′2) + q2 + iε. Note that in this equation the un-

known matrix element is to the left of the kernel. It was
suggested in Ref. [13] that a reasonable approximation to this
embedded 2N transition amplitude might by the Born term of
the above integral equation, which is

〈k|T H
1 (q; z)|k′〉 � 〈k|T1(q; z′|k′〉. (3.4)

In this approximation, the fully off-shell 2N transition am-
plitude is replaced by a half-shell amplitude. The effect of
this approximation is not large in elastic scattering, as shown
in Fig. 6, where we plot the differential cross section in the
forward direction for the fully relativistic calculations and the
ones containing the approximation of Eq. (3.4) to the boost
(curves labeled H). Consistently and independent of projectile

energy, approximating the embedded two-body t matrix by
the half-shell t matrix leads to an underprediction of the
differential cross section in the forward direction. Though not
plotted, this also leads to smaller total cross section for elastic
scattering.

Finally, we want to investigate the convergence of the
multiple scattering series as a function of the projectile labo-
ratory kinetic energy. One might expect that with increasing
energy only a few terms in the multiple scattering series are
sufficient for a converged result. Our converged relativistic
Faddeev calculations now allow a detailed study. This is of
particular interest, since relativistic calculations in the energy
regime around 1 GeV have recently been published [27–29];
they are carried out in a multiple scattering expansion of the
Faddeev equations up to second order and use the off-shell
continuation of the experimental NN amplitudes as two-body
input.
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FIG. 6. (Color online) Differential cross sec-
tion for elastic scattering as function of c.m.
angle θq for selected laboratory kinetic ener-
gies. The converged solution of the relativistic
Faddeev equation is given as a solid line. The
dotted line shows the converged solution of
the relativistic Faddeev equation in which the
fully off-shell 2N t matrix is replaced by the
half-shell t matrix. The corresponding first-order
calculations are given by the short-dashed and
the dash-dotted lines.

First we want to consider the convergence of the Faddeev
multiple scattering series in the total cross sections for elastic
scattering as well as breakup reactions as a function of
projectile kinetic energy. In the bottom row of Fig. 7, the
different orders (successively summed up as Neumann sum to
the order indicated in the legend) are shown as functions of
the projectile laboratory energy. We see a distinct difference
in the behavior of the elastic total cross section from that of
the breakup total cross section. While the elastic total cross
section converges very rapidly, the total breakup cross section
does not. The left upper panel of Fig. 7 shows the elastic
total cross section as a function of the order in the multiple
scattering series (the orders are successively summed up the
order indicated on the x axis). Even at 200 MeV, there is
very little change due to contributions from the second- or
higher order rescattering terms. For the higher energies, the

first-order term already captures the essential physics. This is
very different for the total breakup cross section, where for
200 MeV projectile energy the full solution of the Faddeev
equation is clearly necessary. For energies of 1 GeV and
higher, at least one rescattering contribution (second order
in the multiple scattering series) is necessary to come close to
the full solution.

Since the total cross section for elastic scattering might be
insensitive to higher orders in the Faddeev multiple scattering
series, we plot in Fig. 8 the differential cross section at
forward and backward angles as a function of the order in the
multiple scattering series for the same laboratory projectile
energies. Here we see that at the lowest energy, 0.2 GeV, the
convergence is not as fast as the total cross section suggests.
In fact, at least five orders are necessary, which is consistent
with the experience from nonrelativistic calculations at low

 0

 100

 200

 300

 1  2  3  4  5  6

σ e
l

 [
m

b]

order in t

 0

 50

 100

 150

 200

 1  2  3  4  5  6

σ b
r 

[m
b]

order in t

0.2
0.5
1.0
1.5

10 1

10 2

10 3

 200  600  1000  1400

σ e
l 

[m
b]

Elab [MeV]

10 1

10 2

10 3

 200  600  1000  1400

σ b
r 

[m
b]

Elab [MeV]

1st
2nd
3rd
4th
full
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calculation successively the next three orders
are added, together with the fully converged
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FIG. 8. (Color online) Differential cross section for elastic scat-
tering in forward (0◦) and backward (180◦) direction as function of
the order in the multiple scattering series for selected Elab values
indicated in the legend in units of GeV.

energies [2]. For energies of 1 GeV and higher, the forward
direction is converged at the third order in t , whereas the
backward angle is not as sensitive (it should be pointed out that
the cross section in the backward direction is about five orders
of magnitude smaller than the one in the forward direction). It
seems accidental that the multiple scattering series converges
faster at 0.5 GeV than at 1 GeV. However, a similar finding was
presented in Ref. [27], where it was observed that polarization
observables for elastic proton-deuteron (pd) scattering at
395 MeV were described better than those at 1.2 GeV, when
calculating the Faddeev multiple scattering series up to the
second order.

C. Breakup scattering at intermediate energies

The calculation of breakup cross sections requires the
knowledge of the matrix element 〈k, q|U0|ϕd, q0〉 in Eq. (2.1).
For details of the derivation, we refer the reader to Ref. [18] and
only give the final expressions here. The five-fold differential
cross section for exclusive breakup is given in the laboratory
frame as [30]

d5σ lab
br

d�1d�2dE1
= (2π )4 E(q0)Ed (q0)E(q)

2klabmd

× p1p
2
2

p2(E − E(p1)) − E(p2)(P − p1) · p̂2

×E(k)
√

4E2(k) + q2 |〈k, q‖U0‖ϕd, q0〉|2 .

(3.5)

Here E is the total energy of the system and P its total
momentum. The subscripts 1 and 2 indicate the two outgoing
particles. In inclusive breakup, only one of the particles is
detected, and thus one of the angles in Eq. (3.5) is integrated
out. This leads to the inclusive breakup cross section in the

laboratory frame1

d3σ lab
br

d�1dE1
= (2π )4 E

W
E(q0)Ed (q0)

4klabmd

p1kaE(q)[4E2(ka) + q2]√
4E2(ka) + (P − p1)2

×
∫

d�k|〈kaq|U0|ϕdq0〉|2, (3.6)

where ka is determined by the condition W =√
4(m2 + k2

a) + q2 +
√

m2 + q2.
In Refs. [18,30,31] we already pointed out and demon-

strated that relativistic kinematics is essential to obtain the
correct position of, e.g., the peak for quasifree scattering
(QFS), especially at higher energies. The difference between
a nonrelativistic calculation of the breakup cross section and
a relativistic one is quite large at higher energies. However,
one may argue that this difference is artificially large, since
it is natural to use relativistic kinematics at higher energies.
Therefore, here we will not compare relativistic calculations
with entirely nonrelativistic calculations, but rather with
calculations in which the three-body transition amplitude has
been obtained from the solution of a nonrelativistic Faddeev
equation but the transformations between the laboratory frame
and the c.m. frame are Lorentz transformations. This is
equivalent to comparing the relativistic and nonrelativistic
calculations in the center-of-momentum frame.

In addition, we use the relativistic phase-space factor
for the cross sections. In Fig. 9, we show the inclusive
breakup cross section as a function of the laboratory kinetic
energy of the ejected particle at fixed angle θ1 = 24◦ for
different projectile kinetic energies calculated from the full
solution of the relativistic Faddeev equations together with
“nonrelativistic” calculations using the above-defined rela-
tivistic kinematics. There is still a shift of the position of the
QFS peak toward lower ejectile energies, which increases with
increasing projectile energy. There is also a very visible effect
of the relativistic phase-space factor used together with the
nonrelativistic three-body transition amplitude. At 1000 MeV,
the size of the QFS peak is a factor of 2 larger than the exact
relativistic calculation. For the lower energies, the first-order
calculation yields a significantly higher QFS peak than the full
calculation; whereas for the higher energies, the peak height
is almost the same for the first-order and the full calculation.

Next we investigate in detail the convergence of the Faddeev
multiple scattering series in the region of the QFS peak as
a function of the projectile energy. In Fig. 10, we display
calculations at selected energies from 200 to 1000 MeV. The
solid line represents the solution of the relativistic Faddeev
equation, whereas the other curves show the Neumann sum
of the multiple scattering series containing the sum up to the
order in the two-body t matrix as indicated in the legend.
For the lowest energy, 200 MeV, it is obvious that the
multiple scattering series does not converge fast. This changes
considerably as the projectile kinetic energy grows. Though
the variation of the different orders is not as large anymore at
500 MeV, the multiple scattering series must still be summed

1Note that in Ref. [18], the five-fold differential breakup cross
sections contain an erroneous factor of 1/3.
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FIG. 9. (Color online) Inclusive breakup
cross section as function of the laboratory kinetic
energy E1 of the emitted particle at an emission
angle θ1 = 24◦. The incident laboratory kinetic
energy for each cross section is indicated in
each panel. The solid lines (R full) represent
the converged relativistic Faddeev calculation,
and the dotted line the corresponding first-order
calculations (R 1st). The lines labeled Rkin cor-
respond to calculations in which only relativistic
kinematics is taken into account.

up to fourth order in the QFS peak to coincide with the full
result, whereas at 800 MeV already the second order is almost
identical with the full result, and even a first-order calculation
can be considered quite good. This trend continues as the
energy grows. Of course, first-order calculations are never
able to capture the FSI peak at the maximum energy of the
ejectile, nor do they describe the high-energy shoulder of the
QFS peak. However, our study indicates that for energies in
the GeV regime, it is very likely sufficient to consider only one
rescattering term when studying inclusive breakup reactions
in the vicinity of the QFS peak.

Finally, we also want to study the approximation suggested
in Eq. (3.4), namely, replacing the off-shell two-body transition
amplitude embedded in the three-body Hilbert space by the
half-shell one. The calculations based on the approximation
of Eq. (3.4) and labeled (H) are plotted in Fig. 11 together
with the exact solution. Considering only the first-order
calculation, we observe a similar trend as in the differential

cross section for elastic scattering, the approximation slightly
underpredicts the exact result, independent of the energy under
consideration. However, when this approximate two-body
transition amplitude is iterated to all orders in the Faddeev
equation, the deviations from the exact calculations become
larger. At 800 and 1000 MeV, the iteration of the exact
amplitude increases the cross section in the QFS peak, whereas
it decreases for the approximation with respect to the first-order
term. At 200 and 500 MeV, the approximation not only gives a
smaller cross section in the QFS peak but also fails to develop
a FSI peak toward the maximum allowed ejectile energies.
From this we conclude that Eq. (3.4) does not provide a
good approximation for inclusive breakup cross sections. Our
calculations indicate that at energies of 1 GeV or higher, it
is important to carry out the Poincaré invariant aspects of the
calculation exactly. They also indicate that it is sufficient to
consider only one rescattering term to capture most features of
the cross section. Although these conclusions are based on the
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FIG. 10. (Color online) Inclusive breakup
cross section as function of the laboratory kinetic
energy E1 of the emitted particle at an emission
angle θ1 = 24◦. The incident laboratory kinetic
energy for each cross section is indicated in
each panel. The solid lines (R) represent the
converged relativistic Faddeev calculation. The
triple-dotted line shows the first-order calcula-
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POINCARÉ INVARIANT THREE-BODY SCATTERING AT . . . PHYSICAL REVIEW C 78, 024002 (2008)

 0

 1

 2

 3

 130  140  150  160  170  180

200 MeV

 0

 0.2

 0.4

 340  370  400  430  460

500 MeV

 0

 0.2

 0.4

 0.6

 0.8

 650  700  750  800  850  900

1000 MeV

 0

 0.2

 0.4

 0.6

 0.8

 520  570  620  670  720

d2 σ b
rla

b /d
E

1d
Ω

1 
[m

b/
(M

eV
 s

r)
]

E1 [MeV]

800 MeV
H 1st
R 1st

H full
R full

FIG. 11. (Color online) Same as Fig. 10, but
comparing the converged relativistic Faddeev
calculation (R) with the calculation in which the
fully off-shell two-body t matrix is replaced by
the half-shell one (H). The calculations labeled
“1st” stand for the corresponding first-order
calculations.

use of a simple model two-body interaction, we conjecture that
calculations based on realistic interactions will have similar
characteristics.

For our study of exclusive breakup scattering in the inter-
mediate energy regime, we choose two different experimental
situations for which data are available. First we consider the
2H(p, 2p)n reaction at 508 MeV, where the two outgoing
protons are measured for a given angle pair θ1-θ2 in the
scattering plane [32]. Since the convergence of the multiple
scattering series is already discussed in Ref. [30], we only

want to investigate the effect of the approximations previously
given in this reaction. In Fig. 12, selected angle configurations
are shown. The left column of the figure shows the first-order
calculations; the right column the full solution of the Faddeev
equation. The exact first-order calculation is given by the
dotted line in the left column, and the exact full solution by
the solid line in the right column. The angle combination θ1 =
41.5◦, θ2 = 41.4◦ is a QFS configuration. First, we see that
in a QFS configuration, the first-order calculation is already
almost identical to the full Faddeev calculation [30], whereas
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FIG. 12. (Color online) Exclusive differen-
tial cross section for the 2H(p, 2p)n reaction
at 508 MeV laboratory projectile energy for
different proton angle pairs θ1-θ2 with respect
to the beam axis as a function of the laboratory
kinetic energy of the first detected proton. The
left column represents first-order calculation;
right column gives full solution of the Faddeev
equation. The curves labeled R represent the full
relativistic calculations; for curves labeled Rkin

only relativistic kinematics is taken into account
(see text); and for curves labeled H the fully
off-shell t matrix is replaced by the half-shell
one. The data are taken from Ref. [32].
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FIG. 13. (Color online) Exclusive differen-
tial cross section for the reaction 1H(d, 2p)n
at 2 GeV deuteron energy as function of the
angle θ2 of the second of the outgoing protons
for a fixed first proton momentum indicated in
the figure. Curves represents the solution of the
full relativistic Faddeev equation, the result of
the first-order calculation, and the results of the
successive addition of second- and third-order
terms. The data are taken from Ref. [33].

this is not the case for the other configurations shown. If
only relativistic kinematics is considered, namely, the Lorentz
transformations between laboratory and c.m. frame together
with the relativistic phase-space factor, and a nonrelativistic
three-body transition amplitude is employed, we obtain the
double-dotted curve for the first-order order calculations
and the dashed line for the full solution of the Faddeev
calculation. Again, the QFS configuration is quite insensitive
to this approximation. However, the deviation from the exact
calculation is quite visible in the other two configurations
shown. Finally, we also consider the approximation suggested
by Eq. (3.4), which is indicated by the dash-dotted line,
labeled H in the left column (first-order calculation) and the
dotted line in the right column (full solution of the Faddeev
equation). Here we see that even in the QFS configuration,
there are already deviations of this approximation for the
high-energy shoulder. The approximation underpredicts the
full solution. This tendency becomes stronger for the other two
configurations. The interesting property of this approximation
is that while it appears to be a reasonable approximation to
the Faddeev kernel, the errors in the approximation increase
when the equation is iterated. Thus we conclude that this
approximation, though simplifying the calculation of the
two-body t matrix embedded in the three-body Hilbert space,
does not seem to capture essential structures of the two-body t

matrix. The failure of this approximation, which approximates
the of-shell two-body transition operator in the Faddeev
equation with the half-shell transition operator, suggests that
some care is necessary in modeling the off-shell behavior of
the transition operators in more phenomenological schemes.

For the breakup reaction at a slightly higher energy, we
consider the 1H(d, 2p)n reaction at 2 GeV deuteron kinetic
energy [33]. Here the two outgoing protons are measured.
Energetically, this reaction would correspond to pd scattering
at roughly 1 GeV and thus is within the range of the
calculations presented here. In Fig. 13, we show the five-fold
differential cross section as function of the angle of the second

detected proton for four different momenta of the first detected
proton. The full relativistic Faddeev calculation is represented
by the solid line. To investigate the convergence of the multiple
scattering series, we show the first-order calculation as a dotted
line, then successively add one (second order) and two (third
order) rescattering terms to the leading order. In this reaction,
the first two rescattering terms are about the same size but
have opposite sign, so the third-order calculations are very
close to the first-order one. We also observe that the third-order
calculation is already so close to the full Faddeev calculation
that the Neumann series can be considered converged with
three terms.

IV. SUMMARY AND CONCLUSION

In this work, we demonstrated the feasibility of applying
Poincaré invariant quantum mechanics to model three-nucleon
reactions at energies up to 2 GeV. This is an important first
step for studying dynamical models of strongly interacting
particles in the energy range where subnuclear degrees of
freedom are thought to be relevant. At these energies, the
Poincaré invariance of the theory is an essential symmetry. At
lower energies, nonrelativistic quantum mechanical models
are powerful tools for understanding the dynamics of strongly
interacting nucleons. At higher energies, the physics is more
complicated, but one can expect that it is still dominated by a
manageable number of degrees of freedom. Poincaré invariant
quantum mechanics is the only alternative to quantum field
theory where it is possible to realize the essential require-
ments of Poincaré invariance, spectral condition, and cluster
properties [12]. It has the advantage that the Faddeev equation
provides a mathematically well-defined method for exactly
solving the strong interaction dynamics. The Faddeev equation
in this framework is more complicated than the corresponding
nonrelativistic equation because of the nonlinear relation
between the mass and energy in relativistic theories, but these
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difficulties can be overcome [13,18,34]. An important advance
that allows these calculations to be extended to energies in
the GeV range is the use of numerical methods based on
direct integrations, rather than partial-wave expansions [3,4].
These have been successfully applied to the nonrelativistic
three-nucleon problem. This paper demonstrates that they can
also be successfully applied to the relativistic problem, even
with its additional complications.

The model presented here involves three nucleons inter-
acting with a spin-independent Malfliet-Tjon [19] type of
interaction. It differs from more realistic interactions [14–16]
in that it is spin independent and it does not give a high-
precision fit to the two-body scattering data. In addition, the
model is for fixed numbers of particles, not allowing pion
production, which is an open channel at these energies. While
these limitations must be addressed in realistic applications,
the three-body Faddeev calculations presented in this paper
provide a powerful framework for both testing approximations
and examining the sensitivity of scattering observables to
relativistic effects.

To investigate relativistic effects, we treat the interaction as
if it were determined by fitting the cross section obtained by
solving the nonrelativistic Lippmann-Schwinger equation to
scattering data. When this is done with a realistic interaction,
the experimental differential cross section is properly trans-
formed from the laboratory frame to the center-of-momentum
frame before the fit is done. The result of this process is
that the computed differential cross section agrees with the
fully relativistic experimental differential cross section in the
c.m. frame as a function of the relative momentum. Thus,
even though the two-body scattering observables are computed
with a nonrelativistic equation, there is nothing nonrelativistic
about the result. At the two-body level, the corresponding
relativistic Lippmann-Schwinger equation must be designed to
give the same scattering observables. This can be achieved by
expressing the relativistic mass operator as a simple function
of the nonrelativistic c.m. Hamiltonian [17,35]. The important
consequence of this is that it does not make sense to relate the
relativistic and nonrelativistic two-body models using p/m

expansions; the prediction of the relativistic and nonrelativis-
tic two-body models are identical. Real differences in the
dynamics appear when the two-body dynamical operators
are used to formulate the three-body dynamics. How this
must be done in two- and three-body cases is dictated, up
to three-body interactions, by cluster properties. The Faddeev
equations for the relativistic and nonrelativistic systems have
identical operator forms. The permutation operators, two-body
transition operators, and free resolvents that are input to the
Faddeev equation have different forms in the relativistic and
nonrelativistic equations. These differences are responsible for
differences in the relativistic and nonrelativistic three-body
calculations.

The calculations presented in this paper have a number of
consequences. The most important result was a demonstration
that direct integration methods can be successfully applied to
extend the energy range for converged solutions to Faddeev
equations to intermediate energies. Our estimates of the
number of partial waves needed for calculations at different
energies suggest that it is not currently practical to extend

existing partial-wave calculations beyond a few hundred MeV,
while in this paper we have demonstrated convergence of the
direct integration methods for laboratory energies up to 2 GeV.

While our model interaction is not realistic, when we
compared the results of our calculations to relativistic cal-
culations at 200 MeV that have been performed with realistic
interactions [20–22] in a partial-wave basis, we found that the
qualitative features of the realistic model are reproduced in our
simple model, suggesting that some of the conclusions derived
from our model should be applicable to models with realistic
interactions.

Having a model with which it is possible to perform
numerically exact solutions of scattering observables in the
intermediate energy range provides us with a tool to test
approximations that have been used in other calculations
as well as to look for observables that are sensitive to the
differences between relativistic and nonrelativistic models.

One common approximation that we tested is the replace-
ment of nonrelativistic kinematic factors by the corresponding
relativistic kinematic factors in a nonrelativistic model. Our
tests clearly illustrated a big effect, but most of it is canceled
by the associated dynamical corrections. This suggests that
including only kinematic corrections can actually provide large
relativistic effects. Such an approach should never be used in
the absence of a complete theory with which relativistic effects
can be rigorously estimated.

A second important set of approximations are multiple
scattering approximations. These are expected to improve
at higher energies, but it is important to understand in the
context of models based on realistic interactions how high
these energies have to be for convergence.

Our conclusions are that the convergence of the multiple
scattering series is nonuniform. Even at 200 MeV our
calculations show that the first-order term reproduces the total
elastic cross section; for the total breakup cross section, at
least one more iteration is needed up to about 600 MeV.
Both of these observations turn out to be misleading when
one investigates the differential cross sections.

While the total elastic cross section is reproduced at
200 MeV by the first-order term, the correct angular distri-
bution requires at least five orders in the multiple scattering
series. Even at 1 GeV the first-order approximation is not
accurate enough at forward angles.

For inclusive breakup reactions, our computations show that
the first-order calculation does not give the right size of the
quasifree peak even at 1 GeV; however, for 800 MeV and above
the second-order term is a good approximation. For exclusive
breakup, the convergence of the multiple scattering series even
at 1 GeV energy depends on a specific configuration.

Another type of approximation that is employed is the
use of on-shell transition operators with a phenomenological
representation of the off-shell dependence. In our formulation
of the three-body problem, that off-shell behavior needs
to be computed by solving a singular integral equation. It
was suggested in Ref. [13] that simply replacing the off-
shell two-body T by its on-shell value might be a good
approximation. This was based on the observation that the
difference between the on- and of-shell Faddeev kernels was
small. Our calculations show that while this does not lead
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to a large effect in the elastic cross section, the off-shell
effects lead to nontrivial modifications when one considers the
breakup cross sections. This shows that such approximation
should not be used and also suggests that phenomenological
parametrizations of the off-shell behavior of the two-body
amplitudes need to be carefully tested, especially for the
breakup reaction.

While a number of calculations have shown small rela-
tivistic effects for the three-body binding energy, nontrivial
effects have already been observed in scattering observables
at 200 MeV [20–22]. Our model confirms these previously
observed effects and indicates that they continue into the
intermediate energy region. Our calculations exhibited a
number of sensitivities to relativistic effects in the breakup
observables. Both the shape and size of the quasielastic peak
differ from the nonrelativistic quantities.

This paper demonstrates the need for a relativistic descrip-
tion of few-nucleon dynamics in the intermediate energy range
and shows that the problem is amenable to a numerically exact
solution, using direct integration, for laboratory energies up
to 2 GeV. In the future, relativistic few-body calculations will
be important tools for testing the validity of approximations,
such as the eikonal approximation. Obviously, extensions
to include spin-dependent interactions, meson channels, and
interactions that are fit to higher energy data will be needed
for realistic applications. The success of the calculations in
this paper provide a strong motivation for continuing this
program.
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APPENDIX

This Appendix contains explicit definitions of the quantities
that appear in Eq. (2.23). The remaining variables in Eq. (2.23)

are explicitly evaluated as∣∣∣∣q + 1

2
q′ C(q, q′)

∣∣∣∣
=

√
q2 + 1

4
q ′2 C2(q, q ′, x ′) + qq ′x ′ C(q, q ′, x ′),∣∣∣∣q0 + 1

2
q C(q0, q)

∣∣∣∣
=

√
q2

0 + 1

4
q2 C2(q0, q, xq ) + qq0xq C(q0, q, xq ),∣∣∣∣q′ + 1

2
q C(q′, q)

∣∣∣∣
=

√
q ′2 + 1

4
q2 C2(q ′, q, x ′) + qq ′x ′ C(q ′, q, x ′), (A1)

and

yk,q0+ 1
2 q C(q0,q) = k · (

q0 + 1
2 q C(q0, q)

)
k
∣∣q0 + 1

2 q C(q0, q)
∣∣

= kq0xp + 1
2kqykq C(q0, q, xq )

k

√
q2

0 + 1
4q2 C2(q0, q, xq ) + qq0xq C(q0, q, xq )

,

yk,q′+ 1
2 q C(q′,q) = k · (

q′ + 1
2 q C(q′, q)

)
k
∣∣q′ + 1

2 q C(q′, q)
∣∣

= kq ′ykq ′ + 1
2kqykq C(q ′, q, x ′)

k

√
q ′2 + 1

4q2 C2(q ′, q, x ′) + qq ′x ′ C(q ′, q, x ′)
,

yq+ 1
2 q′C(q,q′),q0

=
(
q + 1

2 q′C(q, q′)
) · q0

q0

∣∣q + 1
2 q′C(q, q′)

∣∣
= qq0xq + 1

2q ′q0yq0q ′ C(q, q ′, x ′)

q0

√
q2 + 1

4q ′2 C2(q, q ′, x ′) + qq ′x ′ C(q, q ′, x ′)
,

(A2)

and

x
q0

q+ 1
2 q′C(q,q′),q ′ =

yq+ 1
2 q′C(q,q′),q ′ − yq+ 1

2 q′C(q,q′),q0
yq0q ′√

1 − y2
q+ 1

2 q′C(q,q′),q0

√
1 − y2

q0q ′

,

(A3)

with

yq+ 1
2 q′C(q,q′),q ′ =

(
q + 1

2 q′C(q, q′)
) · q′

q ′∣∣q + 1
2 q′C(q, q′)

∣∣
= qq ′x ′ + 1

2q ′2 C(q, q ′, x ′)

q ′
√

q2 + 1
4q ′2 C2(q, q ′, x ′) + qq ′x ′ C(q, q ′, x ′)

. (A4)
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B660, 345 (2008).
[31] C. Elster, T. Lin, W. N. Polyzou, and W. Glöckle,
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