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The charged-current quasielastic scattering of muon neutrino on the oxygen target is analyzed for neutrino
energy up to 2.5 GeV using the relativistic distorted-wave impulse approximation (RDWIA). The inclusive
cross sections d2σ/dQ2, calculated within the RDWIA, are lower than the relativistic Fermi gas model results
in the range of the square of four-momentum transfer Q2 � 0.2 (GeV/c)2. We also studied the nuclear-model
dependence of the neutrino energy reconstruction accuracy using the charged-current quasielastic events with no
detector effects and background. We found that for one-track events the accuracy is nuclear model dependent for
neutrino energy up to 2.5 GeV.
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I. INTRODUCTION

The field of neutrino oscillations is rapidly developing.
The goals of the current and planed set of accelerator-based
neutrino experiments [1–7] are the precision measurements of
observed neutrino mass splitting and the detailed study of the
neutrino mixing matrix. The data of these experiments will
greatly extend the statistics due to extremely intense neutrino
beamline.

To study the neutrino oscillation effects on the terrestrial
distance scale, the neutrino beams cover the energy range
from a few hundred MeV to several GeV. In this energy
range, the dominant contribution to the neutrino-nucleus cross
section comes from the charged-current (CC) quasielastic
(QE) reactions and resonance production processes. The
cross-section data in this energy range are rather scarce and
were taken on the targets, which are not used in the neutrino
oscillation experiments (i.e., water, iron, lead, or plastic).

In this situation, the statistical uncertainties should be negli-
gible as compared to systematic errors in the incident neutrino
flux, neutrino interaction model and the detector effects on the
neutrino events selection and neutrino energy reconstruction.
Apparently, these uncertainties produce systematic errors in
the extraction of oscillation parameters.

To evaluate the neutrino mass-squared difference in the
muon neutrino disappearance experiments, the probability
of νµ disappearance versus neutrino energy is measured.
Because the CCQE interaction represents a two-particle
scattering process, it forms a good signal sample, and the
neutrino energy may be estimated using the kinematics of this
reaction. There are two ways to measure the neutrino energy:
kinematic or calorimetric reconstruction. In detectors with the
energy threshold for proton detection ε

p

th � 1 GeV (Cherenkov
detectors) the muon-neutrino CCQE interactions will produce
the one-track events, i.e., only muons are detected in the final
states. The kinematic reconstruction is applied for these events.
Assuming the target nucleon to be at rest inside the nucleus,
the correlation between the incident neutrino energy and a
reconstructed muon momentum and scattering angle is used
in this method.

In the fine-grained detectors the two-track CCQE events are
detected, and the calorimetric reconstruction can be applied, if

the particle identification of the second track and the resolution
for proton momentum are reliable. In this case the visible
neutrino energy is simply a sum of the reconstructed muon
energy and kinematic proton energy. In this article we consider
the procedures for neutrino energy reconstruction, which are
based on the kinematics of the CCQE interaction.

In general, the detector efficiency and energy response are
highly dependent on the type of interaction: QE or non-QE
(the resonance and deep inelastic scattering). The Monte
Carlo (MC) simulation of the detector response to neutrino
interactions is used for tuning the values of cuts for separation
of the QE and non-QE (nQE) events and for estimating the
efficiency of detecting the CCQE events after all cuts. To
model the scattering from a nuclei, the most part of an event
generator [8] is based on the relativistic Fermi gas model
(RFGM) [9], in which the nucleus is described as a system of
quasifree nuclei with a flat nucleon momentum distribution up
to the same Fermi momentum pF and nuclear binding energy
εb. But this model does not take into account the nuclear shall
structure, the final-state interaction (FSI) between the outgoing
nucleon and residual nucleus, and the presence of short-range
nucleon-nucleon (NN ) correlations, leading to appearance of
a high-momentum and high-energy component in the nucleon
momentum-energy distribution in the target.

The comparison with the high-precision electron-scattering
data has shown [10] that the accuracy of the RFGM prediction
becomes poor at low Q2, where the nuclear effects are largest,
and this model fails [11] in application to exclusive cross
sections. The modern quasielastic neutrino-scattering data
(the CCQE event distribution as a function of Q2) [2,12,13]
also reveal the inadequacies in the present neutrino cross-
section simulation. The data/MC disagreement shows the data
deficit in the low-Q2 region (Q2 � 0.2 GeV2) and the data
excess in the high-Q2 region. The disagreement at low Q2

would eventually result in the data/MC disagreement in the
reconstructed neutrino energy.

The relativistic distorted-wave impulse approximation
(RDWIA), which takes into account the nuclear shall structure
and FSI effects, was developed for description of electron-
nucleus scattering, and it was successfully tested against
the data [14]. The RDWIA approach was also applied to
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neutrino-nucleus (νA) interactions for calculating the exclu-
sive and inclusive QE cross sections [11,15–17]. In Ref. [11]
the FSI effects on the inclusive cross section in the presence
of the NN correlations were estimated.

The aim of this work is twofold. First, we compute the
RDWIA CCQE cross section versus Q2 for muon neutrino
scattering off oxygen. Second, we show the nuclear-model
dependence of the efficiency of two-track CCQE events
selection. We also estimate systematic uncertainties in the
reconstructed neutrino energy within the RDWIA and RFGM,
taking into account the nucleon momentum distribution in the
target, i.e., the nucleon Fermi motion effect.

The outline of this article is as follows. In Sec. II we present
briefly the formalism for CCQE scattering process and the
RDWIA model. The nuclear-model dependence of cuts, which
are applied for CCQE events selection, as well as the neutrino
energy reconstruction methods, are discussed in Sec. III. The
results of numerical calculations are presented in Sec. IV. Our
conclusions are summarized in Sec. V. In Appendix A we
present the equation for neutrino energy, and in Appendix B
the expressions for the moments of the reconstructed neutrino
energy distribution are given.

II. FORMALISM OF QUASIELASTIC SCATTERING
AND MODELS

We consider the electron and neutrino charged-current QE
exclusive

ν(ki) + A(pA) → l(kf ) + N (px) + B(pB), (1)

and inclusive

ν(ki) + A(pA) → l(kf ) + X (2)

scattering-off nuclei in the one-W-boson exchange approxima-
tion. Here l represents the scattered lepton (electron or muon),
ki = (εi, ki) and kf = (εf , kf ) are the initial and final lepton
momenta, pA = (εA, pA) and pB = (εB, pB) are the initial
and final target momenta, px = (εx, px) is the ejectile nucleon
momentum, q = (ω, q) is the momentum transfer carried by
the virtual W boson, and Q2 = −q2 = q2 − ω2 is the W-boson
virtuality.

A. CCQE neutrino-nucleus cross sections

In the laboratory frame the differential cross section for
the exclusive (anti-)neutrino CCQE reaction, in which only
a single discrete state or narrow resonance of the target is
excited, can be written as

d5σ

dεf d�f d�x

= R
| px |εx

(2π )5

|kf |
εi

G2 cos2 θc

2
LµνW

µν, (3)

where �f is the solid angle for the lepton momentum,
�x is the solid angle for the ejectile nucleon momentum,
G � 1.16639 × 10−11 MeV−2 is the Fermi constant, θC is
the Cabbibo angle (cos θC ≈ 0.9749), Lµν and Wµν are,
respectively, the lepton and weak CC nuclear tensors. The

recoil factor R is given by

R =
∫

dεxδ(εx + εB − ω − mA) =
∣∣∣∣1 − εx

εB

px · pB

px · px

∣∣∣∣
−1

, (4)

and εx is the solution to the equation

εx + εB − mA − ω = 0, (5)

where εB =
√
m2

B + p2
B, pB = q − px, px = √

ε2
x − m2, and

mA,mB , and m are masses of the target, recoil nucleus, and
nucleon, respectively. The missing momentum pm and missing
energy εm are defined by

pm = px − q (6a)

εm = m + mB − mA. (6b)

The lepton tensor can be written as a sum of symmetric L
µν

S

and antisymmetric L
µν

A tensors

Lµν = L
µν

S + L
µν

A (7a)

L
µν

S = 2
(
k

µ

i kν
f + kν

i k
µ

f − gµνkikf

)
(7b)

L
µν

A = h2iεµναβ(ki)α(kf )β, (7c)

where h is +1 for a positive lepton helicity, and −1 for a
negative lepton helicity, εµναβ is the antisymmetric tensor with
ε0123 = −ε0123 = 1. The weak CC hadronic tensors Wµν are
given by bilinear products of the transition matrix elements of
the nuclear CC operator Jµ between the initial nucleus state
|A〉 and the final state |Bf 〉 as

Wµν =
∑
f

〈Bf , px |Jµ|A〉〈A|J †
ν |Bf , px〉, (8)

where the sum is taken over undetected states.
In the inclusive reactions (2) only the outgoing lepton is

detected, and the differential cross sections can be written as

d3σ

dεf d�f

= 1

(2π )2

|kf |
εi

G2 cos2 θc

2
LµνWµν, (9)

where Wµν is an inclusive hadronic tensor. In the reference
frame, in which the z axis is parallel to the momentum transfer
q = ki − kf and the y axis is parallel to ki × kf , the exclusive
neutrino scattering cross sections take the forms

d5σ

dεf d�f d�x

= | px |εx

(2π )5
G2 cos2 θcεf |kf |R{v0R0 + vT RT

+ vT T RT T cos 2φ + vzzRzz

+ (vxzRxz − v0xR0x) cos φ − v0zR0z

+h[vyz(R
′
yz sin φ + Ryz cos φ)

− v0y(R′
0y sin φ + R0y cos φ) − vxyRxy]},

(10)

where θ, ϕ are lepton scattering angles, θx, φ are outgoing
nucleon angles, vi are the neutrino coupling coefficients, and
Ri are independent response functions [11], which depend
on the variables Q2, ω, | px |, and θx . Similarly, the inclusive
lepton-scattering cross sections are reduced to

d3σ

dεf d�f

= G2 cos2 θc

(2π )2
εf |kf |(v0R0 + vT RT + vzzRzz

− v0zR0z − hvxyRxy), (11)

015501-2



ANALYSIS OF QUASI-ELASTIC NEUTRINO CHARGED- . . . PHYSICAL REVIEW C 78, 015501 (2008)

where the response functions now depend on Q2 and ω only
[11].

We describe the lepton-nucleon scattering in the impulse
approximation (IA), in which only one nucleon of the target
is involved in the reaction, and the nuclear current is written
as a sum of single-nucleon currents. Then, the nuclear matrix
element in Eq. (8) takes the form

〈p,B|Jµ|A〉 =
∫

d3r exp(i t · r)�
(−)

( p, r)�µ�(r), (12)

where �µ is the vertex function, t = εBq/W is the recoil-
corrected momentum transfer, W =

√
(mA + ω)2 − q2 is the

invariant mass, and � and �(−) are relativistic bound-state and
outgoing wave functions.

The single-nucleon charged current has V -A structure
Jµ = J

µ

V + J
µ

A . For the free-nucleon vertex function �µ =
�

µ

V + �
µ

A we use the CC2 vector current vertex function [18]

�
µ

V = FV (Q2)γ µ + iσµν qν

2m
FM (Q2) (13)

and the axial current vertex function

�
µ

A = FA(Q2)γ µγ5 +P (Q2)qµγ5, (14)

where σµν = i[γ µ, γ ν]/2. The weak vector form factors
FV and FM are related with corresponding electromagnetic
factors for proton F

(el)
i,p and neutron F

(el)
i,n by the hypothesis of

conserved vector current (CVC)

Fi = F
(el)
i,p − F

(el)
i,n , (15)

where F
(el)
V and F

(el)
M are the Dirac and Pauli nucleon form

factors. We use the approximation of Ref. [19] for these form
factors. Because the bound nucleons are off shell, we employ
the de Forest prescription for off-shell vertex [18] and the
Coulomb gauge for vector current JV .

The axial FA and psevdoscalar FP form factors in the dipole
approximation are parameterized as

FA(Q2) = FA(0)(
1 + Q2

/
M2

A

)2 , FP (Q2) = 2mFA(Q2)

m2
π + Q2

, (16)

where FA(0) = 1.267,MA � 1.032 GeV is the axial mass, and
mπ is the pion mass

B. Models

In the independent particle-shell model the relativistic
bound-state functions � in Eq. (12) are obtained within the
Hartree–Bogolioubov approximation in the σ -ω model [20].
The bound-state spinor takes the form

�κm(r) =
[

Fκ (r)Yκm(r̂)

iG−κ (r)Y−κm(r̂)

]
, (17)

where

Yκm(r̂) =
∑
ν,ms

〈
� 1

2

ν ms

∣∣∣∣jm
〉
Y�ν(r̂)χms

(18)

is the spin spherical harmonic, and the orbital and total angular
momenta are given, respectively, by

� = Sκ

(
κ + 1

2

)
− 1

2
(19a)

j = Sκκ − 1

2
(19b)

with Sκ = sign(κ). The missing momentum distribution is
then

P (pm) = Sα

2π2
(|F̃κ (pm)|2 + |G̃κ (pm)|2), (20)

where

F̃κ (p) =
∫

dr r2j�(pmr)Fκ (r) (21a)

G̃−κ (p) =
∫

dr r2j�′(pmr)G−κ (r), (21b)

and j�(x) is the Bessel function of order � and �′ = 2j − �.
In this work the bound-nucleon wave functions [21] are used
in the numerical analysis with the normalization factors Sα

relative to full occupancy of 16O: S(1p3/2) = 0.66, S(1p1/2) =
0.7 [14] and S(1s1/2) = 1. Note that the calculation of the
bound-nucleon wave function for the 1p3/2 state includes the
incoherent contribution of the unresolved 2s1/2d5/2 doublet
[22].

In the RDWIA the ejectile wave function � in Eq. (12) is
obtained following the direct Pauli reduction method [23,24].
It is well known that the Dirac spinor

� =
(

�+
�−

)
(22)

can be written in terms of its positive energy component �+
as

� =
(

�+
σ · p

E+M+S−V
�+

)
, (23)

where S = S(r) and V = V (r) are the scalar and vector
potentials for the nucleon with energy E. The upper component
�+ can be related to the Schrödinger-like wave function ξ by
the Darwin factor D(r), i.e.,

�+ =
√

D(r)ξ, (24)

D(r) = E + M + S(r) − V (r)

E + M
. (25)

The two-component wave function ξ is the solution of the
Schrödinger equation containing equivalent central and spin-
orbit potentials, which are functions of the scalar and vector
potentials S and V and are energy dependent. We use the LEA

program [25] for numerical calculation of the distorted-wave
functions with EDAD1 SV relativistic optical potential [26].

In the plane-wave impulse approximation (PWIA) the final-
state interaction between the outgoing nucleon and the residual
nucleus is neglected, and the nonrelativistic PWIA exclusive
cross section has a factorized form [27]

d5σ

dεf d�f d�x

= KσexP(E, p) (26)
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where K = Rpxεx/(2π )5 is the phase-space factor and σex

is the half-off-shell cross section for neutrino scattering by a
moving nucleon. The nuclear spectral function P(E, p) can
be written as

P(E, p) =
∑
f

|〈Bf |a( p)|A〉|2δ(E − εm) (27)

and the nucleon momentum distribution Pβ( p) for the orbit β

is related to the upper component of the corresponding bound-
state wave function (21a) as

Pβ( p) = Sβ

2π2
|F̃β( p)|2. (28)

According to the JLab data [14], the occupancy of the
independent particle shell-model orbitals of 16O equals about
75%, on average. In this work we assume that the missing
strength (25%) can be attributed to the short-range NN

correlations in the ground state, leading to appearance of
high-momentum and high-energy nucleon distribution in the
target. To estimate this effect in the inclusive cross sections, we
consider the phenomenological model [28,29] where the high-
momentum (HM) part of the spectral function is determined
by excited states with one or more nuclei in a continuum.

In our calculations of the inclusive cross sections only
the real part of the optical potential is included, because the
complex potential produces absorptions of flux. Then, the
contribution of the 1p and 1s states to the inclusive cross
section (d3σ/dεf d�f )RDWIA can be obtained by integrating
the exclusive cross sections (10) over �x . The effect of the FSI
on the inclusive cross section can be evaluated using the ratio

�(εf ,�f ) =
(

d3σ

dεf d�f

)
RDWIA

/(
d3σ

dεf d�f

)
PWIA

, (29)

where (d3σ/dεf d�f )PWIA is the result obtained in the PWIA.
Then the total inclusive cross section can be written as

d3σ

dεf d�f

=
(

d3σ

dεf d�f

)
RDWIA

+�(εf ,�f )

(
d3σ

dεf d�f

)
HM

, (30)

where (d3σ/dεf d�f )HM is the high-momentum component
contribution into the inclusive cross section [11].

III. ANALYSIS OF CCQE INTERACTION AND NEUTRINO
ENERGY RECONSTRUCTION

A. Differential cross sections dσ/d cos θ and dσ/d Q2

The charged-current QE events distributions as a func-
tion of Q2 or cos θ were measured by the K2K [12] and
MiniBoone [2,13] experiments. High statistic data show a
disagreement with the RFGM prediction. The data sam-
ples exhibit significant deficit in the region of low Q2 �
0.2 GeV2 and small muon scattering angles, which corre-
sponds to forward-going muons. In Refs. [2,13] it was shown
that the data/MC disagreement is not due to mis-modeling of
the incoming neutrino energy spectrum but to inaccuracy in the
simulation of CCQE interactions. To tune the Fermi gas model

to the low Q2 region, an additional parameter was introduced,
which reduced the phase volume of the nucleon Fermi gas
at low-momentum transfer. In the region of high Q2 the data
excess is observed, and the values of the axial vector mass MA,
obtained from a fit to the measured data, are higher than the
results of previous experiments.

We calculated the differential cross sections dσ/d cos θ

and d2σ/dQ2 for neutrino CCQE scattering off oxygen target
in the RDWIA, PWIA, and RFGM approaches. We note that
in the case of (anti-)neutrino scattering off free nucleon CCQE
the differential cross sections [30] dσ ν,ν/dQ2 at Q2 → 0 can
be written as

dσ ν,ν

dQ2
= G2

2π
cos2 θc

[
F 2

V (0) + F 2
A(0)

]
(31)

and do not depend on the neutrino energy. The difference

dσ ν

dQ2
− dσ ν

dQ2
= G2

π
cos2 θc

Q2

mεi

(
1 − Q2

4mεi

)
(FV + FM )FA

(32)

is proportional to FA and decreases with neutrino energy. In
the range of εi ∼ 0.5 ÷ 1 GeV it can be used for measuring
the axial form factor FA.

B. Selection of charged-current QE two-track events

At the first step, the CC candidate events are selected by
requiring that at least one reconstructed track must be long and
correspond to a minimum ionizing particle with the momentum
higher than a few hundred MeVs. The background is originated
by neutral-current (NC) interactions producing a charged pion.

In the CC event candidates, the events with one or two
reconstructed tracks, with vertex in the active target, are
selected like the CCQE events. No other tracks are allowed
to be connected with this event vertex. The two-track events
are divided into two samples: QE and nQE enriched samples.
Depending on detector capabilities dE/dx, the information
is applied to the second track for π/p separation [31].
Because the QE interaction is a two-particle scattering process,
the measurement of the muon momentum and angle allows
prediction of the angle of a recoil proton (the second track)
assuming the neutrino scattering occurs with a nucleon at
rest. If the measured second track agrees with this prediction
within �θ , it likely represents the CCQE event. Using the MC
simulation based on the Fermi gas model, the values of �θ are
chosen to give a reliable separation between the QE and nQE
events.

To study the nuclear-model dependence of this cut, we
consider the angle θpq between the direction of outgoing
proton and momentum transfer. For neutrino QE scattering,
the nucleon is at rest q = px and cos θpq =1. For scattering
off bound nucleon with momentum pm, it follows from
Eq. (6a), that

cos θpq = p2
x + q2 − p2

m

2| px ||q| . (33)
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The maximum value of θpq corresponds to scattering off
nucleon with a maximum momentum pmax, i.e.,

cos θm
pq = p2

x + q2 − p2
max

2| px ||q| (34)

and cos θm
pq � cos θpq � 1.

In the RFGM the recoil proton energy εx = √
p2

m + m2 −
εb + ω and for |pmax| = pF we have

p2
x = p2

F + ω̃2 + 2ω̃

√
p2

F + m2, (35)

where ω̃ = ω − εb. In the RDWIA the energy and momentum
of an outgoing nucleon can be written [see Eqs. (5) and (6a)]
as follows:

px = pm + q (36a)

εx = ω + mA − εB. (36b)

For the scattering off shell nucleon with a maximum momen-
tum pmax the energy of recoil nuclei is

εB =
√

p2
max + m2

B ≈ mB + p2
max/2mB, (37)

where mB = mA − m + εm. In the numerical calculations we
use | pmax| = 500 MeV/c and the mean missing energy 〈εm〉 =
27.1 MeV for the oxygen target. Using Eqs. (34), (36a), (36b),
and (37), we have

cos θm
pq = ω̄(2m + ω̄) + (Q2 − m2) − p2

max

2
√

ω̄(2m + ω̄)(Q2 + m2)
, (38)

where ω̄ = ω − 〈εm〉 − p2
max/2m�

B and m�
B = mA − m +

〈εm〉. It follows from Eq. (34), that in the RDWIA the phase
volume in (cos θpq,Q

2) coordinates is larger than in the Fermi
gas model, and this difference decreases with momentum
transfer.

C. Reconstruction of neutrino energy

In the kinematic reconstruction the neutrino energy εr is
formed assuming the target nucleon to be at rest inside a
nucleus

εr = εf (m − εb) − (
ε2
b − 2mεb + m2

µ

)/
2

(m − εb) − εf + kf cos θ
. (39)

This formula ignores the nucleon momentum distribution for
the event reconstruction. Using Eq. (36a) and the energy
balance in the RFGM

εi +
√

p2
m + m2 − εb = εf + εx (40)

or

εi + mA = εx + εf + εB (41)

in the RDWIA for shell nucleon and

εi + εN = εf + εx (42)

for nucleons with energy εN in the correlated NN pair, we
obtain the second-order equation for the neutrino energy,
which takes into account the bound-nucleon momentum and
the energy distributions

Aε2
r − Bεr + C = 0. (43)

The expressions for coefficients A,B, and C are given in
Appendix A for the RFGM and RDWIA. The solution of
Eq. (43)

εr =
(
B +

√
B2 − 4AC

)/
2A (44)

is the reconstructed neutrino energy, which depends on the
variables | pm|, εm, and cos τ = p · q/| p · q|. So, the distri-
bution εr (| pm|, εm, cos τ ) corresponds to measured values
of (kf , cos θ ) and at εm, pm → 0. Equation (44) has an
asymptotic form given by Eq. (39).

The n-th moment of εr (kf , cos θ, pm, εm) distribution
versus kf and cos θ can be written as

〈εn
r (kf , cos θ )〉 =

∫ pmax

pmin

d p
∫ εmax

εmin

S( p, ε)

× [εr (kf , cos θ, p, ε)]ndε, (45)

where S( p, ε) is the probability density function (pdf) for the
nucleon momentum and energy, the target nucleon momentum
and energy distribution being normalized with respect to the
unit area. The mean of εr (kf , cos θ ) and its variance σ 2(εr ) are
defined by

ε̄r (kf , cos θ ) = 〈εr (kf , cos θ )〉, (46a)

σ 2(εr ) = 〈
ε2
r (kf , cos θ )

〉 − ε̄2
r (kf , cos θ ) (46b)

In principle, the cut R = σ (εr )/ε̄r � δ may be imposed (event
by event) to select the events with well-reconstructed energy.

The accuracy of reconstructed energy εr (εi) as a function
of εi can be estimated using the moments of εr (kf , cos θ )
distribution

〈εn
r (εi)〉 =

∫
dkf

∫
W (kf , cos θ )[εr (kf , cos θ )]nd cos θ,

(47)

where W (kf , cos θ ) is the pdf of the muon momentum and
scattering angle, i.e.,

W (kf , cos θ ) = 1

σtot(εi)

d2σ

dkf d cos θ
(48)

and

σtot(εi) =
∫

d2σ

dkf d cos θ
dkf d cos θ. (49)

Usually, to select the CC events, kf and cos θ cuts are applied:
kf � kcut and cos θ � (cos θ )cut. The lower limits of integration
in Eq. (47) are (kf )min = kcut, (cos θ )min = (cos θ )cut, and
[εr (kf , cos θ )]n = 〈εn(kf , cos θ )〉, if the nucleon Fermi motion
effect is taken into account, or εr (kf , cos θ ) is given by
Eq. (39), if this effect is neglected. It is worth empha-
sizing here that formula (39) cannot be used for neutrino
energy reconstruction at εf � (m − εb) + kf cos θ or Q2 =
Q2

0 � 2mεi − m2
µ, because the value of resulting εr is negative

in this region. In terms of energy transfer, it corresponds to the
range ω1 � ω � ω2, where ω2 is the solution to the equation

Q2
0 = 2εi(εf − kf cos θ ) − m2

µ. (50)

In the RDWIA, ω1 is the value of ω, at which

Q2
0 = [| pmax| +

√
ω̃2 + 2mω̃]2 − ω2 (51)
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with ω̃ = ω − 〈εm〉 − p2
max/2m�

B , and in the RFGM, ω1 is the
solution to the equation

Q2
0 = [

pF +
√

p2
F + 2εF ω̃ + ω̃2

]2 − ω2, (52)

where ω̃ = ω − εb and ε2
F = p2

F + m2. The size of this range
�ω = ω2 − ω1 is proportional to | pmax| (pF ) and reduces with
increasing cos θ .

The reconstructed neutrino energy ε̄r = 〈εr〉 is smeared
with variance

σ 2(εi) = 〈
ε2
r (εi)

〉 − ε̄2
r (εi) (53)

and biased with

�(εi) = εi − ε̄r . (54)

Using this mean energy approach, we estimated the accuracy
of the neutrino energy reconstruction with and without the
nucleon Fermi motion effect in the RDWIA and RFGM
approaches. The expressions for the moments 〈εn

r (kf , cos θ )〉
and 〈εn

r (εi)〉 are given in Appendix B.
In the calorimetric reconstruction εr is formed as a sum of

muon energy εf , kinematic proton energy Tp, and the mean

missing energy 〈εm〉
ε(kf , cos θ ) = εf + Tp + 〈εm〉. (55)

The expressions for the moments of εr (kf , cos θ ) distribution
are given in Appendix B. However, the neutrino energy is
underestimated in the kinematical and calorimetric reconstruc-
tions, when the event represents, in fact, the nQE event, but
looks like the QE event.

IV. RESULTS

The resulting fluxes of neutrino are predicted with the mean
energy of ∼0.7 GeV in the MiniBooNE and T2K experiments
and ∼2.5 GeV at the MINOS and MINERvA detectors. We
calculated the differential inclusive cross sections d3σ/dωdQ2

and d2σ/dωd cos θ of CCQE νµ scattering off 16O for these
energies using the LEA code, which was adopted for neutrino
interactions [11]. In Fig. 1 d3σ/dωdQ2 cross sections,
calculated within the RDWIA, PWIA, and RFGM, are shown
for the neutrino energy εν = 0.7 GeV and in Fig. 2 for
εν = 2.5 GeV as a function of Q2. Figures 1 and 2 also show

FIG. 1. (Color online) Inclusive
cross section versus the four-
momentum transfer Q2 for neutrino
scattering off 16O with energy
εν = 0.7 GeV and for four values of
energy transfer: ω = 0.105, 0.159,

0.213, and 0.266 GeV. The solid line
is the RDWIA calculation, whereas
the dashed and dash-dotted lines
are, respectively, the RFGM and
PWIA calculations. The dotted line
is the high-momentum component
contribution to the inclusive cross
section.

015501-6



ANALYSIS OF QUASI-ELASTIC NEUTRINO CHARGED- . . . PHYSICAL REVIEW C 78, 015501 (2008)

FIG. 2. (Color online) Same as de-
scrbied in the caption to Fig. 1 but for
the neutrino energy εν = 2.5 GeV and
for four values of energy transfer: ω =
0.279, 0.507, 0.735, and 0.962 GeV.

the high-momentum component contributions of the nucleon
momentum distribution in the target.

At energy εν = 0.7 GeV the RDWIA cross sections, in the
maximum, are lower than the PWIA and RFGM results, and
this difference decreases with increasing energy transfer. At
energy 2.5 GeV, in the range of ω � 0.5 GeV, around the peak,
the RFGM results are lower than the RDWIA ones and fall
down rapidly as Q2 decreases. This trend is characteristic of
the nucleon momentum distribution and the Pauli blocking
effect as calculated in the Fermi gas model. On the contrary,
the Q2 dependence of the RDWIA and PWIA cross sections
at low Q2 is softer due to the HM-component contribution,
which becomes dominant at Q2 < 0.1 (GeV/c)2.

Generally, theoretical uncertainties of the correlated NN

pairs contribution to the inclusive cross sections are higher
as compared to the shell-nucleon contribution. The electron-
nucleus scattering data [14,32,33] show that more complicated
configurations than a simple hard interaction between two
nucleons are involved in this case. Moreover, the off-shell
ambiguities will be important for the high-momentum com-
ponent, and one might expect the details of the off-shell
extrapolation to become critical [34].

The inclusive cross sections for energies εν = 0.5, 0.7, 1.2,
and 2.5 GeV are presented in Fig. 3, which shows d2σ/Q2 as
a function of Q2. Here the results, obtained in the RDWIA,
are compared with cross sections calculated in the PWIA
and RFGM. The contributions of the NN correlations are
shown as well. The cross sections, calculated in the Fermi
gas model, are higher than those obtained within the RDWIA,
and this difference increases with decreasing Q2. At Q2 =
0.1 (GeV/c)2 this discrepancy equals 54% for εν = 0.5 GeV
and 43% for εν = 2.5 GeV. In the region around the maximum
Q2 = 0.2 (GeV/c)2 the difference is about ∼18% for εν =
0.5 GeV and ∼11% for εν = 2.5 GeV. At Q2 = 0.05 (GeV/c)2

the contribution of the HM component increases with en-
ergy from ∼15% to 23% in the energy range of 0.5 ÷
2.5 GeV.

Figure 4 shows the inclusive cross sections dσ/d cos θ

calculated in the RDWIA, PWIA, and RFGM approaches for
energies εν = 0.5, 0.7, 1.2, and 2.5 GeV. They are displayed as
a function of cos θ . It is clear that in the region 0.8 < cos θ < 1
the values of the RFGM cross sections are higher than those
obtained within the RDWIA, and this difference decreases with
neutrino energy. For energy εν = 0.5 GeV (εν = 2.5 GeV) this
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FIG. 3. (Color online) Inclusive cross section versus the four-momentum transfer Q2 for neutrino scattering off 16O and for four values
of incoming neutrino energy: εν = 0.5, 0.7, 1.2, and 2.5 GeV. The solid line is the RDWIA calculation, whereas the dashed and dash-dotted
lines are, respectively, the RFGM and PWIA calculations. The dotted line is the high-momentum component contribution to the inclusive cross
section.

discrepancy is about 25 times (∼11%) at cos θ = 0.95 and
∼89% (∼ 2%) at cos θ = 0.8. We note that measured Q2 and
cos θ distributions of the CCQE events [2,12,13] show similar
features as compared to the RFGM prediction.

Figures 5 and 6 show cos θm
pq as a function of Q2 calculated

within the RDWIA and Fermi gas model kinematics for
energies εν = 0.5 and 2.5 GeV. The outgoing proton carries
the kinematic energy, that is approximately ω. So far as ω

is low, the problem consists in identifying the events with

very soft recoil proton; for high ω this proton has high energy
and may interact in the detector, making particle identification
and track reconstruction more challenging. In these figures we
show the contours of the phase volume in the (cos θpq,Q

2)
coordinates for 0.25 � ω � 1 GeV. Apparently, in the RDWIA
kinematics this volume is larger than in the RFGM. However,
the difference decreases with ω and neutrino energy. Thus,
systematic errors for the efficiency and purity of the two-track
events selection are nuclear model dependent.
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FIG. 4. (Color online) Inclusive cross section versus
the muon scattering angle for four values of incom-
ing neutrino energy: εν = 0.5, 0.7, 1.2, and 2.5 GeV.
The solid line is the RDWIA calculation, whereas the
dashed and dash-dotted lines are, respectively, the RFGM
and PWIA calculations.

FIG. 5. (Color online) Contours of the phase volume in the
(cos θpq,Q

2) coordinates for neutrino scattering off 16O with en-
ergy εν = 0.7 GeV and for four values of energy transfer: ω =
0.288, 0.320, 0.374, and 0.427 GeV. The solid line is the RDWIA
calculation, whereas the dashed line is the RFGM calculation.

FIG. 6. (Color online) Same as described in the caption to Fig. 5
but for neutrino energy εν = 2.5 GeV and for four values of energy
transfer: ω = 0.279, 0.507, 0.735, and 0.962 GeV.
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FIG. 7. (Color online) Bias (top panel), variance (middle panel) of
the reconstructed neutrino energy, and the efficiency (bottom panel) of
the one-track events detection with kf � 0.2 (GeV/c) and cos θ � 0 as
functions of neutrino energy. The neutrino energy reconstruction was
formed assuming the target nucleon to be at rest inside the nucleus.
The vertical bars show σ [(εi − εr )/εi]. As displayed in the key, the
biases, variances, and efficiencies were calculated in the RDWIA and
RFGM.

We studied the accuracy of the neutrino energy recon-
struction with neglecting the systematics related to the event
selection and resolution, i.e., with no detector effects or
background. The study was performed with the values of cuts
(kf )cut = 0.2 GeV/c and (cos θ )cut = 0.

In Fig. 7 the uncertainties of the energy reconstruction
using Eq. (39) within the RDWIA and RFGM approaches are
presented as functions of neutrino energy. The top panel shows
the bias � = (εi − εr )/εi , the middle panel shows the variance
σ/εi (the energy resolution), and the efficiency of the one-track
events detection is displayed in the bottom panel. It is clear
that in the case of the Fermi gas model Eq. (39) systematically
underestimates the neutrino energy and � decreases as the
energy increases from −4.7% for εν = 0.3 GeV to −0.7%
for εν = 2.5 GeV. The variance σ/εi (efficiency) increases
with energy from ∼5.4% (∼ 71%) to ∼12% (∼ 99%) over the
range of energy from 0.3 to 2.5 GeV.

In the RDWIA approach � ≈ −5.2% for εν = 0.3 GeV
and � ≈ 3.9% for εν = 1.6 GeV. At energies εν > 1.6 GeV
and at fixed values of cuts the denominator in Eq. (39) can
be negative in the detection volume of the (kf , cos θ ) phase

FIG. 8. (Color online) Bias (top panel) and variance (bottom
panel) of the reconstructed neutrino energy as functions of neutrino
energy. The energy reconstruction was formed taking into account
the nucleon momentum distribution in the target. The vertical bars
are the same as in Fig. 7. As displayed in the key, the biases and
variances were calculated in the RDWIA and RFGM.

space, which is determined by Eqs. (50) and (51). We note
that the size of this volume decreases as (cos θ )cut increases.
The energy resolution is about 8.3% for εν = 0.3 GeV and
∼12.7% for εν = 1.6 GeV, and the maximum of 15.4% is
located around εν = 0.8 GeV. The efficiency rapidly increases
with energy from 28% for εν = 0.3 GeV to 96% for εν =
1.6 GeV. So the values of the bias and energy resolution,
obtained within the RDWIA, are higher than those obtained in
the Fermi gas model.

The accuracy of the mean energy method, which takes
into account the nucleon momentum distribution in the target,
is shown in Fig. 8. We assume that the maximum neutrino
energy in the neutrino beam [Eq. (B8)] is Emax = 10 GeV.
The top and bottom panels show the biases and energy
resolutions calculated within the RDWIA and RFGM. In
the case of the RFGM the mean energy method systemati-
cally overestimates the neutrino energy; � = 4.3% for εν =
0.3 GeV, � ≈ 6% for εν = 0.8 GeV and decreases down to
3% for εν = 2.5 GeV. The energy resolution increases with
energy from 4.6% to 11% in this energy range. In the RDWIA
approach � ≈ −4%, (σ/εi) ≈ 14% for εν = 0.3 GeV, and
� ≈ 4.5%, (σ/εi) ≈ 10.5% for εν = 2.5 GeV. It should be
noted here that bias may depend on the value of Emax.
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FIG. 9. (Color online) Biases calculated in the RDWIA (top
panel) and RFGM (bottom panel) as functions of neutrino energy.
The vertical bars are the same as in Fig. 7. As displayed in the key,
the energy reconstructions were formed with and without the nucleon
momentum distribution.

The effect of the nucleon momentum distribution in the
target is shown in Fig. 9. The biases, calculated within the
RDWIA (top panel) and RFGM (bottom panel) using Eq. (39)
(�fr) and the mean energy method (�me), are presented as
functions of neutrino energy. In the RDWIA approach the
�fr and �me show similar behavior with neutrino energy, and
the nucleon Fermi motion effect leads to increasing the bias
by about 1.2%. In the Fermi gas model with this effect εr

is overestimated, and �fr(�me) = −4.7%(4.3%) for energy
0.3 GeV and �fr(�me) = −0.7%(3.4%) for εν = 2.5 GeV.

Apparently, the accuracy of the kinematic reconstruction of
neutrino energy for one-track events depends on the nuclear
models of QE neutrino CC interaction with nuclei and on
the neutrino energy reconstruction methods. In the K2K and
MiniBooNE experiments Eq. (39) is applied for the energy
reconstruction. The bias �FG and energy resolution δFG =
(σ/εi)FG were calculated using MC simulation based on the
Fermi gas model. We can estimate the systematic uncertainties
of this approach by comparing �FG and δFG with �R and δR

evaluated in the RWDIA approach using the mean energy
method. It is clear that uncertainties depend on neutrino en-
ergy: �FG(�R) ≈ −4.7%(−4%) and δFG(δR) ≈ 5.4%(13.7%)
for εν = 0.3 GeV; �FG(�R) ≈ −2.3%(4.1%) and δFG(δR) ≈

FIG. 10. (Color online) Bias (top panel), variance (middle panel)
of the reconstructed neutrino energy, and the efficiency (bottom panel)
of the two-track events detection with kf � 0.2 (GeV/c) and cos θ � 0.
The vertical bars are the same as described in the caption to Fig. 7. The
bias, variance, and efficiencies were calculated within the RDWIA.

10.6%(16.3%) for εν = 0.8 GeV; �FG(�R) ≈ −0.7%(4.5%)
and δFG(δR) ≈ 12%(11.5%) for εν = 2.5 GeV. So, the bias
uncertainty increases with energy from (�R − �FG) ≈ 0.7%
for εν = 0.3 GeV up to 5.2% for εν = 2.5 GeV, and the
energy resolution uncertainty decreases with increasing energy
from δR − δFG ≈ 8.3% down to 0.5% in this energy range.
We note that these estimations may depend on the values of
(kf )cut, (cos θ )cut, and Emax.

In Fig. 10 the accuracy of the energy reconstruction for
the two-track events, calculated using Eq. (55) within the
RDWIA, is shown as a function of neutrino energy. The top
panel shows the bias, the middle panel shows the variance, and
the bottom panel shows the efficiency of the two-track events
detection with cuts kf � 0.2 GeV/c and cos θ � 0 for muon
tracks and without any cuts for the proton tracks. At energy
εν > 0.3 GeV the bias is � ≈ −0.1% and does not depend
on the neutrino energy. The energy resolution decreases as
the energy increases from 3.4% for εν = 0.3 GeV to 0.5% for
εν = 2.5 GeV, and the efficiency rapidly increases with energy
from ∼16% to ∼44% in this energy range. These estimations
show that the accuracy of the calorimetric method can
be higher than the kinematic one and does not depend on the
model of CC neutrino QE interaction with nuclei and on the
nucleon momentum distribution in the target. The challenge is
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to identify the proton track and reconstruct its kinetic energy
with reliable accuracy at the low threshold energy for proton
detection.

V. CONCLUSIONS

In this article, we study the quasielastic neutrino charged-
current scattering on the oxygen target in various approxima-
tions (PWIA, RDWIA, RFGM), emphasizing in particular the
nuclear-model dependence of the results. In the RDWIA, the
LEA program, adapted to neutrino interactions, was used for
calculating the differential cross sections with the effect of
NN correlations in the target ground state.

The inclusive d2σ/dQ2 and dσ/d cos θ cross sections,
calculated within the RDWIA, and the measured Q2, cos θ

distributions of CCQE events exhibit similar feature as com-
pared to the Fermi gas model. The magnitude of inclusive cross
sections d2σ/dQ2 and dσ/d cos θ is lower in the RDWIA
calculations than that of the Fermi gas model, and in the
region around the maximum Q2 = 0.2 (GeV/c)2 the difference
is about 18% for εν = 0.5 GeV and 11% for εν = 2.5 GeV.
The contribution of the HM component at Q2 = 0.05 (GeV/c)2

increases with neutrino energy from 15% to 23% in this energy
range. Note that the measured Q2 and cos θ distributions of
CCQE events are also lower than the RFGM prediction at
low Q2.

We showed that the efficiency and purity of the CCQE
two-track events selection are nuclear model dependent, and
the difference decreases with increasing energy transfer and
neutrino energy.

We studied the nuclear-model dependence of the energy
reconstruction accuracy, neglecting the systematics related to
event selection and resolution. We found that the accuracy of
the kinematic reconstruction for one-track events depends on
the nuclear model of CCQE neutrino interaction and on the
neutrino energy reconstruction method. The uncertainties in
the reconstructed energy bias increase in the energy range of
0.3 ÷ 2.5 GeV from ∼0.7% to 5.4%, and the energy resolution
ambiguities decrease from 8.3% down to 0.5% with increasing
energy. In the case of two-track events the accuracy may be
higher and does not depend on the nuclear models of CCQE
neutrino-nucleus interaction.

We conclude that the use of RDWIA in the Monte Carlo
simulation of neutrino detector and the data analysis would
allow one to reduce the systematic uncertainty in neutrino
oscillation parameters.
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APPENDIX A: EQUATION FOR NEUTRINO ENERGY

In Eq. (43)

Aε2
r − Bεr + C = 0;

the coefficients A,B, and C are defined as follows:

A = a2 − p2
mz2, (A1a)

B = ab − 2 p2
mz2kf cos θ, (A1b)

C = b2/4 − p2
mz2k2

f , (A1c)

where

a = εef − kf cos θ, (A2a)

b = ε2
ef − (| pm|2 + m2) − k2

f , (A2b)

z = cos τ = pm · q/| pm · q|. (A2c)

In the Fermi gas model

εef = εf −
√

p2
m + m2 + εb, (A3)

in the RDWIA model, for shell-nucleons

εef = εf − mA + [
(mA − m + εm)2 + p2

m

]1/2
, (A4)

and for nucleons in the correlated NN pair

εef = εf − εN . (A5)

APPENDIX B: MOMENTS OF RECONSTRUCTED
NEUTRINO ENERGY

In the Fermi gas model with the pdf

S( pm, εm) = 3

4πp3
F

δ(εm − εb), (B1)

Eq. (45) takes the form〈
εn
r (kf , cos θ )

〉
= 3

4πp3
F

∫ pmax

pmin

p2dp

∫ zmax

zmin

[εr (kf , cos θ, p, z)]ndz, (B2)

where z = cos τ and εr is given by Eqs. (44), (A1), (A2), and
(A3). In the RDWIA the pdf can be written as follows:

S( p, ε) =
∑

α

vαSα( p)δ[ε − (εm)α] + vNNSNN ( p, ε) (B3)

and we have〈
εn
r (kf , cos θ )

〉
=

∑
α

vα

〈
εn
r,α(kf , cos θ )

〉 + vNN 〈εr,NN (kf , cos θ )〉, (B4a)

〈
εn
r,α(kf , cos θ )

〉
=

∫ pmax

pmin

p2dp

∫ zmax

zmin

Sα( p)[εr,α(kf , cos θ, p, z)]ndz, (B4b)

〈
εn
r,NN (kf , cos θ )

〉
=

∫ pmax

pmin

p2dp

∫ εmax

εmin

dε

×
∫ zmax

zmin

SNN ( p, ε)[εr,NN (kf , cos θ, p, ε, z)]ndz, (B4c)

where Sα and SNN are, respectively, the pdf for the momentum
and energy of nucleons on the shell α and in the correlated
NN pairs, εn

r,α and εn
r,NN are given by Eqs. (44), (A1), (A2),
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(A4), and (A5) and the sum is taken over occupied shells. The
coefficients vα and vNN are

vα,NN = 1

σα,NN

( d2σ

dkf d cos θ

)
α,NN

, (B5)

where

σα,NN =
∫ ( d2σ

dkf d cos θ

)
α,NN

dkf d cos θ. (B6)

The integral is calculated with (kf )min = (kf )cut and
(cos θ )min = (cos θ )cut. Using Eqs. (47), (B4), we have〈

εn
r (εi)

〉 =
∑

α

wα

〈
εn
r (εi)

〉
α

+ wNN

〈
εn
r (εi)

〉
NN

, (B7)

where wα,NN = σα,NN/(
∑

α σα + σNN ). In Eqs. (B2) and (B4)
the limits of integration over z are: zmin = −1 and zmax =
min{1, zl}. The value of zl is obtained from the requirement
εr (kf , cos θ ) � Emax, where Emax is the maximum neutrino
energy in the neutrino beam. We note that this constrain on
zmax leads to increasing bias � in the reconstructed energy.
Then from Eqs. (36a), (40), (41), and (42) with εi = Emax it
follows, that

zl = (ωmax + ε)2 − (
p2

m + q2 + m2
)

2| pm||q| , (B8)

where ωmax = Emax − εf and q2 = E2
max + k2

f − 2Emaxkf

cos θ . In the Fermi gas model ε = √
p2

m + m2 − εb, in the

RDWIA for scattering off shell nucleons ε = mA −√
p2

m + m2
B , and ε = εN for scattering off nucleons in the

correlated NN pair.
For the two-track events the moments of the εr (kf , cos θ )

distribution can be written as〈
εn
r (εi)

〉 =
∑

α

wα

〈
εn
r (εi)

〉
α
, (B9)

where〈
εn
r (εi)

〉 =
∫

dkf

∫
d cos θ

∫ 2π

0
dφ

∫ pmax

pmin

[εf + Tp + 〈εm〉]n

×Wα(kf , cos θ, φ, pm)dpm, (B10a)

Wα = 1

σ ex
α

[
d5σ

dkf d cos θdφdpm

]
α

(B10b)

σ ex
α =

∫
dkf

∫
d cos θ

∫ 2π

0
dφ

×
∫ pmax

pmin

[
d5σ

dkf d cos θdφdpm

]
α

dpm, (B10c)

wα = σ ex
α

/ ∑
α

σ ex
α (B10d)

and d5σ/dkf d cos θdφdpm is the QE neutrino CC scattering
exclusive cross section (10) in terms of a missed momentum
pm.
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