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Thermodynamic approach to the relaxation of viscosity and thermal conductivity
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A novel higher order theory of relaxation of heat and viscosity is proposed based on corrections to the
traditional treatment of the relativistic energy density. In the framework of generalized Bjorken scaling solution
to accelerating longitudinal flow we point out that the energy flux can be consequently set to zero in the stationary
case, independently of the choice of a specific local rest frame, like the Landau-Lifshitz or Eckart one. We
investigate and compare several cooling and reheating scenarios for the quark gluon plasma within this approach.
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I. INTRODUCTION

The fluid dynamical description of the evolution of strongly
interacting matter created in heavy-ion collisions, initially
proposed and applied to describe p + p collisions at low
energies, was pioneered by Landau [1]. Ever since then, it
has been successfully used to model different colliding heavy
ions at a wide range of energies. Nowadays, one of the
most intriguing and important experimental discoveries at the
Relativistic Heavy Ion Collider (RHIC) in Brookhaven (USA),
the measurement of collective flow in noncentral Au + Au
collisions, demonstrates the predicting power of the fluid
dynamical approach.

Experimental evidence in single-particle transverse mo-
mentum distributions, like radial flow, and in the coefficients
of the asymmetric azimuthal distribution around the beam
axis, the directed transverse flow v1, the elliptic flow v2, and
the anti-flow v3, shows that the predictions of perfect fluid
dynamical models assuming initial conditions from the Color
Glass Condensate (CGC) [2] overestimate certain data [3].
In particular, the elliptic flow, v2, surmised to be created in
the early stage of the collision signaling an early onset of
thermalization, could only be reproduced—using perfect fluid
dynamical calculations with an initial condition of Glauber
type—with thermalization time τ0 < 1 fm/c, up to transverse
momenta p⊥ � 1.5 GeV [4].

Remarkably, the perfect fluid dynamical calculations with
the CGC initial state using a realistic description of the
dissipative hadronic corona could still not reproduce the
elliptic flow data [5]. This implies that additional dissipation
must happen in the fluid dynamical stage: the matter created
in high energy heavy ion collisions cannot be completely
described by perfect fluid dynamics with zero viscosities and
without heat conduction.

Triggered by these developments there is an increasing
interest in relativistic dissipative fluid dynamics. There are
several recent suggestions and modifications and renewed
discussions of the old enigmas of relativistic viscous fluids
[6–9]. The most intensely investigated problems are the
stability of the homogeneous equilibrium solutions and the
causal propagation of perturbations. These issues are related
to each other.

There are several investigations connecting causality and
stability in dynamical systems described by hyperbolic partial

differential equations. According to these results the mathe-
matical properties of symmetric hyperbolic equations ensure
that the propagation speed of perturbations is finite. Because of
certain additional restrictions on the material properties, these
characteristic speeds are less than the speed of light. For the
so-called divergence type theories [10] it is straightforward
to determine the conditions of causality for the full set of
nonlinear evolution equations. Moreover, for these theories
causality implies stability. In case of Israel-Stewart fluids
it has been proven that the symmetric hyperbolicity of the
perturbation equations is equivalent to the conditions of linear
stability of the homogeneous equilibrium [11,12]. However,
the original nonperturbed equations in these theories are not
known to be symmetric (let alone causal) for arbitrary fluid
states.

On the other hand, stability also has certain implications on
causality. If the homogeneous equilibrium is asymptotically
stable, then the causality region of the theory shall be reduced
due to damping. The causality region can be restricted by
physical characteristic speeds [13,14]. In this sense relativistic
parabolic theories are viable, provided one can prove the
stability of the homogeneous equilibrium. Several authors
argue that hyperbolic extensions of the Navier-Stokes-Fourier
system would not have experimental consequences; the es-
sential part of dissipative relativistic hydrodynamics is the
parabolic Navier-Stokes-Fourier core [15]. According to these
arguments the proof of the stability is a most fundamental issue
in dissipative theories.

As it is well known, the so-called first order theories are
unstable [16]. The stability of the homogeneous equilibrium
in several recent, second order theories either was not inves-
tigated [6,7] or the obtained stability conditions seem to be
too restrictive [9]. It is important to note that the stability
conditions in the Israel-Stewart theory are complicated and
cannot be conceived in a natural way (see, for example,
Eq. (70) in Ref. [11]). This circumstance is in strong
contrast to the nonrelativistic case, where the thermodynamic
(equivalently hydrodynamic) stability and the positivity of the
viscosities and the heat conduction coefficient ensure the linear
stability of the homogeneous equilibrium without any further
elaboration.

We have recently analyzed [14] the physical reasons for
instabilities in the first order theory of Eckart [17]. Our
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conclusion was that stability of the homogeneous equilibrium
can be restored independently of the chosen frame (Eckart or
Landau-Lifshitz) by exploring the physical difference between
momentum density and energy flux in the local rest frame. We
have given a minimal, stable extension of the first order Eckart
theory by correcting the traditional treatment of the energy
density. Unlike in previous relativistic theories of dissipative
fluids, where the local rest frame energy is considered as
the internal energy, we have suggested to apply the absolute
value of the local rest frame energy vector, ẽ = √

uaT
a
b T b

c uc.
We have proven that in this case the positivity of the
coefficients in the classical linear response theory (heat
conduction coefficient and viscosities) and the conditions
of thermodynamic stability are sufficient to avoid generic
instabilities. In this theory no further conditions are needed,
in full analogy to the nonrelativistic Navier-Stokes-Fourier
equations.

In this article our aim is to extend this approach to a set of
hyperbolic equations. Our starting point is the fiducial equation
of state between the entropy density and the energy density. In
this relation we use Lorentz scalar combinations of the energy-
momentum tensor at zero pressure and the flow four-velocity.
The analysis is carried out without specifying the flow frame.
We derive the relaxation equations of heat flux and viscous
pressures from the corresponding entropy production. Then
we investigate a certain generalization of the Bjorken flow and
show that the stationary solution implies vanishing heat flux.
Finally we solve the subsequent equations and investigate the
correspondence of expansion, cooling, and reheating in our
approach.

II. THERMODYNAMICS

In this section we derive the equations of viscous fluid
dynamics using the convention where the upper indices
denote contravariant while the lower indices denote co-
variant four vectors. The metric tensor is given as gij =
diag(1,−1,−1,−1) and all indexes i, j, k, . . . run over
0, 1, 2, 3. We use natural units, h̄ = k = c = 1, except the
final section.

The projection of the energy-momentum tensor, Ej =
uiT

ij , can be interpreted as the energy flux in the local
comoving frame; the scalar projection, e = uiT

ijuj = Ejuj ,
composes the local, relativistic energy density. We have studied
the modified equation of state, s(ẽ, n), with ẽ2 = EiE

i in
Ref. [14] and found that it leads to a stabilization of the
known generic instabilities. The change of variables of the
entropy density was supported by arguments from modern
nonequilibrium thermodynamics based on the Liu procedure
applied to first order weakly nonlocal state spaces [18]. The
original Eckart theory considers both time-space nondiagonal
components of the energy-momentum tensor, the energy flux
and the momentum density, as dissipative contributions. We
have argued that using ẽ as internal energy density results in
a distinction in their physical role and restores the stability of
the homogeneous solutions.

Now we extend this approach by utilizing other Lorentz
scalars in combinations transverse to ui . With the energy

like Lorentz scalars, e2, EiE
i , and TijT

ij , we construct a
fiducial energy density expression containing all the dissipative
and heat conducting terms and derive relaxation equations
for them. The energy-momentum tensor can be generally
decomposed [17] into reversible and irreversible parts. With
the help of the transverse projector, �ij = gij − uiuj , we
consider

T ij = euiuj + qiuj + uiqj − (p + �)�ij + πij , (1)

where we define the transverse energy flow four-vector (or
heat flow in case one uses Eckart’s definition) as qi =
�i

kT
kjuj ; the hydrostatic pressure, p; the bulk viscous

pressure, �, where (p + �) = − 1
3�ijT

ij ; and the shear
stress tensor, πij = T 〈ij〉 − (p + �)�ij . The T 〈ij〉 = 1

2 (T kn +
T nk)�i

k�
j
n − 1

3�ij�knT
kn notation stands for a particular,

symmetrized and traceless combination of indices reflecting
the same property of the shear stress tensor, πij .

The energy flux four-vector is hence given by

Ei = eui + qi, (2)

while its Lorentz invariant square length becomes

EiE
i = e2 + qiq

i . (3)

We note that because qiu
i = 0 and ui is a timelike vector,

qi is spacelike, so qiq
i � 0. The Lorentz scalar square of the

energy-momentum tensor reads as

TijT
ij = e2 + 2qiq

i + 3(p + �)2 + πijπ
ij , (4)

where the number 3 = �i
i reflects the space dimensions. Our

present ansatz generalizing the local invariant energy density
including irreversible processes is given by

L = EiE
i + (EiE

i − TijT
ij ) + (EiE

i − e2). (5)

Here the first two terms, 2EiE
i − TijT

ij = e2 − 3(p + �)2 −
πijπij , contain the square of the energy density and the
dissipative contributions due to the hydrostatic pressure plus
bulk pressure and shear stress. The last term, EiE

i − e2,
returns the square of the absolute value of the heat flow.
Substituting these values our fiducial scalar entering the
equation of state is given by the square root of

L = e2 + qiq
i − 3(p + �)2 − πijπ

ij . (6)

We interpret this construction as the following physical picture:
The effective energy density ε = √

L(p = 0) is equal to the
familiar one, e, in the absence of dissipation. Dissipation
decreases ε compared to e, and because the entropy is a
monotonic growing function of internal energy for systems
with positive absolute temperature, the entropy is maximal
at no dissipation. This construction is akin to the Müller and
Israel-Stewart approach in its spirit [19]. The p = 0 version
of Eq. (6) separates the static from the dissipative parts of the
pressure, according to the basic presumption of these theories.
In our approach the equation of state is given by a particular
function,

ŝ(ε, n) ≡ ŝ

(√
e2 + qiqi − 3�2 − πijπij , n

)

= s(e, qi,�, πij , n). (7)
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For thermodynamical systems without heat conduction and
dissipative effects, qi = 0,� = 0, and πij = 0, the tradi-
tional equilibrium relation emerges, ŝ(ε, n)|qi=0,�=0,πij =0 ≡
ŝ(e, n) = s(e, 0i , 0, 0ij , n).

Moreover, ŝ(ε, n) achieves maximum at this point; so it is
ensured that near equilibrium the dissipative currents relax. An
expansion of ε for small dissipative currents to leading order
leads to an Israel-Stewart type of ansatz, however with fixed
coefficients of the quadratic terms,

ŝ(ε, n) ≈ ŝ(e, n) + 1

2e
(qiq

i − 3�2 − πijπ
ij )

∂ŝ(e, n)

∂e
+ · · · .

(8)

Here identifying the inverse equilibrium temperature via
1/Teq = ∂ŝ(e, n)/∂e, the Israel-Stewart coefficients are given
by β0 = 3/e for the bulk viscosity, β1 = 1/e for the shear
viscosity, and β2 = 1/e for the heat flow. This approach
differs from the one obtained in the framework of kinetic
theory; nevertheless for an ideal relativistic gas (e = 3p) the
coefficients are all inversely proportional to the pressure,
and our result comes close to some of the coefficients in
Ref. [20]. Furthermore our formula can be applied for matter
containing massless particles, while some results calculated
from relativistic kinetic theory in Ref. [20] diverge for m = 0,
as well as for vanishing pressure. Here we note that one
might introduce different scalar functions in front of all newly
introduced scalar terms when constructing the effective energy
density, for example, in order to match the thermodynamical
coefficients introduced by Israel and Stewart. In the present
article we do not introduce such coefficients in order to keep
the investigations simple and transparent.

In the following we study the class of relativistic equations
of state involved in Eq. (7) without surpassing this way
the usual second order fluid dynamics of Israel-Stewart. We
note that it is useful to introduce a common notation for all
dissipative modifications. We consider ε2 = e2 − D2, where
D2 = −qiq

i + 3�2 + πijπ
ij , from which the approximations

ε ≈ e − D2/(2e) and ŝ(ε, n) ≈ ŝ(e, n) − D2/(2eT ) hold.
The Gibbs relation can be obtained by inspecting the

total differential of the entropy density (7). We obtain two
sets of intensive variables differentiating the indirect function
ŝ(ε(e, qi,�, πij ), n). The differential with respect to ε and n,

dŝ(ε, n) ≡ ∂ŝ

∂ε
dε + ∂ŝ

∂n
dn = 1

θ
dε − µ̂

θ
dn, (9)

defines the effective temperature θ and the effective chemical
potential µ̂ by simple expressions. The introduction of these
new intensive variables naturally mimics the standard thermo-
dynamic relations in the case of equilibrium; the interpretation
of these quantities becomes clear in the equilibrium limit.

On the other hand, because ε depends on e, qi,�, and πij ,

ds(e, qi,�, πij , n)

≡ ∂ŝ

∂ε

(
e

ε
de + qi

ε
dqi − 3�

ε
d� − πij

ε
dπij

)
+ ∂s

∂n
dn

= 1

T
de + qi

eT
dqi − 3�

eT
d� − πij

eT
dπij − µ

T
dn (10)

enables us to introduce intensive variables associated with
de, dqi, d�, dπij , and dn, respectively. As we will see, these
intensive quantities appear in the diffusion, pressure, and heat
conduction relaxation equations, driving the thermodynamic
system toward equilibrium. Therefore T is called the equi-
librating temperature distinct from the effective temperature
θ appearing in the state functions. Using the above relations
we can easily establish the following relations between those
quantities,

eT = εθ and eµ = εµ̂, (11)

where the functions θ, T and µ̂, µ are respectively equal and
reduce to the equilibrium temperature and chemical potential,
Teq = T = θ and µeq = µ = µ̂, when the energy flux and
the viscous pressure vanish (qi = 0,� = 0, πij = 0). The
equilibrium entropy density corresponds to the previously in-
troduced ŝ(e, n) = seq(e, n), because de = Teq dseq + µeqdn.

III. THERMODYNAMIC PRESSURE

Because the derivative with respect to proper time in a
frame comoving with the local flow is given by d/dτ = ui∂

i ,
the above total derivative multiplied with the temperature can
be expressed as

T
ds

dτ
= T ∂i(su

i) − T s∂iu
i . (12)

This leads to the following entropy balance equation:

T ∂i(su
i) = ∂i(eu

i) + qj

e
∂i(q

jui) − 3�

e
∂i(�ui)

− πjk

e
∂i(π

jkui) − µ∂i(nui) + p̂∂iu
i . (13)

Here each term expresses a contribution to the entropy
production as a product of an intensive parameter and the
divergence of an extensive one. In particular the last term in
Eq. (13) contains the mechanical work on a changing volume
(considering dV/dτ = V ∂iu

i). The coefficient p̂ turns out to
be

p̂ = T ŝ(ε, n) + µn − ε2

e
. (14)

An equivalent way reminding the familiar thermodynamic
relation is given as

θ

T
p̂ = θ ŝ(ε, n) + µ̂n − ε. (15)

Using the comprised notation D2 for the sum of dissipative
modifications in the energy density, ε2 = e2 − D2, while
expanding the entropy density around the traditional formula,
ŝ(ε, n) = seq − D2/(2eTeq), an approximate formula arises for
the pressure:

p̂ ≈ Teqseq + µeqn − e + D2

2e
. (16)

On the other hand for the—till this point unspecified—
parameter p in the energy-momentum tensor in the dissipative
case we suggest to use the standard expression,

p = T ŝ + µn − e. (17)
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With this definition in general it follows that, p̂ = p +
D2/e ≈ peq + D2/(2e), with peq = Teqseq + µeqn − e being
the isotropic equilibrium pressure in the absence of dissipation.

At this point it is a delicate question what part of the total
pressure will be assigned to dissipative effects and what to
nondissipative effects; the thermodynamic interpretation of
the parameter p occurring in the energy-momentum tensor
has to be determined. While in the absence of dissipation p

coincides with the isotropic, equilibrium hydrostatic pressure,
peq, from the analysis of the mechanical work done on the
expanding volume the quantity p̂ is relevant. We motivate our
choice by the following brief analysis of the example of pure
radiation.

Our starting point is the following equation of state for an
ideal gas of massless particles (radiation):

ŝ(ε) = s(e, qi,�, πij ) = aε3/4, (18)

where σ = (3a/4)4 is the Stefan-Boltzmann constant. The
inverse temperatures in this case are given by

1

T
= ∂s

∂e
= e

ε

3

4
a ε−1/4,

1

θ
= ∂ŝ

∂ε
= 3

4
a ε−1/4. (19)

This means that the effective energy density is ε = σθ4, while
the pressure from Eq. (14) becomes

p̂ ≡ 1

3

ε2

e
= 1

3
ε

T

θ
. (20)

From this at no dissipation the familiar equation of state peq =
e/3 arises. From the energy balance one knows that the cooling
of an expanding system is driven by the quantity h = e + p.
For the pure radiation this becomes

h = e + p = T ŝ = 4

3

ε2

e
= 4p̂. (21)

From this study we conclude that the interpretation of ε

as internal energy must be developed consequently. In our
understanding the thermodynamic pressure is given by p̂ in
Eq. (14).

IV. ENTROPY PRODUCTION AND LINEAR RESPONSE

To proceed further by determining the entropy production
we need the energy-momentum balance,

∂jT
ij = 0. (22)

This way using Eq. (1), the energy balance can be expressed
as

ui∂jT
ij = ∂i(eu

i) + ∂iq
i + uiq̇

i + (p + �)∂iu
i

−πij ∂iuj = 0. (23)

Here the over-dot denotes the proper time derivative, ẋ =
dx/dτ = ui∂

ix. Using the fact that qiu
i = 0 we replace the

term uiq̇
i = −qiu̇

i . The Euler equation is given as

�i
k∂jT

kj = eu̇i + qi∂ju
j + qj∂ju

i

+�i
kq̇

k − �i
k∂jP

kj = 0, (24)

where P ij = (p + �)�ij + πij .

Substituting the energy balance into the entropy balance
(13) we obtain

T ∂i(su
i) = −∂iq

i + qiu̇
i − �∂iu

i + πij ∂iuj − µ∂i(nui)

+ qi

e
q̇i − 3�

e
�̇ − πij

e
π̇ ij . (25)

The particle four current is defined generally as Ni = nui +
νi , where νi is the particle flux, which is spacelike in the
local rest frame. Associating the chemical potential with a
conserved particle, ∂iN

i = ∂i(nui) + ∂iν
i = 0, and it allows

us to use ∂i(nui) = −∂iν
i in the entropy balance. Therefore,

substituting Eq. (23) into Eq. (25) we get

T ∂iS
i = T

(
∂i(su

i) + ∂i

(
qi − µνi

T

))

= qi

T

(
T u̇i + T

e
q̇i + ∂iT

)
− �

(
∂iu

i + 3

e
�̇

)

+πij

(
∂iuj − 1

e
π̇ ij

)
− T νi∂

i
(µ

T

)
� 0, (26)

where according to the Second Law of thermodynamics the
entropy production is nonnegative. We can see, that convenient
definition of the entropy flux is j i = (qi − µνi)/T as done by
Eckart in analogy to the nonrelativistic case. Hence the entropy
four current is defined as

Si = ŝ(ε, n)ui + qi

T
− µνi

T

≈ s(e, n)ui + qi

T
− µνi

T

+ (qjq
j − 3�2 − πjkπ

jk)
ui

2eT
. (27)

Here the first term in the last line denotes the entropy of
a perfect fluid carried by the flow; the second term denotes
the entropy flux due to heat and particle flux. In case one uses
Eckart’s definition for the flow field, νi = 0, the energy flux qi

equals to the heat flow. On the other hand using the definition
of Landau and Lifshitz for the flow, qi = 0, the energy flux
vanishes in the local rest frame and the heat flux is defined by
I i = −(e + p)/nνi . In a baryon free matter one obviously has
νi = 0; therefore there is no temperature equilibration by heat
conduction.

The construction involved in Eq. (27) truncated terms up to
linear order in dissipative quantities corresponds to Eckart’s
first order theory of relativistic dissipative fluid dynamics.
The introduction of quadratic terms are generally referred to
as second order theories of dissipative fluid dynamics [12,21].
Our approach [cf. first line in Eq. (27)] contains an infinite
series of higher order terms.

A complete set of second order terms in the entropy
four current of relativistic fluids was proposed by Israel and
Stewart [20], with coefficients β0, β1, and β2, for the quadratic
terms in �, qi , and πij respectively. They introduced also
α0 and α1 coefficients in front of viscous-heat flux coupling
terms like �qi and πijqj . Because, our main ansatz is based
on Lorentz scalar second order quantities involved in the
dissipative relativistic energy density, it is clear that such vector
terms do not appear in our present approach.
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The Müller, Israel, and Stewart method modifies and
generalizes explicitly the entropy four current of Eckart,
through which the definition of the local rest frame entropy
density is extended. They give the most general isotropic and
second order expression in a pure mathematical way. Our
method is based on constructing local corrections to the energy
density, and then defining the entropy four current along the
lines as done by Eckart. However, expanding the corrections
to the equilibrium entropy density (27) results in a formula
resembling the definition of Israel and Stewart.

The nonnegativity of the entropy production in Eq. (26) can
be ensured if each term is separately nonnegative. Therefore
in the case of isotropic materials, the coefficients of the energy
flux qi (orthogonal to ui , i.e., the heat conduction), the bulk
and shear viscosity terms multiplying � and πij in the above
expression, and the chemical diffusion contribution are treated
as being proportional to the corresponding coefficient in the
linear response approximation. This leads to the following
equations:

qi = −λ

(
T �ij u̇j + T

e
�ij q̇j + ∇ iT

)
, (28)

� = −ζ

(
∂iu

i + 3

e
�̇

)
, (29)

πij = 2η

(
∂〈iuj〉 − 1

e
π̇ij

)
, (30)

νi = −σ∂i µ

T
, (31)

where the short-hand notation ∇ i = �ij∂j has been intro-
duced. The heat conductivity λ, the bulk viscosity ζ , and the
shear viscosity η are nonnegative transport coefficients. The
diffusion term [last line in Eq. (31)] and the heat conduction
term (first line) may in general show cross-couplings (cf. Soret
effect [22]). With the above simple construction, we arrive at
the following formula for the entropy production,

∂iS
i = �2

ζT
− qiq

i

λT 2
+ πijπ

ij

2ηT
− νiν

i

σT
� 0. (32)

In the following discussions we concentrate on the heat
conduction and viscosity evolution and neglect particle diffu-
sion phenomena. Based on the above considerations we obtain
the following evolution equations for the viscosity terms:

1

e
�ij q̇j + 1

T
∇ iT + �ij u̇j + 1

λT
qi = 0,

3

e
�̇ + ∂iu

i + 1

ζ
� = 0, (33)

1

e
π̇ij − ∂〈iuj〉 + 1

2η
πij = 0.

The corresponding relaxation times are hence given by τq =
λTβ1 = λT/e for the heat conduction, by τ� = β0ζ = 3ζ/e

for the bulk viscosity, and by τπ = 2ηβ2 = 2η/e for the shear
viscosity. These relaxation times are perfectly finite even for
massless matter.

The above relaxation equations closely resemble the
truncated Israel-Stewart form. Such forms of the relaxation

equations are extensively utilized in quark matter research
[7,23,24].

The main difference in our approach lies in terms that
contain the space-time derivative of the thermodynamic
coefficients multiplied by the flow. As argued by Heinz,
Song, and Chaudhuri [25], these Israel-Stewart quantities
are rather small, and one can neglect them safely. In the
case where they are large, they become unbounded and the
system may destabilize. In our approach such terms, containing
derivatives of the Israel-Stewart coefficients, do not appear.
However, these equations already capture the essential features
of relaxation phenomena and we expect that they will result in
a causal and stable theory.

These relaxation equations can be solved parallel to the
energy flux equation (23) and the Euler equation describing
the evolution of the flow ui .

V. GENERALIZED BJORKEN FLOW

Let the basis of coordinates be given by the tetrad ei
a , such

that xi = τei
0 + rei

2 and therefore dxi = dτei
0 + τdηei

1 +
drei

2 + rdφei
3. The unit four-vectors satisfy the orthogonality

relations

ei
ae

j

bgij = gab,
(34)

ei
ae

j

bg
ab = gij ,

with the Minkowski metric tensor gij = diag(1,−1,−1,−1).
The flow velocity field and an orthogonal spacelike field are
given by

ui = γ
(
ei

0 + vei
1

)
,

(35)
Ni = γ

(
vei

0 + ei
1

)
,

where γ = 1/
√

1 − v2, uiu
i = +1, NiN

i = −1 and uiuj −
NiNj = ei

0e
j

0 − ei
1e

j

1 so ui and Ni span the same two-
dimensional subspace of the spacetime as ei

0 and ei
1. It is

therefore natural to consider derivatives in the direction of
these vectors, we call them “dot” and “grad”:

dot = ui∂
i = γ

(
∂

∂τ
+ v

τ

∂

∂η

)
,

(36)

grad = Ni∂
i = γ

(
v

∂

∂τ
+ 1

τ

∂

∂η

)
.

Four divergences of the flow and its orthogonal are given as

A = ∂iN
i = γ v

τ
+ γ 2dot(v),

(37)
B = ∂iu

i = γ

τ
+ γ 2grad(v).

All partial derivatives can be expressed by these quantities:

∂iuj = (Aui − BNi)Nj,
(38)

∂iNj = (Aui − BNi)uj .

The transverse projection tensor in our basis is given by

�ij = gij − uiuj = −(
NiNj + ei

2e
j

2 + ei
3e

j

3

)
. (39)

014909-5
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It has the properties uk�
ki = 0 and Nk�

ki = Ni . This helps
to obtain the traceless symmetric part of the derivative tensor
of the velocity field, important to entangle the shear pressure
term

∂ 〈iuj〉 = B

(
−NiNj − 1

3
�ij

)

= B

(
−2

3
NiNj + 1

3
ei

2e
j

2 + 1

3
ei

3e
j

3

)
. (40)

The shear pressure tensor πij is proportional to the expression
in the bracket, we use a factor 3/2 in the definition

πij = π (τ, η)

(
−NiNj + 1

2
ei

2e
j

2 + 1

2
ei

3e
j

3

)
. (41)

Now πijπij = 3π2/2 follows. The usage of the (ui,Ni)
reference frame allows us to give the energy-momentum tensor
(1) as follows:

T ij = euiuj + q(Niuj + uiNj ) + αNiNj

+β
(
ei

2e
j

2 + ei
3e

j

3

)
, (42)

with α = p + � − π and β = p + � + π/2. It consists of
projector terms, but the term proportional to q, which is due
to the qi = q(τ, η)Ni form.

We consider the energy-momentum conservation, including
all above terms in the ∂iT

ij = 0 equation. Its general form is
given by

uidot(T ij ) = Ni grad (T ij ), (43)

so all equations describe a balance between dot and grad terms.
In the case of the Bjorken flow these operations coincide
with the time and rapidity derivatives, but for a longitudinal
accelerating flow ansatz not. Together with the relaxation
equations due to the linear response assumption we obtain
the following set of dynamical equations corresponding to
Eqs. (23), (24), (28), (29), and (30), respectively,

dot(e) + (e + α)B + 2qA + grad(q) = 0,

dot(q) + (e + α)A + 2qB + grad(α) = 0,

λT

e
dot(q) + q + λT A + λgrad(T ) = 0, (44)

3ζ

e
dot(�) + � + ζB = 0,

2η

e
dot(π ) + π − 4η

3
B = 0.

Here the first equation describes the cooling due to expansion,
the second is the Euler equation describing the acceleration of
the flow due to pressure gradients, the third is the Fourier heat
conduction equation supplemented with a relaxation term, and
the fourth and fifth equations describe the relaxation of bulk
and shear viscosity.

It is interesting to consider that class of solutions when
the quantities under investigation depend only on the time
variable, τ . Then denoting by ḟ = df/dτ for such functions,
we arrive at

ė = −(e + α)B̃ − 2qÃ − vq̇,

q̇ = −(e + α)Ã − 2qB̃ − vα̇,

q̇ = − e

λT γ
q − eÃ − ev

T
Ṫ ,

�̇ = − e

3ζγ
� − e

3
B̃,

π̇ = − e

2ηγ
π + 2e

3
B̃, (45)

with

Ã = v

τ
+ γ 2v̇, and B̃ = 1

τ
+ γ 2vv̇. (46)

In this form the cooling and the Euler equation show a quite
symmetric role in the evolution, and furthermore it seems that
one would obtain two equations for q̇. However, the Euler
equation must be used to describe the change of the flow,
so it must be regarded as an equation for v̇ included in the
variables Ã and B̃. The v = 0 assumption reveals that Ã = v̇

and B̃ = 1/τ , so indeed the roles are not symmetric. In this
case we obtain from the Euler equation

v̇ = − 1

e + α

(
q̇ + 2q

τ

)
, (47)

and then using the Fourier equation for eliminating q̇ from the
above result we arrive at

v̇ = q

α

(
e

λγ
− 2

τ

)
. (48)

One concludes that only for q = 0 can the v = 0 Bjorken flow
remain stationary. This on the other hand consequently solves
the Fourier equation. Hence we pointed out that the energy
flux, q, can be consequently set to zero when considering the
stationary Bjorken flow independent of the Eckart or Landau-
Lifshitz choice of the flow frame.

VI. EXPANSION, COOLING, AND REHEATING IN THE
SCALING SOLUTION

It is customary to investigate the relaxation of viscosity by
utilizing a stationary solution of the nondissipative system,
in particular for the quark gluon plasma (QGP) evolution of
the Bjorken flow pattern [26]. We have seen already that the
only assumption consequent with a stationary Bjorken flow
(v = 0) is q = 0. In this case the acceleration of the flow and
the heat current remain zero, due to Eqs. (47) and (48), while
the energy density and the bulk and shear viscosity relax in a
coupled manner. Here, Eq. (45) simplifies to

ė + e + p

τ
= π − �

τ
,

�̇ + e

3ζ
� = − e

3τ
, (49)

π̇ + e

2η
π = 2e

3τ
.

The corresponding results of the first order (Navier-Stokes)
hydrodynamics are obtained by neglecting the π̇ and �̇ terms
in the above equations. Then one considers π (1) = 4η/(3τ )
and �(1) = −ζ/τ and observes a reheating of the expanding
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quark gluon plasma:

ė = − 4

3τ
e + 4η

3τ 2
+ ζ

τ 2
. (50)

In particular for early enough times the terms on the right-
hand side, being proportional to 1/τ 2, dominate the evolution
[21,27].

For the radiative equation of state, s = 4
3σ 1/4ε3/4 and

e + p = 4ε2/(3e). According to Eq. (41), ε2 = e2 − 3�2 −
3π2/2; thus e + p = 4e/3 − 4(�2 + π2/2)/e. Therefore, the
cooling due to the expansion is reduced and the dissipative
terms physically reheat the system. There is nothing artificial
about it. This fact is more apparent for the proper time
derivative of the effective internal energy density together
with Eq. (49), where the terms �/τ and π/τ do not appear
explicitly,

ε̇ = − 4

3τ
ε + e

ε

(
3π2

4η
+ �2

ζ

)
. (51)

This form of the cooling equation reflects the fact that the
source of physical reheating consists of the dissipative terms
only, is quadratic in dissipating momentum fluxes, and is
inversely proportional to the linear response coefficients. For
the sake of simplicity in the following we neglect the bulk
viscosity; therefore, Eqs. (49) reduce to

ε̇ = − 4

3τ
ε + 3π2

4η

√
1 + 3

2

(π

ε

)2
, (52)

π̇ = ε

(
2

3τ
− π

2η

) √
1 + 3

2

(π

ε

)2
. (53)

These equations augmented with the radiation EOS are to
be solved. In the following, we show the numerical results
for the above equations in case of an ideal QGP with 3
massless quarks and 16 gluonic degrees of freedom, where the
Stefan-Boltzmann coefficient is given as σ = 47.5π2/30 and
the coefficient of viscosity is η = η0s = η0

4
3 (σε3)1/4. Without

viscous pressure terms, for an equilibrium EOS, one has to
replace ε with e. The initial conditions are given following
Ref. [28]. The starting time for the hydrodynamical evolution
is τ0 = 0.6 fm/c, the initial energy density is e0 = ε0 =
30 GeV/fm3, the initial viscosity to entropy density is η0 = 0.4,
and the initial shear is π0 = 0. Here we note that other initial
conditions and initial values are also possible (see, for example,
Refs. [29,30].

To calculate the temperature Eqs. (52) and (53) are solved
together with the standard QGP EOS in four special cases.
We give solutions for a perfect fluid, where π ≡ 0; for a
first order dissipative fluid, i.e., the relativistic Navier-Stokes
equations (NS), where π = 4η/3τ and ε = e; for second
order dissipative fluid, i.e., Israel-Stewart type fluid (IS),
where we set ε = e and four our higher order equations
(HO) without any of the previous simplifications. The initial
shear for the transport equation is π0 = 0. The corresponding
thermodynamic temperatures are denoted by TID for a perfect
fluid, TNS for the NS equations, TIS for the IS type equations,
and THO and θHO for the two temperatures of our higher order
theory. The existence of these temperatures is the outcome of

FIG. 1. (Color online) The evolution of temperature as a function
of the proper time for the initial conditions and equations given in
the text. The dotted line shows the cooling of a perfect fluid, TID, and
the thin dashed and thin full lines are for the NS and IS equations,
denoted by TNS and TIS. The thick dashed and thick full lines are for
the two temperatures of the HO equation, respectively denoted by
THO and θHO.

the thermodynamical classification and treatment as given in
Eqs. (9) and (10). Their different physical role is clear from the
structure of the theory; T is responsible for the equilibration
and θ appears in the EOS.

In Fig. 1, the evolution of the temperature is shown for the
different simplified models. The overall behavior of the results
is closely the same. For a longer time cooling is fastest for the
ideal fluid, without dissipation, slower for the NS and IS fluids,
and slowest for the HO fluid, due to the reduced value of the
expansion strength, h = 4e/3 − 4(�2 + π2/2)/e, compared
to the case when h = 4e/3. The equilibrating temperature T

and the effective temperature θ tend to each other with the
decreasing dissipation. For the HO solution, the equilibrating
temperature decreases faster because T = θε(ε2 + 1.5π2)−1/2

and π initially rises and then decreases to the Navier-Stokes
limit.

To phenomenologically study the stability of the system,
investigation related to the Reynolds number is standard
practice. The inverse Reynolds number, R−1 = π/(e + p), is
the ratio between dissipative and nondissipative quantities,
i.e., the ratio of dissipation to the strength of expansion. The
equation for the energy density in Eq. (49) can be rewritten in
the following form,

ė = h

τ
(1 − R−1), (54)

where h ≡ e + p. From Eq. (51) we get

ε̇ = h

τ

(
1 − R−1

ε

)
, (55)

where

R−1
ε = 9τeπ2

16ηε2
. (56)

We easily realize that in both cases the energy increases as
long as the inverse of the Reynolds number is smaller than
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FIG. 2. (Color online) The evolution of the inverse Reynolds
number. The thin dashed and thin full lines, denoted by 1/RNS and
1/RIS, are for the NS and IS equations in the case of the standard EOS.
The thick full line, denoted by 1/RHO, is for the modified Reynolds
number (56) in the higher order theory.

one. This leads to phenomenological upper bounds for the
dissipative pressure, i.e., π � 4p̂.

For the first order theory of Eckart one can show that
in case the dissipative pressure becomes larger, initially or
otherwise, than four times of the isotropic pressure, the
solution to the equations becomes unstable [21,31,32]. There
reheating is closely related to stability. According to our
knowledge the upper bound on dissipative quantities is not
explicitly or quantitatively well specified for higher order
theories, therefore their domain of applicability and the
stability conditions of the Bjorken flow and its generalizations
are not clear.

In Fig. 2, the evolution of the inverse Reynolds number
is shown for the two definitions given before. The dashed
line is for the NS equations while the full lines are for the
IS equations. In the NS case the inverse Reynolds number
decreases from its initial value and asymptotically approaches
the perfect fluid limit due to the decrease of the expansion
rate. For the IS and HO solutions, the system initially
cannot compete with the fast expansion and first departs from
equilibrium and only later relaxes to the NS solutions. Finally,
we may conclude that there is no reheating in any of above

TABLE I. b (GeV fm/c4) parameter values characterizing the
conditions of reheating for the different dissipative fluids.

η0 Eckart Israel-Stewart This article

0.3 6 × 10−4 5.6 × 10−7 2.67 × 10−4

0.08 3 × 10−6 2.89 × 10−9 1.75 × 10−4

presented cases because the inverse of the Reynolds number
is less than one.

Because our modified Reynolds number is explicitly time
dependent, the separation of cooling and reheating solutions
is not straightforward without the solutions of the equations.
In Fig. 3 we compare the reheating capabilities of the different
theories. The minimal initial energy density for a reheating
solution is plotted as a function of starting proper time in case
of zero initial viscous shear pressure. The shear viscosity is
η0 = 0.3 in Fig. 3(a) and η0 = 0.08 in Fig. 3(b). For the first
order theory of Eckart one can give the explicit condition as
e0 = σ ( 4η0

3τ0
)4. For the Israel-Stewart and for our higher order

theory the corresponding curves can be well approximated as
e0 = bτ−4

0 ; the b parameter values are tabulated in Table I.

VII. DISCUSSION

In our approach we have fixed the thermodynamic coef-
ficients, akin to the αiβi coefficients of the Israel-Stewart
theory, respectively, or the α coefficient of the Öttinger-Grmela
theory [33,34] to particular values that otherwise could have
been calculated from kinetic models. There are several reasons
why a direct phenomenological approach can be fruitful in
heavy ion physics.

(i) The available transport coefficients calculated from
kinetic theory are not always realistic and sometimes
are controversial. They are not realistic when they are
related to oversimplified microscopic properties (like
one component ideal gases) [20]. In this approach some
structural properties are considered for the second order
coefficients [24].

(ii) Certain results of hydrodynamic calculations are in-
dependent of the exact values of the second order

1.00.5 2.00.20.1
0 fm c

10 7

10 5

0.001

0.1

10

e 0
G

eV
fm

3

(a)

1.00.5 2.00.20.1
0 fm c

10 9

10 7

10 5

0.001

0.1

10

e 0
G

eV
fm

3

(b)

FIG. 3. (Color online) The initial energy density to get a reheating flow as a function of the starting proper time for η0 = 0.3 (a) and
η0 = 0.08 (b). The thin dashed and thin full lines are for the NS and IS fluids and the thick full line is for the HO model. Initial conditions below
the lines lead to reheating solutions. The dots indicate initial conditions considered to be realistic for the RHIC and LHC experiments [28,29].
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coefficients: A difference in the initial values of energy
density, equilibrium, and dissipative pressures can be
compensated by an appropriate choice of the initial
proper time (τ0) in the Bjorken flow scenario. We have
argued that first order theories cannot be excluded by
causality reasons, because the actual violation of causal-
ity may be beyond the validity range of the hydrodynamic
approach [14]. Baier et al. has been arguing that the
difference of the solutions of a first order and a second
order theory do appear at microscopic distances, beyond
the validity range of hydrodynamics [7]. Several theories
of relativistic dissipative fluids (e.g., Israel-Stewart, the
divergence type Geroch or Müller-Ruggieri theories,
Baier et al., Koide et al., Öttinger-Grmela) may belong
to this class.

However, it is easy to see, that generic instabilities
of the corresponding theory could destroy the above
argumentation. Up to now the instability of the first order
theories and stability conditions in Israel-Stewart theory
[11,35], and in the minimal version of our higher order
approach [14] have been investigated. According to our
knowledge, the conditions of stability of homogeneous
solutions are not known for the rest of the above-
mentioned theories.

(iii) There is no a priori reason why one should end at
second order extension of the first order theory, beyond
convenience.

Within our thermodynamic framework, not showing
generic instabilities for qi �= 0, we have investigated the role
of heat conduction together with a generalized, longitudinally
accelerating Bjorken flow in more detail. Our conclusion is

that for stationary flow the heat flux must vanish also in a
general frame (also in the Eckart frame), there is no need for
the the customary Landau-Lifshitz condition (qi = 0). On the
other hand the reheating effect is a consequence of dissipative
physical phenomena, not of generic instabilities.

A peculiar property of our approach to the relativistic inter-
nal energy is the distinctness of the derivatives of the entropy
with respect to the total or internal energies. This fact resulted
in a doubled set of nonequilibrium intensive thermodynamic
quantities according to the respective derivatives (T and θ, µ

and µ̂, p and p̂). We have seen that the intensive variables
related to the internal energy (θ, µ̂, p̂) resulted in more natural
thermodynamic relations: The intensive variables related to
the total energy [T ,µ, p, and the coefficients of the viscous
pressure terms in the Gibbs relation (10)] are rather related
to the energy equilibration due to dissipative processes. In
particular the gradient of T appeared in the generalized Fourier
law (28) but for the radiation thermodynamics it was most
straightforward to consider θ as temperature.
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[33] H. C. Öttinger, Beyond Equilibrium Thermodynamics (Wiley
Interscience, New York, 2005).

[34] K. Dusling and D. Teaney, arXiv:0710.5932v2.
[35] W. A. Hiscock and L. Lindblom, Phys. Rev. D 35, 3723

(1987).

014909-10


