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Microscopic models and effective equation of state in nuclear collisions in the vicinity of
Elab = 30A GeV at the GSI Facility for Antiproton and Ion Research (FAIR) and beyond
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Two microscopic models, ultrarelativistic quantum molecular dynamics and quark-gluon string model, were
employed to study the formation of locally equilibrated hot and dense nuclear matter in heavy-ion collisions
at energies from 11.6A to 160A GeV. Analysis was performed for the fixed central cubic cell of volume V =
125 fm3 and for the expanding cell that followed the growth of the central area with uniformly distributed energy.
To decide whether the equilibrium was reached, results of the microscopic calculations were compared to that
of the statistical thermal model. Both dynamical models indicate that the state of kinetic, thermal and chemical
equilibrium is nearly approached at any bombarding energy after a certain relaxation period. The higher the
energy, the shorter the relaxation time. Equation of state has a simple linear dependence P = a(

√
s)ε, where

a ≡ c2
s is the sound velocity squared. It varies from 0.12 ± 0.01 at Elab = 11.6A GeV to 0.145 ± 0.005 at

Elab = 160A GeV. Change of the slope in a(
√

s) behavior occurs at Elab = 40A GeV and can be assigned to
the transition from baryon-rich to meson-dominated matter. The phase diagrams in the T -µB plane show the
presence of kinks along the lines of constant entropy per baryon. These kinks are linked to the inelastic (i.e.,
chemical) freeze-out in the system.
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I. INTRODUCTION

Experiments on heavy-ion collisions carried out for the past
two decades at GSI’s Schwerionen Synchrotron (SIS), LBL’s
Bevalac, CERN’s Super Proton Synchrotron (SPS), BNL’s
Alternating Gradient Synchrotron (AGS), and Relativistic
Heavy Ion Collider (RHIC) have significantly helped us in
understanding of properties of hot and dense nuclear matter.
The collisions at top RHIC energy

√
s = 200A GeV or

at energy of CERN’s Large Hadron Collider (LHC)
√

s =
5.5A TeV probe the domain of high temperatures and
low net baryon densities, whereas the systems with lower
temperatures but with much higher baryon densities should
be produced in heavy-ion collisions at relatively moder-
ate energies around Elab = 30A GeV accessible for future
GSI’s Facility for Antiproton and Ion Research (FAIR)
accelerator [1]. Most likely, the matter under such extreme
conditions is composed of partons, i.e., quarks and glu-
ons, in the phase of quark-gluon plasma (QGP), colored
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tubes of chromoelectric field (or strings), hadrons, and their
resonances.

The question about the equation of state (EOS) of this
substance remains still open. Present status of the nuclear
phase diagram in terms of temperature T and baryon chemical
potential µB is sketched in Fig. 1. The highly anticipated
transition between the hot hadron gas (HG) and the QGP is
of first order for relatively dense baryonic substances only.
With rising temperature and dropping baryon density and
chemical potential the transition becomes of second order at
the so-called tricritical point (TCP). After that it is transformed
to a smooth crossover [2]. Although the theory cannot localize
the position of the TCP on T -µB plane, lattice quantum
chromodynamics (LQCD) calculations indicate that it might
be somewhere between the points with T ≈ 160 MeV and
µB = 360 MeV [3] or µB = 470 MeV [4]. These values are
close to the chemical freeze-out parameters obtained from the
analysis of heavy-ion collisions at energies between Elab =
11.6A GeV and Elab = 40A GeV within the statistical models
[5–7]. They are close also to the temperatures and baryon
chemical potentials in the central zone of heavy-ion reactions
generated by microscopic transport models [8–12]. Another
interesting feature of the collisions at bombarding energies
around 40A GeV is the transition from baryon-dominated
matter to meson-dominated one. According to microscopic
models, in gold-gold collisions at top AGS energy nearly 70%
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FIG. 1. (Color online) Present status of nuclear phase diagram in
the T -µB plane.

of total energy is deposited in baryonic sector. At top SPS
energy mesons are carrying 70% of the total energy, and at
Elab ≈ 40A GeV the energy parts of mesons and baryons are
roughly the same. The particle composition is changing. Is it
possible to trace consequences of this change in microscopic
model analysis? To answer this question two transport Monte
Carlo models were employed: ultrarelativistic quantum molec-
ular dynamics (UrQMD) model [13] and quark-gluon string
model (QGSM) [14]. The models use different mechanisms
of string excitation and fragmentation. UrQMD relies on the
longitudinal excitation, whereas the color exchange scheme is
employed in QGSM. Central gold-gold collisions with zero
impact parameter b = 0 fm were simulated at bombarding
energies Elab = 11.6, 20, 30, 40, 80, and 160A GeV, respec-
tively. Microscopic parameters related to quantities conserved
in strong interactions, namely the total energy, the net baryon
charge, and the net strangeness extracted for a certain volume
of the reaction, were inserted into a system of nonlinear
equations to obtain temperature, baryon chemical potential,
and strangeness chemical potential of an ideal hadron gas in
equilibrium. If the yields and transverse momentum spectra
of particles obtained in microscopic simulations are close to
that provided by the statistical model, the matter in the cell
is considered to be in the vicinity of equilibrium. Then its
equation of state and other thermodynamic characteristics can
be derived and studied.

Relaxation of hot matter to equilibrium in the central cell
of central heavy-ion collisions has been studied within the
UrQMD model in Refs. [8–12] for energies ranging from
11.6A GeV at AGS to

√
s = 200A GeV at RHIC and partially

within the QGSM [15,16]. The size of the cell once chosen
has been fixed throughout the system evolution. In the present
article we modify the analysis of the early stage to trace the
expansion of an initially small area of homogeneity just after its
formation. The central volume was further subseparated into
smaller cells embedded within each other (“matryoshka-doll”
structure). The transition of analysis from the smaller cell
to the larger one was allowed if, and only if, the energy
densities in both cells were the same. Regardless of the
microscopic model applied for the actual calculations, the
formation of (quasi-)equilibrated state in the central cell at all
bombarding energies in question is observed. The matter in the

cell expands isentropically with constant entropy-per-baryon
ratio. The isentropic regime arises even before the chemical
and thermal equilibration takes place. Due to coarse-graining
of the central volume characteristic kinks in the temperature
versus baryochemical potential phase diagrams are found for
both model simulations. This feature has not been seen in
the previous studies because of the averaging of energy and
baryon densities, in fact, nonisotropically distributed within
the relatively large volume.

The article is organized as follows. Similarities and
differences of the microscopic string models chosen for
the analysis are discussed in Sec. II. In Sec. III criteria
of thermal and chemical equilibrium are formulated, and
Sec. IV describes the statistical model of an ideal hadron
gas used for the comparison with both microscopic models.
Section V presents the model study of the relaxation process
in the cells with fixed and variable volumes. Six bombarding
energies Elab = 11.6, 20, 30, 40, 80, and 160A GeV are con-
sidered, and the effective equation of state is investigated at
different temperatures and chemical potentials. Conclusions
are drawn in Sec. VI.

II. FEATURES OF URQMD AND QGSM

A. Similarities of the microscopic models

Both UrQMD and QGSM are formulated as Monte Carlo
event generators, allowing us to perform a careful analysis
of the measurable quantities by introducing all necessary
experimental cuts. The models are designed to describe
hadronic, hadron-nucleus, and nuclear collisions in a broad
energy range. In the hadronic sector both models treat the
production of new particles via formation and fragmentation
of specific colored objects, strings. Strings are uniformly
stretched, with constant string tension κ ≈ 1 GeV/fm, between
the quarks, diquarks, and their antistates. The excited string is
fragmenting into pieces via the Schwinger-like mechanism of
qq̄ and qq-q̄q̄ pair production, and the produced hadrons are
uniformly distributed in the rapidity space.

To describe hadron-nucleus (hA) and nucleus-nucleus
(A + A) collisions the momenta and positions of nucleons
in the nuclei are generated according to the Fermi momen-
tum distribution and the Wood-Saxon density distribution,
respectively. The black disk approximation is adopted as
criterion of interaction. It means that two hadrons can interact
both elastically and inelastically if the distance d between
them is smaller than

√
σ/π , where σ is the total cross

section. Tables of the experimentally available information,
such as hadron cross sections, resonance widths, and decay
modes, are implemented in the models. If this information
is lacking, the one-boson exchange model, detailed balance
considerations and isospin symmetry conditions are employed.
The propagation of particles is governed by Hamilton equation
of motion, and both models use the concept of hadronic
cascade for the description of hA and A + A interactions.
Note that such a rescattering procedure is very important in
the case of relativistic heavy-ion collisions and is necessary
for the thermalization of the fireball. Due to the uncertainty
principle newly produced particles can interact further only
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after a certain formation time. However, hadrons containing the
valence quarks can interact immediately with the reduced cross
section σ = σqN . The Pauli principle is taken into account via
the blocking of the final state, if the outgoing phase space is
occupied. The Bose enhancement effects are not implemented
yet.

B. Differences between the microscopic models

The differences between the models for hadronic interac-
tions arise on three stages. The first stage is the formation of
strings. The UrQMD belongs to group of models based on
classical FRITIOF model [17], whereas the QGSM uses the
Gribov Reggeon field theory (RFT) [18,19]. In the FRITIOF
model the longitudinal excitation of strings is employed,
and the string masses arise from momentum transfer. In
the Gribov-Regge models the string masses appear due to
the color exchange mechanism, and strings are stretching
between the constituents belonging to different hadrons.
Longitudinal excitation of strings is also possible in the
QGSM. This mechanism describes the processes of single
and double diffraction. The second stage concerns the string
fragmentation. The Lund JETSET routine [20], used in the
UrQMD, assumes that the string always breaks into a substring
and a particle on a mass shell. In the QGSM the Field-
Feynman algorithm [21] with independent jets is applied.
Therefore, the fragmentation functions that determine the
energy, momentum, and the type of the hadrons produced
during the string decay are different in the models. The third
stage deals with the number and type of the stings produced
in the collision. Due to the different mechanisms of string
excitation and fragmentation, these numbers are also different
for two microscopic models in question. Last but not least,
both models do not use the same tables of hadrons, chosen as
discrete degrees of freedom. Whereas the UrQMD contains
55 baryon and 32 meson states together with their antistates,
the QGSM takes into account octet and decuplet baryons, and
nonets of vector and pseudoscalar mesons, as well as their
antiparticles. Further details can be found in Refs. [13,14].
Recently, the QGSM has been extended by the implementation
of a parton recombination mechanism [16]. Because parton
recombination plays a minor role for nuclear collisions at
intermediate energies, the whole analysis of the relaxation
process is done for the standard QGSM. We see that the
basic underlying principles and designs of the models are quite
far from each other. By using both the UrQMD and QGSM
for studies of the relaxation process in a broad energy range
one can expect that the model-dependent effects, caused by
application of a particular event generator, will be significantly
reduced.

III. STATISTICAL MODEL OF AN IDEAL HADRON GAS

For our analysis of the thermodynamic conditions in the cell
we use a conventional statistical model (SM) of an ideal hadron
gas formulated in pioneering works of Fermi [22] and Landau
[23]. The statistical approach was successfully applied to the
description of particle production in heavy-ion collisions from
AGS to RHIC energies (see Ref. [6] and references therein). In

chemical and thermal equilibrium the distribution functions of
hadron species i at temperature T read (in units of c = kB =
h̄ = 1)

f (p,mi) =
[

exp

(
εi − µi

T

)
± 1

]−1

, (1)

where p,mi, εi =
√

p2 + m2
i , and µi are the full momentum,

mass, energy, and the total chemical potential of the hadron,
respectively. The plus sign is for fermions and the minus sign
for bosons. Because in equilibrium the chemical potentials
associated to nonconserved charges vanish, the total chemical
potential assigned to the i-th hadron is a linear combination
of its baryon chemical potential µB and strangeness chemical
potential µS

µi = BiµB + SiµS, (2)

with Bi and Si being the baryon charge and the strangeness
of the particle, respectively. The isospin chemical potential
(or, alternatively, chemical potential associated with electric
charge) is usually an order of magnitude weaker than µB and
µS. Therefore, the dependence on this potential is disregarded
in Eq. (2). Then, particle number density ni and energy density
εi are simply moments of the distribution function

ni = gi

(2π )3

∫
f (p,mi)d

3p, (3)

εi = gi

(2π )3

∫ √
p2 + m2

i f (p,mi)d
3p, (4)

with gi being the spin-isospin degeneracy factor of hadron i.
The partial hadron pressure given by the statistical model reads

Pi = gi

(2π )3

∫
p2

3
(
p2 + m2

i

)1/2 f (p,mi)d
3p. (5)

The integrals in Eqs. (3)–(5) can be calculated numerically.
Another way is to use a series expansion of Eq. (1) in the
form [23]

f (p,mi) =
∞∑

n=1

(∓1)n+1 exp

(
−n

Ei − µi

T

)
, (6)

which is inserted into Eqs. (3)–(5). After some straightforward
calculations one gets

ni = gim
2
i T

2π2

∞∑
n=1

(∓1)n+1

n
exp

(nµi

T

)
K2

(nmi

T

)
, (7)

εi = gim
2
i T

2

2π2

∞∑
n=1

(∓1)n+1

n2
exp

(nµi

T

)

×
[
3K2

(nmi

T

)
+ nmi

T
K1

(nmi

T

)]
, (8)

Pi = gim
2
i T

2

2π2

∞∑
n=1

(∓1)n+1

n2
exp

(nµi

T

)
K2

(nmi

T

)
, (9)

where K1 and K2 are modified Hankel functions of first and
second order, respectively. The first terms in Eqs. (7)–(9)
correspond to the case of Maxwell-Boltzmann statistics, which
neglects the ±1 term in particle distribution function (1).
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The entropy density in the cell is represented by a sum
over all particles of the product f (p,mi)[1 − ln f (p,mi)]
integrated over all possible momentum states

s = −
∑

i

gi

2π2

∫ ∞

0
f (p,mi) [ln f (p,mi) − 1] p2dp. (10)

According to the presented formalism, the hadron compo-
sition and energy spectra in equilibrium are determined by
just three parameters, namely the temperature, the baryon
chemical potential, and the strangeness chemical potential.
To define values of T ,µB, and µS one has to obtain the total
energy density ε, baryon density ρB, and strangeness density ρS

for a given volume from microscopic model calculations and
insert them as input parameters into the system of nonlinear
equations

ρB =
∑

i

Bini(T ,µB, µS), (11)

ρS =
∑

i

Sini(T ,µB, µS), (12)

ε =
∑

i

εi(T ,µB, µS), (13)

where ni(T ,µB, µS) and εi(T ,µB, µS) are given by
Eqs. (3)–(4). Because the particle data tables implemented in
the microscopic models contain different numbers of hadrons,
two versions of the SM with properly adjusted lists of hadron
species are used, i.e., the number of hadronic degrees of
freedom in the macroscopic model should correspond to that in
the microscopic model. To decide whether the equilibrium is
reached the criteria of the equilibrated state for open systems,
discussed in the next section, should be applied.

IV. CRITERIA OF THERMAL AND CHEMICAL
EQUILIBRIUM

Criteria of local equilibrium for open systems were for-
mulated in Ref. [9], and we recall them briefly. Compared
to a nonequilibrium state, the equilibrium is characterized by
the absence of collective effects, like flow of matter or flow of
energy. The fireball produced in heavy-ion collisions is always
expanding, both radially and longitudinally. Therefore, the
centrally placed symmetric cell is chosen to diminish effects
caused by nonzero collective velocity of any asymmetric or
asymmetrically located cell. The cell should be neither too
small to allow for the statistical treatment nor too large,
otherwise the homogeneous distribution of matter may not be
reached. Previous studies [8–11,15] found that the cubic cell
of volume V = 125 fm3 centered around the center-of-mass
(c.m.) of colliding gold-gold or lead-lead nuclei is well suited
for such an analysis. Clearly, the relaxation to local equilibrium
cannot occur earlier than at a certain time needed for the
Lorentz contracted nuclei to pass through each other and leave
the cell

teq �
2R

γβ
+ 	z

2β
. (14)

Here R is the nuclear radius, 	z is the cell length in
longitudinal direction, β is the velocity of nuclei in the center-
of-mass frame, and γ = (1 − β2)−1/2. Quite unexpectedly,
the reduction of the longitudinal size of the cell from 5
to 1 fm does not automatically imply a faster equilibration
in the smaller cell: the transition times are practically the
same [10]. This means that the transition to equilibrium takes
place simultaneously within a relatively large volume along
the beam axis.

Isotropy of the pressure gradients is a necessary condition
for kinetic equilibration. Diagonal elements of the pressure
tensor P{x,y,z} are calculated from the virial theorem [24]

P{x,y,z} = 1

3V

∑
i=h

p2
i{x,y,z}(

m2
i + p2

i

)1/2 , (15)

where V,mi , and pi are the volume of the cell, the
mass, and the momentum of the ith hadron, respectively.
Figure 2 depicts the convergence of the transverse pressure in
the cell to the longitudinal one in the UrQMD and the QGSM
calculations. Both models claim that the pressure becomes
isotropic at t � 10 fm/c after beginning of the collision. The
time of convergence decreases with rising bombarding energy.
The pressure calculated according to the statistical model is
plotted onto the results of microscopic simulations also. The
agreement between microscopic and macroscopic calculations
is good for a period of about t = 8 − 10 fm/c. Then the matter
in the cell becomes quite dilute, and the collision rate is not
sufficiently high to maintain equilibrium anymore. However,
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FIG. 2. (Color online) The longitudinal (3Pz, dashed curves) and
the transverse (3Px , dash-dotted curves) diagonal components of the
microscopic pressure tensor in the central 125 fm3 cell in (a) UrQMD
and (b) QGSM calculations of central Au + Au collisions at energies
from 11.6A GeV to 158A GeV. Asterisks indicate the pressure given
by the statistical model and solid lines show the total microscopic
pressure.
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the isotropy of pressure can be obtained, for instance, in a
spherically expanding system of noninteracting particles. To
exclude such a situation from the analysis one has to impose
two additional criteria concerning thermal and chemical
equilibrium.

For a closed system in equilibrium the distribution functions
of particles are given by Eq. (1) with a unique temperature,
so the hadron composition and energy spectra are fixed. In
open systems neither the energy density nor the number of
particles is conserved. Therefore, the snapshots of hadron
abundances and energy spectra obtained at a certain time t

should be compared with those corresponding to an ideal
gas in equilibrium. The technical procedure is simple. At
the very beginning, the pressure gradients in transverse and
longitudinal directions are considered. If the pressure isotropy
is restored, say, within a 10% limit of accuracy, the densities
of conserved quantities, i.e., energy, baryon charge, and
strangeness, determined microscopically, (i) should be used
as an input to Eqs. (11)–(13). The solution of this system
of equations (ii) provides us with values of the temperature,
baryon chemical potential, and strangeness chemical potential
that fully determine the composition and spectra of particles.
By (iii) a comparison of microscopic and macroscopic yields
of the most abundant hadronic species one can decide whether
the chemical equilibrium occurs, whereas (iv) the energy
spectra of these hadrons should possess a common slope
corresponding to 1/T (thermal equilibrium). The similarity of
the particle distributions means that our system is in the vicinity
of equilibrium. At each subsequent time step the procedure
described by (i)–(iv) is repeated.

V. RELAXATION TO EQUILIBRIUM RESULTS,
AND DISCUSSION

A. Yields and energy spectra

The yields of main hadron species, i.e., N,	,
 +
�,π,K and K in the central cell are shown in Fig. 3 for central
Au + Au collisions at Elab = 40A GeV. For all particles,
except pions, the agreement between the microscopic and
macroscopic estimates at t � 9 fm/c is good. Compared to the
microscopic models, the number of pions is underestimated in
the SM. The pion excess comes from the many-body decaying
resonances, such as N∗,	∗,
∗, ω, etc., and strings. After
t = 10–13 fm/c the many-body processes are almost ceased,
and the pion multiplicity slowly converges to the equilibrium
value. It looks like all species of the hadronic cocktail, except
pions, are not far from the chemical equilibrium. It is well
known that the pure statistical model of an ideal hadron gas,
which does not include effective chemical potential for pions
or weak decays, systematically underestimates the pion yields
compared to experimental data. Nevertheless, the excess of
pions in the model with short table of resonances, QGSM, is
quite significant. This circumstance should affect the thermal
spectra of all hadrons, provided the thermalization is reached.

To verify how good the temperature is reproduced, the
energy spectra dN/4πpEdE are displayed in Fig. 4. The
Boltzmann fit to particle distributions is performed, and
the SM calculations are plotted onto the microscopic results

also. Both in UrQMD and in QGSM the energy spectra
agree well with the exponential form of the Boltzmann
distributions. Despite the good quality of the fit, the abundance
of pions in particle spectrum leads to significant reduction
of the effective temperature of the system within the QGSM
calculations. Analytical estimates of the temperature drop (see
Appendix A) are close to the temperatures extracted from
the fit. It would be possible to diminish the pion yield by
taking into account larger part of the resonance states, but
our intention is to check the principal occurrence of the
(quasi-)equilibrium states in different microscopic models
and to define the limits imposed on the effective equation
of state. Note also that significant part of the pion spectrum
seems to be softer compared to other hadronic species. These
pions are coming mainly from the decays of resonances and
experience too few elastic collisions that are necessary for their
thermalization. Because the hadronic matter in the central cell
reaches the state of thermal equilibrium, one can apply the
mathematical apparatus formulated in Sec. III and, finally,
obtain the anticipated EOS.

B. Evolution of the cell characteristics

According to the information provided by Figs. 2–4, the ap-
propriate time to start the study of thermodynamic conditions
in the cell is t = 11 fm/c for the reactions at Elab = 20A GeV
and t = 9 fm/c for Elab = 40A GeV. The input parameters
obtained in the microscopic model analysis are listed in
Tables I and II together with the output thermodynamic char-
acteristics given by the SM. Because of the different number of
hadronic states employed by QGSM and UrQMD, the tables
of available hadronic degrees of freedom in the statistical
model are adjusted properly. The only objects not taken into
account in the SM are strings. The detailed analysis done in
Refs. [25,26] shows that string processes are quite rare at such
late times in the central part of the reaction. Less than 5% of
the total amount of hadronic collisions result in formation of
strings. The strings produced at late time stages are quite light
and usually just one extra particle, most commonly a pion, is
produced after the string fragmentation. This circumstance,
however, may account for the pion overproduction (see
Fig. 3), because the inverse reactions such as 3(or more)→
2 are not incorporated in the employed versions of both
microscopic models.

For both energies the baryon density in the cell at the
beginning of the equilibrium phase is about 30% larger than
the normal baryon density ρ0 = 0.16 fm−3 in the UrQMD
calculations. Whereas QGSM allows for the production of hot
equilibrated matter with a density of ρB = 1.8ρ0, much higher
nuclear densities obtained in microscopic simulations have
been reported [27]. One has to bear in mind two important
things concerning such density estimates. First, they are very
sensitive to the volume of the test system, especially at
the initial stage of the collision. As seen in Fig. 5(a) and
Fig. 6(a), the baryon density in both models cannot exceed
5ρ0 in the central cubic cell with volume V = 5 × 5 × 5 fm3

regardless of the bombarding energy, whereas for the smaller
cell with volume Vsmall = 0.5 × 0.5 × 0.5 fm3 the baryon
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TABLE I. The time evolution of the thermodynamic characteristics of hadronic matter in the central cell of volume V =
125 fm3 in central Au + Au collisions at bombarding energy 20A GeV. The temperature, T , baryochemical potential, µB,
strange chemical potential, µS, pressure, P , entropy density, s, and entropy density per baryon, s/ρB, are extracted from
the statistical model of ideal hadron gas using the microscopically evaluated energy density, εcell, baryonic density, ρcell

B , and
strangeness density, ρcell

S , as input. Of each pair of numbers, the upper one corresponds to the UrQMD calculations and the
lower one to the QGSM calculations.

Time εcell ρcell
B ρcell

S T µB µS P s s/ρcell
B

(fm/c) (MeV/fm3) (fm−3) (fm−3) (MeV) (MeV) (MeV) (MeV/fm3) (fm−3)

11 464.2 0.210 −0.0143 144.5 450.5 92.7 59.6 2.97 14.16
522.6 0.257 −0.0059 150.2 487.8 116.1 73.8 3.13 12.19

12 343.2 0.160 −0.0115 137.9 459.2 86.4 44.0 2.27 14.18
385.7 0.197 −0.0051 141.9 498.1 109.4 53.1 2.40 12.16

13 255.2 0.124 −0.0093 131.5 469.5 80.4 32.6 1.75 14.15
286.9 0.153 −0.0046 134.0 509.5 103.1 38.5 1.85 12.09

14 189.9 0.096 −0.0072 124.9 481.7 75.8 24.1 1.34 14.06
214.2 0.117 −0.0035 127.2 515.9 97.1 28.2 1.43 12.22

15 143.9 0.075 −0.0064 119.2 492.8 68.6 18.1 1.05 13.97
162.3 0.091 −0.0028 121.0 522.3 91.5 20.1 1.12 12.35

16 108.8 0.059 −0.0052 113.7 502.5 62.7 13.6 0.82 13.97
125.4 0.072 −0.0025 115.4 529.2 85.4 15.9 0.89 12.43

17 83.6 0.046 −0.0043 108.7 511.0 57.0 10.4 0.65 14.02
98.3 0.058 −0.0022 110.4 535.9 80.1 12.3 0.72 12.52

18 65.0 0.037 −0.0035 103.5 523.7 52.4 8.0 0.52 13.88
78.1 0.047 −0.0019 105.9 541.3 75.4 9.6 0.59 12.66

19 50.9 0.030 −0.0029 98.8 534.5 47.6 6.2 0.41 13.82
62.9 0.039 −0.0016 101.1 552.7 72.2 7.6 0.49 12.52

20 40.6 0.025 −0.0027 94.6 544.2 38.9 4.8 0.34 13.76
51.0 0.033 −0.0014 97.0 560.1 67.4 6.0 0.40 12.54

TABLE II. The same as for Table I but for 40A GeV.

Time εcell ρcell
B ρcell

S T µB µS P s s/ρcell
B

(fm/c) (MeV/fm3) (fm−3) (fm−3) (MeV) (MeV) (MeV) (MeV/fm3) (fm−3)

9 662.3 0.226 −0.0181 160.2 341.6 75.5 91.8 4.23 18.69
732.3 0.290 −0.0050 167.2 401.9 105.3 113.5 4.36 15.01

10 492.2 0.175 −0.0145 153.2 354.2 71.6 68.3 3.25 18.60
524.3 0.219 −0.0041 157.1 417.9 100.4 79.3 3.26 14.85

11 369.4 0.135 −0.0113 146.8 363.7 67.4 51.5 2.53 18.73
384.5 0.170 −0.0045 148.1 434.5 94.7 56.7 2.48 14.61

12 276.2 0.104 −0.0094 140.5 374.7 62.4 38.7 1.96 18.80
282.7 0.130 −0.0033 140.0 447.2 90.0 40.9 1.90 14.60

13 205.7 0.081 −0.0075 134.0 390.1 58.0 28.8 1.51 18.66
211.5 0.101 −0.0030 132.6 460.3 85.0 30.0 1.47 14.53

14 155.6 0.064 −0.0060 128.0 404.0 54.9 21.8 1.18 18.59
158.4 0.077 −0.0023 126.3 465.9 79.4 22.2 1.15 14.85

15 118.9 0.050 −0.0051 122.3 419.0 50.8 16.6 0.93 18.43
120.4 0.060 −0.0018 120.5 471.9 74.4 16.8 0.90 15.16

16 90.5 0.040 −0.0041 117.2 426.6 46.3 12.8 0.74 18.81
93.2 0.047 −0.0013 115.2 479.7 71.2 12.9 0.72 15.38

17 69.9 0.032 −0.0034 112.0 441.0 42.3 9.9 0.59 18.69
73.8 0.038 −0.0012 110.2 489.8 67.2 10.1 0.59 15.39

18 55.0 0.026 −0.0028 107.0 457.3 39.2 7.6 0.47 18.40
59.0 0.031 −0.0006 105.7 499.7 70.0 7.9 0.49 15.48

19 43.3 0.021 −0.0025 102.4 469.8 34.2 6.0 0.39 18.34
47.8 0.026 −0.0006 101.2 512.1 65.7 6.3 0.40 15.31
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FIG. 3. Evolution of yields of hadron
species in the central cell of volume V =
125 fm3 in (a) UrQMD and (b) QGSM cal-
culations (histograms) of central Au + Au
collisions at 40A GeV. Asterisks denote
the results of the statistical model.
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FIG. 4. (Color online) Energy spectra of N (�), 
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(�), K (�), and 	 (©) in the central 125 fm3 cell in (a) UrQMD and
(b) QGSM calculations of central Au + Au collisions at 40A GeV at
t = 13 fm/c and t = 10 fm/c, respectively. Lines show the results of
the fit to Boltzmann distribution.

density can be as high as 20 ρ0 in the calculations within
the same microscopic models, see Fig. 5(b) and Fig. 6(b).
Second, such high values of the ρB should be treated with
great care. The accelerated cold nuclear matter is automatically
“compressed” in the calculations by the γ factor. At the initial
stage of a nuclear collision one deals with two opposite fluxes
of Lorentz-contracted nucleons that just start to interact with
their counterparts. Although the calculated baryon densities
are huge, especially for the small cell, this is a purely kinematic
effect. At AGS energy the colliding nuclei are contracted by
factor γc.m. = 2.6, whereas at top SPS energy the contraction
factor rises to γc.m. ≈ 9.2. The baryon density in the small cell
can be 20 times larger than the normal nuclear density only for
a short period, because the passing time for gold nuclei is less
than 1.5 fm/c. At lower energies the increase of the ρB within
the first 2–4 fm/c, needed for the nuclei to pass through each
other, precedes the quick drop of the net baryon density in the
expansion phase. Dividing the apparent densities by γc.m. we
find that nuclear matter is still 3–4 times denser compared to
the normal one. Up to 80% of collision energy is deposited
in the string sector that dominates the production of new
particles. The system, however, is far from local equilibrium,
and the numbers become completely meaningful only when
the equilibration takes place.
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FIG. 5. (Color online) The total energy density ε versus baryon
density ρB obtained in the central UrQMD cell of volume (a) V =
125 fm3 and (b) V = 0.125 fm3 during the time evolution of central
Au + Au collisions at energies from 11.6A GeV to 158A GeV.
Dashed lines correspond to the nonequilibrium stage of the reaction,
solid lines represent the equilibrium phase.

Another interesting effect is the negative (though small)
net strangeness density in the cell throughout the evolution of
the system depicted in Fig. 7. The result is pretty insensitive
to the size of test volume and can be explained as follows.
Strange particles are always produced in pairs, so the net ρS

is zero. At energies about 40A GeV and below kaons emerge
predominantly with 
s and antikaons. Because of the s̄ quark
in its composition, kaons have significantly smaller interaction
cross section with baryons at p � 2 GeV/c compared to
antikaons, which carry the s quark. Therefore, K leave the
central cell with positive net baryon charge easier than 
 or
K , thus resulting in negative net strangeness. At RHIC energies
the B-B asymmetry in the cell is much less pronounced, and
the net ρS is very close to zero [7,11].

Here we distinctly see the role of hadronic degrees of
freedom. Despite the net baryon density is about 15% larger
in the QGSM calculations than in the UrQMD ones, the
absolute value of the net strangeness density is almost 30%
higher in the UrQMD cell as compared to that in the QGSM.
Extra-strangeness is deposited in the resonance sector, mainly
in 
∗ and K∗. Although the net ρS in the cell shown in
Fig. 7 quickly drops almost to zero after t = 6 fm/c, its
relaxation proceeds slower than that of the net baryon density.
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FIG. 6. (Color online) The same as described in the caption to
Fig. 5 but for QGSM calculations.

Figure 8 displays the instant rise of the ratio fs = −ρS/ρB

with time t attributed to both microscopic models. Despite the
smallness, the nonzero ρS is quite important. The difference in
particle spectra and, especially, in particle ratios can be about
15% [9] if one performs the SM calculations with essentially
zero net strangeness.

C. EOS in the cell

Isentropic expansion of relativistic fluid is one of the
main postulates of Landau hydrodynamic theory [23] of
multiparticle production. We cannot prove or disprove this
assumption in microscopic simulations for the whole system,
simply because a global equilibrium is not attained. Though
conditions in the cell are instantly changing, it is possible
to check the behavior of the entropy per baryon. Within
the 5% accuracy limit, this ratio is nearly conserved in the
equilibrium phase of the expansion; see Fig. 9. The entropy
densities obtained for the cell in both models are very close
to each other, but, because of the difference in net-baryon
sector, the ratio s/ρB in UrQMD is about 15–20% larger
than that in QGSM. Together with the pressure isotropy, the
conservation of entropy per baryon supports the application of
hydrodynamics.

Any hydrodynamic model relies on the equation of state,
which links the pressure of the system to its energy density.
Otherwise, the system of hydrodynamic equations is incom-
plete. The corresponding plot with microscopic pressures
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FIG. 7. (Color online) Time evolution of net strangeness density
in the central 125 fm3 cell in (a) UrQMD and (b) QGSM calculations
of central Au + Au collisions at energies from 11.6A GeV to
158A GeV. Lines are drawn to guide the eye.

Pmic(ε) is presented in Fig. 10, whereas the macroscopic
pressures obtained from the SM fit are shown in Fig. 11. In
the last plot the dependence of pressure on energy density is
remarkably linear for both models for all energies in question.
Thus the EOS has a rather simple form

P (ε) = c2
s ε, (16)

where the sonic velocity in the medium cs = (dP/dε)1/2

is fully determined by the slopes of the distributions P (ε).
However, if the pressure is determined microscopically and
not via the distribution function, the falloff of pressure with
decreasing energy density proceeds slightly nonlinearly. This
feature can be seen distinctly for top SPS energy in the QGSM
calculations. Therefore, for both models we averaged the
slopes of the P versus ε distributions over the whole period
of the equilibrated phase (see Fig. 10). It should be noted that
due to the averaging over time, respectively, energy density,
the values do not represent the maximal values for c2

s that
are reached in the corresponding reactions. They are actually
lower, because also energy densities below the critical energy
density of about 0.8 GeV/fm3 contribute to the average.

The extracted values of the c2
s are presented in Fig. 12.

For the UrQMD calculations the velocity of sound in-
creases from 0.13 at Elab = 11.6A GeV to 0.146 at Elab =
158A GeV and saturates at c2

s = 0.15 for RHIC energies,
√

s =
130A GeV and

√
s = 200A GeV [11]. In QGSM calculations

the averaged sound velocity is about 0.015 units smaller due
to the pion excess. For instance, it reaches c2

s = 0.127 at
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FIG. 8. (Color online) The same as described in the caption to
Fig. 7 but for strangeness per baryon, fs = −ρS/ρB. Lines are drawn
to guide the eye.

Elab = 40A GeV. Both models indicate that at the energy
around Elab = 40A GeV the slope of the c2

s (
√

s) distribution
is changing, and the velocity of sound becomes less sensitive
to rising bombarding energy.

Figure 13 shows the dependence of the c2
s on the baryon

chemical potential µB. For three bombarding energies, Elab =
20A GeV, 30A GeV, and 40A GeV, the functions c2

s (µB) are
close to each other. In QGSM calculations c2

s depends linearly
on µB and the slope c2

s /µB is unique for all reactions. In
UrQMD the picture is more complex. For the late stages
of system evolution the slopes of all distributions are also
similar, but for energies of Elab � 40A GeV one sees the rise
of the sound velocity at the beginning of the equilibration,
plateau, and the falloff. This can be taken as indication of the
role of heavy resonances, because their fraction is presented
in the particle spectrum at the early period and disappeared
completely at the end. These resonances are rare at Elab �
20A GeV, and distributions c2

s (µB) obtained in both models
are quite similar.

Let us discuss the obtained values of the c2
s . For the ul-

trarelativistic gas of light particles the well-known theoretical
result is cs = 1/

√
3 of the speed of light [28]. As shown in

Ref. [29], the presence of resonances in particle spectrum
generates the decrease of the sonic speed. Employing the
empirical dependence [30]

ρ(m) ∝ mα′
(2 � α′ � 3), (17)

where ρ(m)dm denotes the number of resonances with masses
from m to m + dm, one arrives to the equation of state in the
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FIG. 9. (Color online) Time evolution of entropy per baryon S/ρB

in the central 125 fm3 cell in (a) UrQMD and (b) QGSM calculations
of central Au + Au collisions at energies from 11.6A GeV to
158A GeV. Dashed lines correspond to the nonequilibrium stage
of the reaction; solid lines represent the equilibrium phase.

form [29]

ε = (α′ + 4)P, (18)

i.e., 1
7 � c2

s � 1
6 . This trend is reproduced in microscopic

models.
Another important aspect of the EOS is its variation with

temperature. Temperature dependence of the sound velocity
of hadron resonance gas was obtained within the Hagedorn
model in Ref. [31,32]. For the comparison with microscopic
results on c2

s (T ) depicted in Fig. 14 we opt for the EOS
calculated in Ref. [32] under the following assumptions: The
mass spectra of baryon and meson resonances are continuous
up to masses Mmax

mes = 2.3 GeV/c2 and Mmax
bar = 1.8 GeV/c2,

respectively. The characteristic Hagedorn limiting temperature
is Tmes = 311 MeV for mesons and Tbar = 186 MeV for
baryons. Both baryon and strangeness chemical potential is
assumed to be zero. Because the UrQMD also includes the
rich (but discontinuous) spectrum of resonances with masses
up to 2.25 GeV/c2, one may expect the similarity between
the microscopic and macroscopic distributions. Indeed, for
the reactions with Elab = 80A GeV and 160A GeV the
microscopic data exhibit a falloff in c2

s (T ) at T � 120 MeV
[see Fig. 14(a)] in accord with the Hagedorn model. This
decrease is assigned to heavy resonances, because neither
the UrQMD calculations at lower energies nor the QGSM
calculations without the heavy resonances reveal the negative
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FIG. 10. (Color online) Time evolution of the microscopic pres-
sure P and the energy density ε in the central 125 fm3 cell in
(a) UrQMD and (b) QGSM calculations of central Au + Au collisions
at energies from 11.6A GeV to 158A GeV. Dashed lines correspond
to the nonequilibrium stage of the reaction; solid lines represent the
equilibrium phase.

slope in the equation of state c2
s (T ). Below T = 100 MeV both

microscopic models indicate rapid drop of the sound velocity
that arises much earlier compared to that of the Hagedorn
model of resonance gas with µ = 0.

Because neither energy density nor pressure can be directly
measured in the central area of heavy-ion collisions, the
experimental evaluation of the cs is more difficult. One may
rely on the hydrodynamic calculations, which claim that the
magnitude of the so-called elliptic flow v2 depends on the
speed of sound cs [33]. Using the estimates, obtained for
fixed impact parameter b = 8 fm under assumption of constant
cs throughout the system expansion, PHENIX collaboration
reported the value cs ≈ 0.35 ± 0.05 [34], i.e., c2

s ≈ 0.12 ±
0.3, for gold-gold collisions at top RHIC energy

√
s =

200A GeV. This value is close to our results and also implies
rather soft effective EOS.

Lattice calculations [35] predict an asymptotic value of
c2
s ∼ 0.3 slightly below the Stefan-Boltzmann limit that indi-

cates the appearance of a strongly coupled partonic medium.
Recombination processes decrease the mean free path of the
particles, thus lowering the viscosity of the medium. By
including such processes the sonic speed can be increased
above the critical energy density thus coming closer to the
lattice predictions [16].
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FIG. 11. (Color online) The same as described in the caption to
Fig. 10 but for macroscopic pressure P extracted from the SM fit to
microscopic data.

The velocity of sound defines the change of entropy and
energy densities with decreasing temperature, provided the
local equilibrium is maintained during the expansion. The
analytic expressions, which can be derived, e.g., for gas of
nonstrange mesons with zero chemical potential, read (see
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10 10
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2

FIG. 12. (Color online) The ratio P/ε = c2
s , where P is defined

microscopically, in the central cell of volume V = 125 fm3 as a
function of center-of-mass energy

√
s in UrQMD (solid symbols)

and in QGSM (open symbols) calculations. Lines are drawn to guide
the eye.
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FIG. 13. (Color online) The sound velocity c2
s in the central cell

of volume V = 125 fm3 as a function of baryon chemical potential
µB in (a) UrQMD and (b) QGSM calculations of central Au + Au
collisions at energies from 11.6A GeV to 158A GeV. Open symbols
correspond to the nonequilibrium stage of the reaction, full symbols
represent the equilibrium phase.

Appendix B)

ε = ε0

(
T

T0

) 1+a
a

, (19)

s = s0

(
T

T0

) 1
a

, (20)

where a ≡ c2
s . The ratios ε/ε0 and s/s0 as functions of T/T0

obtained from model calculations at Elab = 20A GeV and
40A GeV are plotted in Fig. 15 together with results for
µ = 0 given by Eqs. (19)–(20). Although the hadron gas in
the cell represents a cocktail of species with different chemical
potentials, that can be zero, positive, or negative in case of
antiparticles, the curves calculated by the UrQMD and QGSM
are not far from the ideal ones. Moreover, there is just a
very weak difference between the UrQMD and QGSM curves
for both energies. If one formally fits these distributions to
Eqs. (19)–(20) using the velocity of sound as fitting parameter,
one gets a = 0.2 exactly. It would be nice to check whether the
deceleration of energy(entropy) density falloff with dropping
temperature could be charged solely to the presence of hadrons
with nonzero chemical potential. One way to do this is to
perform a similar analysis of the cell conditions at RHIC
(or higher) energies. Here strange hadrons, baryons, and their
resonances are still present [11], but both chemical potentials,
µB and µS, are quite small. Therefore, one may expect that
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FIG. 14. (Color online) The same as described in the caption to
Fig. 13 but for temperature dependence of the sound velocity. Dashed
line in the upper plot corresponds to calculations within Hagedorn
model of ideal hadron gas (see text for details).

the microscopic results would be closer to those presented by
Eqs. (19)–(20). Additional reason for “perfectness” of both
distributions ε(T ) and s(T ) would be the linear dependence
of temperature T on chemical potential µ. As shown in
Appendix B, the evolution of ε(T ) and s(T ) proceeds in this
case independently on µ.

Note also that pressure in the cell changes with energy den-
sity quite smoothly, and no peculiarities that can be attributed
to first-order phase transition are seen in the early stage of the
reaction. Here we simply extend the formalism of extraction of
the thermodynamic parameters to the nonequilibrium phase,
where one cannot trust the obtained values anymore. This was
done merely to find any traces of the transition related to the
onset of equilibrium and to changes of the effective EOS in the
models. However, the analysis is performed for the fixed cubic
cell of relatively large volume V = 125 fm3, where the matter
is distributed nonhomogeneously at early times. To get rid of
the evident ambiguities, the scheme is properly modified.

D. Early stage of the evolution

The central cell is further subdivided into the smaller ones,
embedded one into another. The size of the initial test volume
is just Vinit = 0.125 fm3, and the energy density ε of the cells
becomes the main parameter now. If the ε of the inner cell is
not the same (within the 5% limit of accuracy) as the energy
density of the outer one, the SM analysis of the thermodynamic
conditions is performed for the inner cell. If the energy density
is uniformly distributed within the outer cell, the latter becomes
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FIG. 15. (Color online) (a) Ratio of energy densities ε/ε0 versus
T/T0 in the central V = 125 fm3 cell. Dashed line and solid line
represent UrQMD calculations of central Au + Au collisions at
20A GeV and 40A GeV, respectively, whereas dotted line and
dash-dotted line show the QGSM results for these reactions. Asterisks
depict the analytic calculations given by Eqs. (19)–(20) with µ = 0
and a = c2

s = 0.14. (b) The same as for (a) but for the ratio of entropy
densities s/s0.

a new test volume and so on. In the latter case it appears (see
Fig. 9) that the onset of the isentropic expansion regime in the
central area occurs significantly earlier than the formation of
equilibrated matter. Moreover, at the collision energies below
80A GeV entropy per baryon ratio seems to be quite stable
almost from the beginning of the reaction.

Evolutions of the temperature and baryon chemical poten-
tial both in the central cell of the fixed volume V = 125 fm3

and in the expanding energy area are depicted in Fig. 16. One
sees that the transition to equilibrium proceeds quite smoothly
if the analysis is performed for the fixed cell (Fig. 16, upper
plot). In contrast, in the area with uniformly distributed energy
the transition to the equilibrated phase is characterized by a
kink distinctly seen in each of the phase diagrams in both
microscopic models. Although this effect takes place along
the lines of the constant entropy per baryon, it should not be
automatically linked to the highly anticipated quark-hadron
phase transition. The reason is simple: Extraction of the
thermodynamic parameters, such as T , P,µB, and µS (but
not the entropy density, which is determined microscopically),
by means of the equilibrium statistical model is doubtful
for the nonequilibrium phase. However, the formation of
the kink may not be accidental. It is correlated with the
significant reduction of the number of processes going via the
formation and fragmentation of strings, and, therefore, with
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FIG. 16. (Color online) The evolution of the temperature T and
baryon chemical potential µB in the central cell of central Au + Au
collisions at energies from 11.6A GeV to 158A GeV. Both parameters
are extracted from the fit to the SM. Symbols and dashed lines show
the evolution of these quantities in a cell of instantly increasing
volume (Vinit = 0.125 fm3), whereas dash-dotted (upper plot) and
full (both plots) lines are related to calculations with the fixed volume
V = 125 fm3.

the inelastic (chemical) freeze-out of particles. In both models
the matter, produced in a central area in central heavy-ion
collisions at energies between AGS and SPS, is dominated by
(pseudo-)elastic collisions after t ≈ 6 ÷ 8 fm/c [36–38]. In the
fixed-cell analysis all parameters within the cell are averaged
and the transition is smeared out. The observed phenomenon
can easily mimic the signature of the QCD phase transition in
the T -µB plane, found in lattice QCD calculations [39] also
along the lines of the constant entropy per baryon.

Evolution of strangeness chemical potential µS with T in
the fixed in the fixed volume and non-fixed volume is displayed
in Fig. 17. As in Fig. 16, all systems develop kinks in the
T (µS) distributions precisely at the moment of transition from
nonequilibrium to equilibrium phase. Both baryon density and
strangeness density are decreasing in the test volume, however,
the baryon chemical potential increases with time, whereas the
strangeness one drops. The evolution of the µS and µB with
T proceeds quasilinearly, thus reducing the deviations, caused
by nonzero chemical potentials, of the functions ε(T ) and s(T )
from the ideal gas behavior at µ = 0.

Figures 16 and 17 demonstrate also that thermodynamic
characteristics of the fixed-size cell and the instantly growing
energy-homogeneous area coincide completely during the
equilibrium stage. In accord with earlier observations [10],
neither the mechanical reduction of the test volume in longitu-
dinal direction nor the criterion of uniformly distributed energy
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FIG. 17. (Color online) The same as Fig. 16 but for temperature
T versus strangeness chemical potential µS.

density alone can help us in searching for quick equilibration
in the central zone of relativistic heavy-ion collisions. Criteria
of local thermal and chemical equilibrium described in Sec. IV
are fulfilled after the chemical freeze-out in the test volume,
when the production of new particles in the system is ceased.

VI. CONCLUSIONS

In summary, two different microscopic string models were
used to study the formation and evolution of the locally
equilibrated matter in the central zone of heavy-ion collisions
at energies from 11.6A GeV to 160A GeV. Calculations were
performed both for the cubic central cell of fixed volume V =
125 fm3 and for the instantly expanding area of homogeneous
energy density. Traditional approach based on the fulfillment
of the conditions of kinetic, thermal, and chemical equilibrium
has been applied to decide whether the equilibrium is reached.
Both models favor the formation of the equilibrated matter for
a period of about 10 fm/c. During this period the expansion of
matter in the central cell proceeds isentropically with constant
entropy per baryon. The equation of state can be approximated
by a simple linear dependence P = a(

√
s)ε, where the square

of the speed of sound c2
s = a(

√
s) varies from 0.13 (AGS) to

0.15 (SPS) in the UrQMD calculations and from 0.11 (AGS)
to 0.14 (SPS) in the QGSM ones. In both models the rise
of a(

√
s) with energy is slowed down after Elab = 40A GeV

and saturates at RHIC energies. This change is assigned to the
transition from baryon-dominated to meson-dominated matter.

Heavy resonances become more abundant in the particle
spectra also at Elab � 40A GeV. Their fraction is responsible

for negative slope in c2
s (T ) at T � 100 MeV that is close to

the predictions of Hagedorn model of hadron resonance gas.
At lower temperatures both microscopic models indicate a
rapid drop of the sonic speed with decreasing temperature in
stark contrast with the Hagedorn model calculations with zero
chemical potential.

Study of the expanding area of the isotropically distributed
energy reveals that the relaxation to equilibrium in this
dynamic region proceeds at the same rate as in the case of the
fixed-size cell. However, the entropy per baryon ratio becomes
constant before the state of equilibrium is attained. Here both
microscopic models unambiguously show the presence of a
kink in the T -µB phase diagrams. The higher the collision
energy, the earlier the kink formation. Its origin is linked to
the freeze-out of inelastic reactions in the considered area.
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APPENDIX A: REDUCTION OF TEMPERATURE

Let us consider nonrelativistic ideal hadron gas that contains
nonequilibrium number of pions, whereas the other hadron
species correspond to their equilibrium values. In thermal
equilibrium the total energy of the gas is a sum of the masses
of all particles (potential term) and the energies of their
thermal motion (kinetic term). Compared to the case of fully
equilibrized hadron gas, the temperature of the system with
overpopulated amount of pions should reduce so that the total
energies of both systems remain the same.

One can write

E(1) = E(2), (A1)

E(1) =
∑

i

m
(1)
i N

(1)
i + 3

2
T (1)

∑
i

N
(1)
i , (A2)

E(2) =
∑

i

m
(2)
i N

(2)
i + 3

2
T (2)

∑
i

N
(2)
i , (A3)

N (1)
π = αN (2)

π , (A4)

N
(1)
i �=π = N

(2)
i �=π , (A5)

where the superscripts (1) and (2) are related to partially
nonbalanced (with respect to pions) and fully equilibrized
system, respectively. Parameter α > 1 measures the excess
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of pions in system (1). From Eqs. (A1)–(A5) we have

mπN (2)
π = 3

2

[
(T (2) − T (1)

∑
i

N
(2)
i − (α − 1)T (1)N (2)

π

]
.

(A6)

Introducing the reduced variables

β =
∑

i

N
(2)
i

/
N (2)

π , (β > 1) (A7)

γ = T (1)/T (2), (0 < γ < 1) (A8)

δ = 2

3

mπ

T (2)
, (A9)

we get finally

β(1 − γ ) = (α − 1)(γ + δ). (A10)

Now knowing the pion abundance in particle spectrum β−1

at chemical equilibrium and pion excess α one can estimate
the drop of temperature γ in the system due to redistribution
of kinetic energy among the extra degrees of freedom.

APPENDIX B: EVOLUTION OF ε AND s WITH T

Gibbs free energy G is linked to energy E and entropy S

of the system with pressure P , volume V , and temperature T

via the equality

G = E + PV − T S. (B1)

However, G = µN , where µ is the chemical potential and N

is the number of particles. If the chemical potential is absent,
Eq. (B1) is reduced to the following expression for the energy
and entropy densities, ε = E/V and s = S/V , respectively:

ε + P = T s. (B2)

Utilizing the condition µ = 0, one can derive from basic
thermodynamic equalities [28]

dε = T ds, (B3)

dP = sdT . (B4)

Inserting the equation of state dP = adε, a ≡ c2
s , into these

equations, we get after straightforward calculations

a

1 + a

dε

ε
= dT

T
, (B5)

a
ds

s
= dT

T
, (B6)

and, finally,

ε

ε0
=

(
T

T0

) 1+a
a

, (B7)

s

s0
=

(
T

T0

) 1
a

. (B8)

The obtained results are general for particles with µ = 0 and
do not depend on the expansion, e.g., longitudinal or spherical,
scenario.

Now let us consider nonzero chemical potential. Because
particle density is ρ = N/V , one may cast the equations
analogous to Eqs. (B3) and (B4) in a form

dε = T ds + µdρ, (B9)

dP = sdT + ρdµ. (B10)

The number of particles is not conserved in relativistic
collisions, and this was the reason of Landau initial choice
µ = 0. For the conserved charges, however, the chemical
potentials are generally nonzero. Compared to Eqs. (B3) and
(B4) we are dealing with two extra parameters, and at least one
more equation is needed to express energy density and entropy
density in terms of the temperature and chemical potential. In
Fig. 9 we saw that the expansion of matter in the central cell
proceeds isentropically in the equilibrium phase with respect
to net baryon density, i.e., one may write

s = bρ, ds = bdρ, (B11)

where b = const. From now particle density and chemical
potential mean net baryon density ρ ≡ ρB and baryon chemical
potential µ ≡ µB, respectively. It follows from Eq. (B10) that

dε = T ds + µdρ = (ε + P )
dρ

ρ
(B12)

or
dε

ε + P
= dρ

ρ
= ds

s
, (B13)

whereas with the help of the EOS dP = adε and Eq. (B11)
one gets

dP = ρd(bT + µ) = adε = a(bT + µ)dρ. (B14)

Therefore,

a

a + 1

dε

ε
= d(bT + µ)

bT + µ
, (B15)

that leads to

ε

ε0
=

(
bT + µ

bT0 + µ0

) a+1
a

. (B16)

Similarly,

s

s0
=

(
bT + µ

bT0 + µ0

) 1
a

. (B17)

To simplify these expressions further one has to determine
the temperature dependence on chemical potential. The most
simple case of linear dependence T/µ = c = const has
very important consequence. Namely inserting µ = cT into
Eqs. (B16) and (B17) we obtain

ε

ε0
=

(
bT + cT

bT0 + cT0

) a+1
a

=
(

T

T0

) a+1
a

, (B18)

and

s

s0
=

(
T

T0

) 1
a

. (B19)

The last equations are identical to Eqs. (B7) and (B8). Thus,
the linear dependent chemical potential µ(T ) does not alter the
evolution of ε(T ) and s(T ) compared to the case with µ = 0.
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