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High transverse momentum (pT ) single nonphotonic electrons which have been measured in the RHIC
experiments come dominantly from heavy meson decay. The ratio of their pT spectra in pp and AA collisions
[RAA(pT )] reveals the energy loss of heavy quarks in the environment created by AA collisions. Using a
fixed coupling constant and the Debye mass (mD ≈ gT ) as the infrared regulator, perturbative QCD (pQCD)
calculations are not able to reproduce the data, neither the energy loss nor the azimuthal (v2) distribution.
Employing a running coupling constant and replacing the Debye mass by a more realistic hard thermal loop
(HTL) calculation, we find a substantial increase in the collisional energy loss, which brings the v2(pT ) distribution
as well as RAA(pT ) to values close to the experimental ones without excluding a contribution from radiative energy
loss.
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I. INTRODUCTION

The spectra of mesons and baryons which contain only
light flavors (u, d, s) and which have been produced in
ultrarelativistic heavy ion collisions at the BNL Relativistic
Heavy Ion Collider (RHIC) accelerator show a remarkable de-
gree of thermalization. Hydrodynamic calculations reproduce
quantitatively many of their dynamical properties, and their
multiplicity is well described in statistical model calculations.
Statistical equilibrium, however, means loss of memory, and
therefore hadrons which contain only light flavors are of
limited use in the study of the properties of the matter created
in the early phase of the reaction.

Heavy quarks, on the contrary, do not come to an equilib-
rium with the surrounding matter and may therefore play an
important role in the search for the properties of this matter.
Produced in hard collisions, their initial momentum distribu-
tion can be directly inferred from pp collisions. The deviation
of the measured heavy meson pT distribution in AA collisions
(divided by Nc, the number of binary initial collisions)
from that measured in pp collisions, is usually quantified as
RAA = dσAA/(Nc dp2

T )/(dσpp/dp2
T ).RAA is a direct measure

of the interaction of the heavy quarks with the environment
created in AA collisions. The same is true for the azimuthal
distribution, dσ/dφ ∝ [1 + 2v1 cos(φ) + 2v2 cos(2φ)], where
the v2 parameter is referred to as “elliptic flow” because at
production no azimuthal direction is preferred. The observed
finite v2 value is therefore either due to interactions with light
quarks and gluons or due to coalescence at the end of the
deconfined phase when the heavy quarks are reshuffled into
heavy mesons.

In the RHIC experiments, heavy mesons have not yet
been directly measured. Both the STAR [1] and PHENIX
[2] Collaborations have observed only single nonphotonic
electrons, which have been created in the semileptonic decay
of heavy mesons. Thus experimentally one cannot separate
between charm and bottom hadrons. pQCD calculations in
the fixed order + next to leading logarithm (FONLL) predict
a ratio of σb̄b/σc̄c = 7 × 10−3 with the consequence that

above pT > pT cross ≈ 4 GeV, electrons from bottom mesons
dominate the spectrum [3]. The uncertainty of this value is,
however, considerable. The little known form of the electron
spectrum from heavy meson decay and the little known ratio
of heavy quark mesons to heavy quark baryons [4] add to this
uncertainty.

To understand the single nonphotonic electron spectra,
one has to meet two challenges: one has to understand the
interaction of a heavy quark with the environment produced
in heavy ion collisions, and one has to understand how this
environment changes as a function of time. In the past, several
theoretical approaches [5–14] have been advanced to meet
these challenges. Almost all of them assume that in the heavy
ion reaction a quark-gluon plasma (QGP) is created and that the
time evolution of the heavy quark distribution function f ( �p, t)
in the QGP can be described by a Fokker-Planck approach:

∂f ( �p, t)

∂t
= ∂

∂pi

[
Ai( �p)f ( �p, t) + ∂

∂pj

Bij ( �p)f ( �p, t)

]
. (1)

In this approach, the interaction of a heavy quark with the
QGP is expressed by a drag coefficient [Ai = 〈(p-p′)i〉] and
by a diffusion coefficient [Bij = 1

2 〈(p-p′)i(p-p′)j 〉] calculated
from the microscopic 2 → 2 processes by

〈X〉 = 1

2E

∫
d3k

(2π )32k

∫
d3k′

(2π )32k′

∫
d3p′

(2π )32E′

×ni(k)(2π )4δ(4)(p + k − p′ − k′)
1

di

∑
|Mi |2X. (2)

Here, p(p′) and E = p0(E′ = p′
0) are momentum and energy

of the heavy quark (Q) before (after) the collision, and k(k′) is
that of the colliding light quark (q) or gluon (g) · di is 4 for qQ

and 2 for gQ collisions. n(k) is the thermal distribution of the
light quarks or gluons, which is usually taken as of Boltzmann
type. Mi is the matrix element for the channel i, calculated
using pQCD Born matrix elements. Up to now the calculations
have been limited to elastic collisions (Qq and Qg). The matrix
elements for these channels can be found in Refs. [12,15]. They
contain two parameters that have to be fixed: the coupling
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constant and the infrared (IR) regulator to render the cross
section infrared finite. Up to now, all calculations have used
a fixed coupling constant, albeit different numerical values.
Usually a Debye mass mD has been employed as the IR
regulator; it is assumed to be proportional to the thermal gluon
mass mD = βgT , with β around 1.

The Fokker-Planck approaches differ in the way in which
the surrounding matter is taken into account. The Texas A&M
group [6–8] uses an expanding fireball, whereas the other
groups [5,9,10] use hydrodynamic calculations, with different
equations of state, however.

Despite the different choices for αS and mD and the different
models for the expansion of the QGP, all these approaches
underpredict by far the modification of the heavy quark
distribution due to the QGP. One has to multiply the pQCD
cross sections artificially by a K factor of the order of K ≈ 10
(which depends on the choice of αS and of the IR regulator)
to obtain agreement with experimentally observed values for
RAA(pT ) and v2(pT ) [5,9,10].

One possibility to reduce the value of K has been advanced
by van Hees et al. [6,7] who assumed that heavy D mesons
can be formed in the plasma and decay thereafter isotropically.
However, one has to await more precise lattice results to see
whether such a nonperturbative process is indeed possible.

It is the purpose of this article to improve these models in
three directions. (1) We replace the Fokker-Planck equation by
a Boltzmann equation because the momentum transfer is not
well parametrized by the first and second moment only. (2) We
introduce a physical running coupling constant, fixed by the
analysis of e+e− annihilation and of the τ decay, in the pQCD
matrix elements. (3) We replace the ad hoc parametrization of
the infrared regulator by one that yields the same energy loss
as the HTL energy loss calculations [16,17]. We will show that
with these new ingredients pQCD calculations yield a larger
stopping of heavy quarks in matter and bring the results of the
calculation close to the experimental values of RAA(pT ) and
of v2(pT ).

We do not address here the radiative energy loss whose
importance is highly debated [5,18,19], because detailed
microscopic calculations are not yet at hand. They may easily
count for the factor of 2 that remains for RAA(pT ) between the
data and the calculation which includes collisional energy loss
only. This will be the topic of an upcoming publication.

II. INFRARED REGULATOR

To calculate the drag and diffusion coefficients [Eq. (2)] us-
ing pQCD Born matrix elements [12,15], the gluon propagator
in the t channel has to be IR regulated by a screening mass µ

α

t
→ α

t − µ2
. (3)

Frequently the IR regulator is taken as the thermal gluon mass
[20]

µ2 = m2
D

3
= Nc

9

(
1 + 1

6
nf

)
4παST

2 ≈ (gST )2

3
, (4)

where nf (Nc) are the number of flavors (colors) and mD is
the Debye mass. The infrared regulator, however, is not very
well determined on first principles. Therefore, in the actual

calculations [6–8,12], µ2 was taken in between g2
S T 2 and g2

S T 2

3
with g2

S = 4παS . The IR regulator is one of the main sources
of uncertainty for the determination of the cross section (and
hence for the drag and diffusion coefficients), and it is therefore
useful to improve its determination by physical arguments.

For QED, Braaten and Thoma [21] have shown that in
a medium with finite temperature, the Born approximation
is not appropriate for low momentum transfer |t |. It has to
be replaced by a hard thermal loop (HTL) approach to the
gluon propagator. At high |t | we can use the bare gluon
propagator [left-hand side of Eq. (3)]. This approach we call the
HTL+hard calculation. To calculate differential cross sections
using hard thermal loops is beyond present possibilities, but
Braaten and Thoma have shown that in QED the energy loss
can be calculated analytically in the HTL+hard approach.
Our strategy is now the following: we assume that the gluon
propagator can be written in the form

α

t − κm2
D(T )

, (5)

and we determine the value of κ by requiring that a pQCD
Born calculation with this gluon propagator gives the same
energy loss as the HTL+hard approach.

We first deal with the QED case where the underlying
hypothesis g2T 2 � T 2 is more likely to be satisfied and focus
our attention on the t channel, which is the only one suffering
from IR singularities and therefore decisive for the choice of
κ . For the HTL+hard approach, we follow Refs. [21,22] in
which the collision of a muon with an electron is calculated.
Let us consider the energy loss

−dEµ

dx
= 1

2Ev

∫
d3k

(2π )32k

∫
d3k′

(2π )32k′

∫
d3p′

(2π )32E′

× nF (k)(1 − nF (k′))(2π )4δ(4)(p + k − p′ − k′)
1

d

×
∑

|Mµe→µ′e′ |2ω, (6)

where v is the velocity of the heavy muon, ω = E − E′ is
the energy transfer in the collision, and d = 4 is the overall
spin degeneracy. The total energy loss is the sum of two
contributions:

(i) At small momentum transfer |t | = |(p-p′)2| < |t∗|,
where |t∗| is an intermediate scale chosen between g2 T 2

and T 2, the hard thermal loop regulates the infrared
singularity and we obtain [21,22]

−dEµ

dx

∣∣∣∣v→1

|t |<|t�|
= g4T 2

48π
ln

6|t�|
g2T 2

. (7)

(ii) At large |t |(|t |max > |t | > |t∗|), no infrared regulator is
necessary and we arrive at [21,22]

−dEµ

dx

∣∣∣∣v→1

|t |>|t∗|
≈ g4T 2

48π

[
ln

8ET

|t∗| − γ − 3

4
− ζ ′(2)

ζ (2)

]
.

(8)
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Adding the HTL [Eq. (7)] and the hard [Eq. (8)] parts, the
intermediate scale t∗ disappears, and we arrive at [23]

−dEµ

dx

∣∣∣∣v→1

HTL+hard

≈ g4T 2

48π

[
ln

48ET

g2T 2
− γ − 3

4
− ζ ′(2)

ζ (2)

]
. (9)

We compare now this result with that obtained by introducing
an infrared regulated gluon propagator Eq. (3). In the Born
approximation, we obtain the cross section

dσF

dt
= g4

π (s − M2)2

[
(s − M2)2

(t − µ2)2
+ s

t − µ2
+ 1

2

]
. (10)

We evaluate here the energy loss for the whole t interval t ∈
[tmin, 0] and obtain (for details, see the Appendix)

−dEµ

dx

∣∣∣∣v→1

eff

≈ g4T 2

48π

[
ln

8ET

eµ2
− γ − 3

4
− ζ ′(2)

ζ (2)

]
. (11)

Comparing the pQCD Born [Eq. (11)] with the HTL+hard
result [Eq. (9)], we find that µ2 has to be

µ2 = g2T 2

6e
= 3

2e
m2

γ = m2
D

2e
⇒ κ = 1

2e
≈ 0.2 (12)

in order to obtain the same energy loss in QED.
Because QED and QCD have a very similar HTL-

propagator structure, the above approach remains valid for
QCD as well provided that αS � 1 and that µ2 is replaced by
Eq. (4). In the QCD case, however, there is the complication
that for temperatures achieved at RHIC, we are at best at the
borderline of the range of validity of the HTL approach, m2

D �
T 2. As a consequence, the HTL+hard model—commonly
used by many authors—is in fact not independent of the
intermediate scale t∗. To demonstrate this problem, we start
out as in QED. For small |t | we obtain

−dEQ

dx

∣∣∣∣
|t |<|t∗|

= CF αS

v2

∫ v

−v

x

(1 − x2)2

×
∫ 0

t∗
dt(−t)[ρL + (v2 − x2)ρT ], (13)

with v being the velocity of the heavy quark Q, and the spectral
functions

ρL(t, x) ≡ − 1

π


[
1

−t
1−x2 + �L(x)

]

and

ρL(t, x) ≡ − 1

π


[
1

t + �T (x)

]
. (14)

�L and �T are the self-energies evaluated in the HTL
approximation:

�L(x) = m2
D

(
1 − 1

2
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣ + iπx

2

)
,

�T (x) = m2
D

2

(
x2 + x(1 − x2)

2
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣ + iπx(x2 − 1)

2

)
.

(15)

For large |t | we obtain [see Eq. (6)]

−dEQ

dx

∣∣∣∣
|t |>|t∗|

=
∑

i

1

2Ev

∫
d3k

(2π )32k

∫
d3k′

(2π )32k′

×
∫

d3p′

(2π )32E′ �(|t | − |t∗|)
× ni(k)(1 ∓ ni(k

′))
× (2π )4δ(4)(p + k − p′ − k′)

× 1

di

∑
|Mi |2 ω. (16)

Here the matrix elements include qQ → qQ as well as gQ →
gQ collisions. In contradistinction to the QED case, the sum
of both terms depends explicitly on the intermediate scale t∗
in the region [m2

D, T 2], as seen in Fig. 1.
There we display the two parts of the energy loss

[Eq. (13) blue dotted, and Eq. (16) purple dashed) as well
as the sum of both (purple full). Clearly, the total energy loss
becomes stationary with respect to the intermediate scale |t∗|
only for a value of |t∗| ≈ 0.4 GeV2 � T 2(= 0.0625 GeV2)

T 0.25GeV

p 20GeV c

s 0.2

mD 0.45GeV

B.T.
HTL hard

station.
HTL

semi hard

hard
0

semi
hard

2 0 HTL

T2 mD
2

t GeV2
0.01 0.02 0.05 0.1 0.2 0.5 1

0.1

0.2

0.3

0.4

dE

dx
GeV fm

s 2 T

t mD
2 T

T 0.25GeV

p 20GeV c

s 0.2

mD 0.45GeV

0 0.05 0.10 0.15 0.20 0.25 0.30

0.1

0.2

0.3

0.4

dE

dx
GeV fm

FIG. 1. (Color online) Left: Total energy loss in the HTL+hard approach as well as the different components for a given choice of
parameters as a function of the intermediate scale t∗. The full lines are the sum of the HTL (blue dotted) and hard/semihard parts (dashed
purple for ν2 = 0, dashed-dotted red for ν2 ≈ 0.16m2

D). Right: Total energy loss evaluated with Born cross sections and with the propagator,
Eq. (5), as a function of κ . Only the t-channel contribution has been considered here.

014904-3



P. B. GOSSIAUX AND J. AICHELIN PHYSICAL REVIEW C 78, 014904 (2008)

and hence in a region where the HTL approach is not valid
anymore. Mathematically, this is due to the appearance of
terms ∝ O(m2

D/|t∗|) and ∝ O(|t∗|/T 2) which are not small
nor do they compensate. Physically, we are in a regime where
the interaction is screened over a distance of the same order
as the mean distance between QGP constituents, so that a
large part of the “hard collisions” will be affected by the
medium polarization as well. Our prescription to cure this
problem is to add an IR regulator ν2 to the hard part [as µ2 in
Eq. (3)]. We dubbed this approach therefore “semihard.” The
HTL part remains unchanged. The value of ν2 is chosen in such
a way that for a wide range of temperatures and heavy-quark
momenta, the sum of the HTL and semihard energy loss is
independent of t� for |t�| < T 2, i.e., in the range where the
HTL approximation holds. The red bold line in Fig. 1 shows
this independence of the total energy loss on t� when the hard
part is replaced by the semihard (red dashed dotted) approach
for p = 20 GeV, T = 0.25 GeV, and ν2 ≈ 0.16m2

D . We will
adopt this value of ν2 for the subsequent calculations.

If we compare the t-channel energy loss calculated in the
HTL+semihard approach (shaded area in Fig. 1) with that
obtained within our pQCD Born approach [Eq. (5)] we find a
value of κ around 0.15. This value is close to that obtained in
QED [Eq.(12)]. It is considerably lower than those used up to
now in the pQCD cross section calculation. This is our first
seminal result.

III. RUNNING COUPLING CONSTANT

The constant coupling constant αS is the other quantity that
limits the predictive power of the present calculations. In the
published calculations, αS was taken in between 0.2 [21] and
0.6 [12], leading to a difference of a factor of 9 for the drag
and diffusion coefficients.

As has been observed by Dokshitzer [24], there exists the
possibility to define a running coupling that stays finite in the
infrared by writing observables as a product of a universal
effective time-like coupling and a process-dependent integral.
An alternative approach is to define an effective coupling
constant αeff(Q2) from the analysis of physical observables.
Two different experiments, e+e− annihilation [25] as well as
nonstrange hadronic decays of τ leptons [26], have been used
to determine the infrared behavior of αeff(Q2). The resulting
coupling constants are infrared finite and very similar. These
effective couplings are all-order resummations of perturbation
theory and include all nonperturbative effects. We extend the
parametrization of the time-like sector [24] to the space-like
sector, which leads to

α → αeff(Q
2)

= 4π

β0




L−1
−

for Q2 � 0,
1
2 − π−1atn(L+/π )

(17)

with β0 = 11 − 2
3nf , nf = 3, and L± = ln(±Q2/�2). In the

space-like sector, we replace the propagator

α

t
→ αeff(t)

t − µ2
, (18)

n f =3

n f =2

1 2

0.2

0.4

0.4

0.8

1.0

1.2

eff

Q2 GeV2

FIG. 2. (Color online) Q2 dependence of the running coupling
constant.

where µ2 is an IR regulator which we will specify below. The
coupling constant αeff is displayed in Fig. 2 for two and three
flavors.

It has already been argued in Ref. [27] that a running
coupling constant leads to the disappearance of the logarithmic
E dependence of the energy loss at large energies, that is,

dE

dx
∝ αS(2πT )2T 2 ln

ET

m2
D

−→ dE

dx
∝ αS(µ2)T 2, (19)

with an IR regulator µ2 = [
1
2 , 2

]
m̃2

D , where the Debye mass
m̃D is determined self-consistently according to

m̃2
D(T ) = Nc

3

(
1 + 1

6
nf

)
4π α(−m̃2

D(T )) T 2. (20)

However, this ambiguity of the coefficient leads to a nonneg-
ligible uncertainty in the energy loss.

In this work, we determine the optimal infrared regulator
using the same strategy as for the nonrunning case: we
calibrate the energy loss to the one obtained in a generalized
“HTL+semihard” approach this time with a running coupling
constant. For this purpose, we assume that the (squared) Debye
mass for a fixed coupling constant appearing in the hard
thermal loop terms [Eq. (15)], m2

D(T ) ≡ (1 + nf

6 )g2T 2, can
be replaced by m2

D(T , t) ≡ (1 + nf

6 )4παeff(t)T 2. As illustrated
in Fig. 3 (left, full purple line), here also the total energy loss
depends on the intermediate scale |t�| in the domain of validity
of the HTL approach, if we employ the HTL+hard approach.
Only if we replace the hard by a semihard propagator, that is,

αeff(t)

t
−→ αeff(t)

t − λm2
D(T , t)

, (21)

may we obtain an energy loss that is independent of the
intermediate scale t�. The optimal choice is λ ≈ 0.11 (see
Fig. 3, left, bold red line).

Using this prescription, the energy loss in the t channel
is found to be ≈1.3–1.4 GeV/fm, i.e., ≈6 times larger
than the energy loss found with the same parameters for
the nonrunning coupling constant. For |t�| < T 2, the HTL
contribution becomes negligible, and the energy loss is given
by the semihard part only (which is IR-convergent). Therefore,
the natural IR regulator µ2 for our effective Born pQCD
approach [Eq. (18)] is µ2 = κm2

D(T , t), with κ ≈ λ ≈ 0.11,
i.e., exactly the propagator of the right-hand side of Eq. (21).
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FIG. 3. (Color online) Left: Same quantities as in Fig. 1, but for the case of a running αeff . Right: Total energy loss in the pQCD Born
approximation for two different IR regulators as a function of κ . The shaded area corresponds to the energy loss calculated in the HTL+semihard
approach (left).

However, the same energy loss can be obtained if one uses
the simpler propagator of Eq. (18) taking µ2 = κm̃2

D(T ), that
is,

αeff(t)

t − κm̃2
D(T )

, (22)

with κ ≈ 0.2 and m̃D the Debye mass defined self-consistently
according to Eq. (20). This is shown on the right-hand side
of Fig. 3 and leads to our choice µ2

QCD = 0.2 m̃2
D(T ) for the

propagator defined by Eq. (18). We will show later that with
these values, the drag coefficient and hence the energy loss
differs only slightly between these two models in the (T , p)
range of interest for ultrarelativistic heavy ion collisions. We
note in passing that a similar energy loss has been obtained by
Wick et al. [28] in a simpler model for light quarks.

IV. RESULTS

To evaluate the consequences of our new approach, we
compare the results with those obtained for other choices
of coupling constants and infrared regulators. They are
summarized in Table I. From A → F the parametrizations
become increasingly realistic.

For the results presented below, we include the s and u

channels as well. They do not require any IR regulator, and the

coupling constants have been chosen as α → αeff(s − m2) and
α → αeff(u − m2) because s = m2 and u = m2 correspond to
the maximal “softness” in these channels.

A. Cross sections

The cross sections dσ
dt

for the different parametrizations
of Table I are displayed in Fig. 4, left for quarks and right for
gluons. It is evident that both a running coupling constant and a
lower IR regulator increase the cross section at small t, whereas
the increase at high t is rather moderate but nevertheless visible
in the gQ reactions due to the u channel.

B. Individual collisions and transport coefficients

For many interpretations, it is interesting to see how the
quarks lose their energy when traversing a plasma of a
given temperature. For this purpose, we study the differential
probability Pi(w,p) that a heavy quark with a momentum p in
the rest system of the heat bath loses the energy w by colliding
with a plasma particle of type i:

Pi(w,p) ≡
∫

d3k

(2π )3

ni(k)

2k

∫ t+

t−

dt√
H

∑
|Mi |2. (23)

TABLE I. Coupling constants and IR regulators used in our calculations and their graphic
representations in the figures.

αS µ2 Line form Line color

A 0.3 m2
D Dotted thin Black

B αS(2πT ) m2
D Dashed thin Black

C αS(2πT ) 0.15m2
D Full thin Black

D Running, Eq. (17) m̃2
D Dashed bold Red

E Running, Eq. (17) 0.2m̃2
D Full bold Red

F Running, Eq. (17) 0.11(6π αeff (t) T 2) Dashed dotted bold Purple
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2 T

eff t , 2 mD
2 T

eff t , 2 0.2mD
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FIG. 4. (Color online) Effective cross section dσ/dt for the different models (see Table I).

The condition H � 0, where

H = (4π )4E2
{
[s − (E + k)2]t2 + [(

2Ek − s + m2
c

)2

− 4k2p2 + 2w
[
k
(
s + m2

c

)
−E

(
s − m2

c

)]]
t − w2(s − m2

c

)2}
, (24)

with s = m2
c + 2Ek(1 − cos θ (�k, �p)), determines not only the

limits t± in Eq. (23), it also constrains the integral over �k.
The probability Pi(w,p) for a charm quark (c-quark)

with p = 10 GeV in a plasma with temperature T =
400 MeV is displayed in Fig. 5. On the left (right) side we
see the probability for cq (charm quark-quark collisions) col-
lisions. Negative values of w mean that the heavy quark gains
energy in the collision. Due to the u-channel contribution, cg
collisions are more effective in transferring a large amount of
energy. The large majority of the collisions yield only a small
energy transfer. To show which collisions are most important
for the total energy loss of the c-quark, we display in Fig. 6
(left) (the absolute value of) w Pq(w,p) for cq collisions.
(Cq collisions would exhibit a similar behavior). This quantity
is directly related to the differential energy loss:

dEq

dx dw
= v−1Pq(w,p) w. (25)

Collisions with a small energy transfer become dominant when
a running coupling constant is employed. Figure 6, right, shows∫ w

dw′ dEq

dx dw′

/∫ ∞
dw′ dEq

dx dw′ (26)

and displays that collisions with an energy transfer of w <

1 GeV contribute 70% of the total energy transfer in our new
approach, whereas in the standard model (B) they contribute
only 25%.

To make our calculation comparable with other Fokker-
Planck calculations, we present in Fig. 7 the drag coefficient A

as a function of the heavy-quark momentum p [left for charm
quarks (c-quarks) and right for bottom quarks (b-quarks)]. The
calculations for the two fixed coupling constants αS = 0.3 and
αS(2π T ) do not yield different drag coefficients as long as the
IR regulator is the same. Therefore we do not pursue model A.
If one changes the IR regulator from the standard value, m2

D , to
that reproducing the HTL energy loss (κ = 0.15), one observes
an increase by a factor of 2. A running αS(αeff) with a standard
IR regulator increases the drag coefficient for low momenta
where the small-t exchanges are more important. If the low-t
collisions are enhanced by both a running αS and a small
IR regulator, we see an increase of the drag coefficient by a
factor of ≈5. The drag does not change substantially if the
IR regulator is calculated with a running coupling constant—
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FIG. 5. (Color online) Differential probability P (w) that a c-quark with an initial momentum of p = 10 GeV/c loses the energy w in a
collision with a plasma particle in a plasma at T = 400 MeV, for collisions with quarks (left) and for collisions with gluons (right). For the
different curves, see Table I.
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FIG. 6. (Color online) Differential energy loss w Pq (w) = dEq

dt dw
(left) and its normalized integral (right), both evaluated for a heavy quark

with an initial momentum of p = 10 GeV/c colliding with a quark. For the different curves, see Table I.

model F—as compared with model E, and we therefore discard
model F from further calculations. If αS remains fixed, the drag
coefficient remains moderate for all IR regulators, as it does
for a running αS and the Debye mass as IR regulator. Bottom
quarks show a similar behavior but because of their higher
mass, their drag coefficient is around 30–40% smaller than
that of the c-quarks. For a given plasma-lifetime evolution,
we thus expect a smaller energy loss of b-quarks, but it is far
from being negligible, especially in the most realistic models
E and F.

The drag coefficient depends strongly on the temperature.
In Fig. 8, we display that of a c-quark with a momentum of
10 GeV/c. As expected in our model, a hot plasma is much
more effective for quenching a fast quark than a cold plasma.

C. Nucleus-nucleus collisions

Having discussed single Qq and Qg collisions, we inves-
tigate now the consequences of our approach for heavy quark
observables in ultrarelativistic heavy ion collisions. To study
the time evolution of the heavy quark in a plasma, usually
a Fokker-Planck equation has been used. This approach has
several shortcomings. (a) The drag and diffusion coefficients,

calculated by Eq. (2), do fulfill the Einstein relation only in
leading logarithmic order E/T [5]. This is not sufficient to
ensure the thermalization of the heavy quark [29]. Either one
has to impose the Einstein relation, or the asymptotic heavy
quark distribution is a Tsallis function and not a Boltzmann
distribution. (b) Being a small scattering angle approximation
(or, in other words, containing the leading order term of T/EQ

only), the approach brakes down if the momenta of the qg and
of the Q are of the same order, i.e., in the region where v2

becomes large. (c) Even for large energies EQ, the first and
second moments only [Eq. (2)] are not a good approximation
of the energy loss. It can be seen in Fig. 4 (right) that hard
transfers are not excluded in the gluonic channel because of
the QCD equivalent of the Compton effect.

Therefore, for the calculation presented here, we use
a Boltzmann equation approach as in Ref. [11] in a test
particle version. In coordinate space, the initial distribution
of the heavy quarks is given by a Glauber calculation. For
the momentum space distribution as well as for the relative
contribution of charmed and bottom quarks, we use the pQCD
results of Ref. [3]. In the E866 experiment at Fermi Lab [30],
it has been observed that in pA collisions, J/ψ mesons have a
larger transverse momentum than in pp collisions. This effect,

c quark
T 0.4GeV

p GeV c
5 10 15 20

1

2

3
A GeV fm

b quarks

T 0.4GeV

p GeV c
5 10 15 20

1

2

3
A GeV fm

FIG. 7. (Color online) Drag coefficient A (left for charm quarks, right for bottom quarks) as a function of the heavy quark momentum p.
We display A for temperature T = 400 MeV and for different combinations of coupling constants and IR regulators as defined in Table I. For
the different curves see Table I.
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p 10GeV c

T GeV
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FIG. 8. (Color online) Temperature dependence of the drag
coefficient A for c-quark with momentum p = 10 GeV/c. For
the different curves see Table I. The arrows show how the drag
coefficients change if one replaces mD by the IR regulator determined
by the HTL+semihard approach.

called the Cronin effect, can be parametrized as an increase of
〈p2

T 〉 by δ0 ≈ (0.2 GeV)2 per collision of the incident nucleon
with one of the target nucleons. For most of the calculations, we
then convolute the initial transverse-momentum distribution of
the heavy quark [3] with a Gaussian of rms

√
ncoll(�r⊥) δ0. In

this parametrization, ncoll is taken as the mean number of soft
collisions which the incoming nucleons have suffered prior to
the formation of the QQ̄ pair at transverse position �r⊥. Future
studies of D-meson/B-meson production at RHIC may allow
one to improve this choice.

In our approach, we then follow the trajectories of the
individual heavy quarks in the expanding plasma, described
by the hydrodynamic model of Kolb and Heinz [10,31]. We
parametrize the temperature T (r, t) and the velocity uµ(r, t)
field of this model and use this parametrization in a finite time
step method to calculate the collision rate � [Eq. (2) with
X = 1] for Qg → Qg and Qq → Qq reactions [12,15] and
for the different parametrizations of the cross section. For a
given interval of the (Bjorken) time �τ , we then generate the
number of collisions according to a Poisson distribution of
average ��τ and perform these collisions individually. When
a collision takes place, we determine the final momentum of
the heavy quark by taking randomly a scattering angle with a
distribution given by the cross section at a given temperature.
In this method, no small angle approximations are necessary,
and we arrive by definition at a thermal distribution if we place
the heavy quark in infinite matter at a given temperature.

As the time-point of the hadronization of the plasma is not
well determined, we explore here two options: hadronization
of heavy quarks into D(B) mesons when the expanding system
enters the mixed phase and at the end of the mixed phase.
In the latter option, more collisions are possible, and we
expect therefore a larger quenching of heavy quarks. Also
for the hadronization, we apply two approaches that give
slightly different meson momentum distributions: (1) we apply
exclusively the fragmentation mechanism as in p-p [3] or (2)
we apply the fragmentation mechanism for high momentum
quarks only; whereas at low momentum, heavy mesons are
formed by coalescence. For this purpose, we define the
probability distribution g that a heavy meson of momentum �P
is formed by coalescence of a heavy quark with momentum

�pQ with a light quark as

g( �P , �pQ) = β

∫
d3qn(q, T )f (�q − �pQ)δ( �P − �pQ − �q), (27)

where n(q, T ) is the thermal momentum distribution of the
light quarks at the moment of hadronization and f is the
probability density that the heavy quark with momentum �pQ

forms a heavy meson with a light quark of momentum �q. In the
calculation, we evaluate g in the fluid rest frame and take f as
a boosted Gaussian. β is chosen such that g is normalized to
unity for �pQ = 0. Finally, the heavy meson undergoes a weak
decay and creates the single electrons observed in the detector.

The results for RAA in central Au+Au collisions are com-
pared with the experimental data in Fig. 9. From top to bottom
we show the results for the approaches B–E of Table I. On the
left, we present the results for a hadronization at the beginning
of the mixed phase; on the right, for a hadronization at the end
of the mixed phase. We observe that the additional interactions
in the mixed phase reduce the artificial K factor, shown in the
figure, with which the pQCD cross section has to be multiplied
to describe the data. For some of the curves, we present the
results for two different values of K; in others, we show
the influence of the different approaches for fragmentation.
The label “fragm.” means that heavy mesons are exclusively
created by fragmentation; “coal.+fragm.” means that they are
rather produced by coalescence at low momentum. It is evident
that the different hadronization scenarios have little influence
on the K factor, which is necessary to describe the data. For
a constant coupling constant and the Debye mass as the IR
regulator (model B), one has to employ K factors of the order of
10–12. A smaller IR regulator (model C) or a running coupling
constant (model D) reduces this K factor to values of 5–10,
still much too large to render the calculation understandable.
Only the combination of both (model E) brings the K factor
close to an acceptable value of 1–2, leaving nevertheless still
room for radiative energy loss.

A very similar observation can be made for the minimum
bias calculations, which are compared with the experimental
data in Fig. 10. On the left, we display the results for model
B; on the right, for model E. For a fixed coupling constant and
the Debye mass as the IR regulator we need, as for central
collisions, a K factor of around 12; whereas for model E, the
K factor is reduced to 1.5–2. Thus for central and minimum
bias calculations, the same K factors have to be employed, a
minimal requirement for the validity of this reaction scenario.

The Cronin effect changes the RAA value only for momenta
between 1 and 3 GeV, as can be seen in Fig. 11. It is therefore
without any importance for the understanding of the RAA

values at large pT but brings RAA much closer to the data
in the pT range where the v2 values are large.

We come now to the discussion of v2. To our knowledge,
the present theories based on pQCD have not succeeded to
describe simultaneously the experimental RAA and v2 results.
As shown in Fig. 12, left, for model B neither the Cronin effect
nor an augmentation of the K factor beyond the value needed to
describe RAA increases v2 considerably. What helps is a larger
interaction time, i.e., a late freeze-out. This is shown in Fig. 12,
right, where we compare the v2 values for a hadronization at
the beginning and at the end of the mixed phase. Using a fixed
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FIG. 9. (Color online) Comparison of experimental and theoretical results for central Au+Au collisions. We display RAA of single
nonphotonic e− as a function of the heavy quark momentum pT . The purple line shows RAA for e− from B-meson; the red line that of D-meson
decay for the K values indicated. The blue line is the sum of both. On the left, we assumed hadronization at the beginning of the mixed phase;
on the right, at the end of the mixed phase. From top to bottom, we display the results for the parametrizations B–E (see Table I).

coupling constant, the K factors remain large, however. If one
combines a running αS with a HTL+semihard IR regulator,
one can reproduce v2(pT ) using a K factor slightly larger than
2 and assuming a late freeze-out as can be seen in Fig. 13.

One could imagine that azimuthal correlations of non-
photonic e+-e− pairs created in the decay of the heavy
mesons whose heavy quarks have been created together
may carry information on the energy loss mechanism. Many
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FIG. 10. (Color online) Comparison of experimental and theoretical results for minimum bias Au+Au collisions, using model B (left) and
model E (right). We display RAA of single nonphotonic e− as a function of the heavy quark momentum pT . The red line shows the e− for
D-meson decay, the purple line those for B-meson decay, and the blue thick line the sum of both. Hadronization is assumed to take place at the
end of the mixed phase. The applied K factors are given; the Cronin effect is taken into account.
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FIG. 11. (Color online) Influence of the Cronin effect on the RAA of single nonphotonic e− as a function of the heavy quark momentum
pT . The red line shows the e− from D-meson decay, the purple line those from B-meson decay, and the blue thick line the sum of both. We
assumed hadronization at the end of the mixed phase. We display the results without (left) and with (right) the Cronin effect, both for model E
(see Table I).
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FIG. 12. (Color online) Dependence of the v2 of single nonphotonic e− as a function of the heavy quark momentum pT on the Cronin effect
and on the K factor (left) as well as on the freeze-out density and IR regulator (right). All calculations are done with αS(2πT ).
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FIG. 13. (Color online) v2 of single nonphotonic e− as a function
of the heavy quark momentum pT for different freeze-out ener-
gies using a running coupling constant and a small IR regulator
(model E).

collisions with small momentum transfer may better conserve
the original back-to-back correlations than few collisions with
a large energy transfer. As displayed in Fig. 14, this is not
the case. Models A and E give about the same azimuthal
correlation. This means, on the other hand, that correlations
are a quite robust observable for testing this reaction scenario
and confronting it with other ideas such as the anti-de-Sitter
space/conformal field theory (AdS/CFT) approach [32].

V. CONCLUSION AND OUTLOOK

In conclusion, we have found that it is possible to reduce
the uncertainties inherent in present-day calculations of the
energy loss and v2(pT ) distribution of heavy quarks traversing
a quark gluon plasma by (a) determining the infrared regu-
lator by the requirement that it reproduces the energy loss
calculated in the hard thermal loop + semihard approach and
(b) using an effective infrared-safe physical coupling constant
that describes other data such as gluon radiation in e+e−
annihilation and the nonstrange decay of τ leptons.

Results of calculations in which these new features are
employed come close to the experimental data for RAA(pT )
as well as for v2(pT ). The K factor required to reproduce
the data is between 1.5 and 2. Up to now, a simultaneous
description of RAA and v2 has not been possible even with

large K factors. That the K factor is above unity may be
due to radiative processes which are not included here, but it
may also be due to the lack of a detailed knowledge of the
different physical processes involved. They include the initial
distribution of charm and bottom quarks, their hadronization,
and the role of heavy baryons.

This observation has importance far beyond the physics of
heavy mesons. Because the same running coupling constant
and the same infrared regulator appear also in the cross section
for light quarks, we expect a similar energy loss for light
quarks. Pions show indeed a very similar RAA(pT ) distribution,
but baryons do not. The reason for this is unknown, but if one
follows the idea that they are formed by coalescence, their
formation mechanism may be rather different from that of
heavy mesons. This conjecture is supported by their large v2

values. In addition, the large collective radial flow counteracts
the individual energy loss. To clarify the hadronization mech-
anism of light hadrons, one probably has to wait until jet-like
hadrons and those created by the plasma hadronization can
be separated, either by measuring correlations or by extending
the detection range in momentum space in future CERN Large
Hadron Collider (LHC) experiments.

The observed enhanced cross section may also be of
importance for the understanding of the fast equilibration
observed in the entrance channel of ultrarelativistic heavy ion
collisions where we do not have a heat bath like here but rather
a momentum distribution given by the structure functions.
There, however, the typical momentum is not far from that of
the heat bath particles.
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APPENDIX

A. HTL+hard

As the large transfer t will bring the parton to a final state
k′ for which nF (k′) � 1, we neglect the factor 1 − nF (k′) for
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FIG. 14. (Color online) Azimuthal correlation of e+-e− nonphotonic pairs as a function of the relative angle for model E and for both,
central (left) and minimum bias (right), collisions; Q and Q̄ are assumed to be produced back to back and the nonphotonic e+-e− background
from uncorrelated pairs has been subtracted.

014904-11



P. B. GOSSIAUX AND J. AICHELIN PHYSICAL REVIEW C 78, 014904 (2008)

the final state particle. We start from

−dEµ

dx

∣∣∣∣v→1

|t |>|t∗|
=

∫
d3k

(2π )32k
nF (k)

∫ t∗

tmin

dt(−t)dF

dσ

dt

= d3k

(2π )32k
nF (k)

∫ t∗

tmin

dt(−t)
1

16π (s − M2)2

× 1

d
32g4

[
(s − M2)2

t2
+ s

t
+ 1

2

]
, (A1)

where M is the mass of the muon, and nF is the Fermi-Dirac
distribution for a massless fermion. As

1

(s − M2)2

∫ t∗

tmin

dt(−t)

[
(s − M2)2

t2
+ s

t
+ 1

2

]

≈ ln
|tmin|
|t∗| − 3

4
≈ ln

s

|t∗| − 3

4
(A2)

for s � M2 � |t∗|, we have

−dEµ

dx

∣∣∣∣v→1

|t |>|t∗|
≈ g4

16π4

∫
k

ek/T + 1

(
ln

s

|t∗| − 3

4

)
dk d�,

(A3)

where s = M2 + 2Ek(1 − cos θ ( �p, �k)) and where the integral
is performed in principle over a domain such that |tmin| ≈
s � |t∗|. For E � M � |t∗| 1

2 , one can nevertheless argue on a
physical basis that there is enough “hardness” in almost every
collision in order to fulfill this condition, and the domain in
which this is not the case becomes negligible. We will therefore
integrate over the whole k space as the integral converges.
Introducing u = 1 − cos θ ( �p, �k) ∈ [0, 2], the angular integral
leads to ∫

d� → 2π

∫ 2

0

(
ln

M2 + 2Eku

|t∗| − 3

4

)
du

= 4π

(
ln
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)
. (A4)

Substituting the variable k by x = k/T , we obtain the
expression

−dEµ

dx

∣∣∣∣v→1

|t |>|t∗|
≈ g4T 2

4π3
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x
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[
ln
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4ET x
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M2

) ]
dx. (A5)

Because E is assumed to be � M2/T and because the integral
is dominated by intermediate values of x(x ≈ 1), one can

neglect the last term in the integrand and take M = 0 in the
first term, and one arrives at

−dEµ

dx

∣∣∣∣v→1
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dx
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4
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ζ (2)

]
, (A6)

which is Eq. (7) of Ref. [21].

B. Effective IR regulator

The t integration of Eq. (10) yields

I = 1
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∫ 0

tmin

dt(−t)dF

dσF

dt

= 1

(s − M2)2

∫ |tmin|

0

(
− µ2 ∗ (s − M2)2

(|t | + µ2)2

+ (s − M2)2 + µ2s

|t | + µ2
− s + |t |

2

)
d|t |

=
(

1 + µ2s

(s − M2)2

)
ln

(
1 + (s − M2)2

µ2s

)

− 1 + (s − M2)2

4s2
− |tmin|

|tmin| + µ2︸ ︷︷ ︸
≈1

, (A7)

and we obtain for the energy loss

−dEµ

dx

∣∣∣∣v→1

eff

≈ g4T 2

8π3

∫ +∞

0

∫ 2

0

x

ex + 1
I(s) dk du, (A8)

where s = M2 + 2ET xu. We first notice that ln(1+a)
a

in I [with

a = (s−M2)2

µ2s
] is maximal and bounded at a = 0(s = M2) and

then decreases like µ2/s ∝ µ2/ET for larger values of s. It
then brings a contribution ∝ µ2/ET that is subdominant at
large energies. In this regime, s is � M2 for most of the (u, x)
integration domain, so that the third term of I can be replaced
by its asymptotic 1/4 value, and |tmin| in the logarithm can be
replaced by s. Therefore,

I ≈ ln
s + µ2

µ2
− 3

4
− 1 ≈ ln

s + µ2

eµ2
− 3

4
, (A9)

and one realizes that − dEµ

dx
|v→1
eff is nothing but the hard

contribution in Eq. (A3) with |t∗| → eµ2 and M2 → M2 +
µ2 ≈ M2. We thus can read off the result directly from
Eq. (8):

−dEµ

dx

∣∣∣∣v→1

eff

≈ g4T 2

48π

[
ln

8ET

eµ2
− γ − 3

4
− ζ ′(2)

ζ (2)

]
, (A10)

and obtain Eq. (11).
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