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Dynamical simulation of bound antiproton-nuclear systems and
observable signals of cold nuclear compression
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On the basis of the kinetic equation with self-consistent relativistic mean fields acting on baryons and
antibaryons, we study dynamical response of the nucleus to an antiproton implanted in its interior. By solving
numerically the time-dependent Vlasov equation, we show that the compressed state is formed on a rather short
time scale of about 4–10 fm/c. This justifies the assumption, that the antiproton annihilation may happen in
the compressed nuclear environment. The evolution of the nucleus after antiproton annihilation is described by
the same kinetic equation including collision terms. We show, that nucleon kinetic energy spectra and the total
invariant mass distributions of produced mesons are quite sensitive observables to the antiproton annihilation in
the compressed nucleus.
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I. INTRODUCTION

As has been shown recently in Refs. [1,2], an antiproton
implanted in a heavy nucleus serves as an attractor for
surrounding nucleons that can lead to a sizable increase of
the central nucleon density. This effect is caused by the
strong attractive scalar and vector potentials acting on the
antiproton, as follows from the G-parity transformation of
nuclear potentials [3]. Correspondingly, the antiproton also
creates an attractive potential acting on nucleons. This leads
to the concentration of nucleons around the antiproton and, as
result, to a considerable increase of the nucleon density.

Within the relativistic mean field (RMF) model, the
G-parity transformed nuclear optical potential is about
−700 MeV at the normal nuclear matter density ρ0 =
0.148 fm−3, while a phenomenological value of an an-
tiproton optical potential is limited within the range of
−(100–350) MeV [4–8]. Therefore, in order to fit the empirical
optical potential, the antiproton coupling constants with σ -, ω-,
and ρ-meson fields should be reduced with respect to the values
given by the G-parity transformation. The RMF calculations
with reduced coupling constants [2] still show quite strong
compressional effects for light and medium nuclei.

An important question, which arises here, is whether the
compression process is fast enough to develop before the
p̄-annihilation. The total p̄p-annihilation cross section in
vacuum can be parameterized at low relative velocities vrel

as

σ p̄p
ann = C + D

vrel
, (1)

where C = 38 mb and D = 35 mb · c [9]. Using these numbers
we can estimate the life time of an antiproton inside the nuclear
matter at normal density:

τann � 1

ρ0σ
p̄p
ann vrel

� 2 fm/c. (2)

This is, of course, a very short time in nuclear scale. However,
as argued in Ref. [2], this time can become much longer, up to

20 fm/c, for deeply bound antiprotons due to the phase space
suppression factors. Therefore, the compression effects can,
in-principle, show up in p̄-nuclear interactions.

In the present work, we apply a dynamical transport
model in order to study the formation and decay of the
compressed p̄-nuclear system. Our calculations are based on
the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) model
[10], which has been recently supplemented by the rela-
tivistic mean fields [11]. Apart from collision terms, the
GiBUU model solves the coupled (through the mean fields)
Vlasov equations for nucleon and antiproton phase space
distribution functions. As is well known [12], the Vlasov
equation provides a semiclassical limit of the time-dependent
Hartree-Fock calculations. Thus, the compressional effects
found in Refs. [1,2] should also be reproduced as a static
solution of the coupled Vlasov equations.

It will be demonstrated that the compression process is
characterized by the time scale which is comparable with
the p̄ life time in nuclear environment. Thus, p̄ has, indeed,
a chance to annihilate inside the compressed nucleus. We
will show, that the p̄-annihilation in a compressed nucleus
should lead to the collective expansion of the residual nuclear
system. The appearance of the high-energy tails in the kinetic
energy spectra of the emitted nucleons is predicted. The
distributions in the total invariant mass of produced mesons
reveal a noticeable shift toward lower invariant masses, when
the annihilation takes place inside the compressed nucleus.

The annihilation of slow antiprotons inside heavy nuclei
was, first, proposed by Rafelski [13] as a unique opportunity
to study nuclear matter in unusual conditions. Later, Cahay
et al. [14] studied the p̄ annihilation inside nuclei within
an intranuclear cascade model. In Ref. [14], antiproton
annihilation events into pions at the center of 40Ca and 108Ag
nuclei were simulated. The mean field effects were, however,
completely neglected in [14].

In Sec. II, we describe the theoretical model applied
in calculations. Section III contains the results of the time
evolution study for the compression and explosion dynamics.
In Sec. IV, we propose several observable signals sensitive to
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the p̄-annihilation in the compressed nucleus. The summary
and outlook are given in Sec. V.

II. THE MODEL

In calculations, we apply the GiBUU model developed in
Giessen University. For the detailed description and related
references, we refer the reader to the webpage [10], where
the new version of the model is presented. Below, we mostly
describe the new features implemented in the present work.

A. Relativistic mean fields

Below we consider a system composed of an antinucleon
interacting with baryons. This system is described by the RMF
Lagrangian of the following form [2,15]:

L =
∑

j=B,N̄

ψ̄j [γµ(i∂µ − gωjω
µ) − mj − gσjσ ]ψj

+ 1

2
∂µσ∂µσ − U (σ ) − 1

4
FµνF

µν + 1

2
m2

ωωµωµ, (3)

where ψj are the baryon (j = B ≡ N,N	,
, Y ) and antin-
ucleon (j = N̄ ) fields, respectively; σ is the isoscalar-scalar
meson field (IG = 0+, J π = 0+); ωµ is the isoscalar-vector
meson field (IG = 0−, J π = 1−); and Fµν ≡ ∂µων − ∂νωµ.
Here N	 and 
 denotes, respectively, the isospin 1/2 and
3/2 nonstrange baryonic resonances, and Y stands for the
S = −1 baryons explicitly propagated in the GiBUU model
[10]. In the case of the spin 3/2, 5/2 and 7/2 baryonic
resonances, their fields ψj carry also one or more vector
indices, which are dropped in Eq. (3) and below for brevity.
When appropriate, the covariant summation is assumed over
these indices. For simplicity, the isovector and electromagnetic
terms are disregarded in Eq. (3). The self-interactions of the
σ -field are included in Eq. (3) via the term U (σ ) in order to
avoid an unrealistically high compressibility coefficient of the
nuclear matter [16]:

U (σ ) = 1
2m2

σ σ 2 + 1
3g2σ

3 + 1
4g3σ

4. (4)

Some comments are in order to gain more insight into
Eq. (3). Following Ref. [2], the antinucleon field ψN̄ in
the Lagrangian density (3) is represented in terms of wave
functions of physical antinucleons. These wave functions can
be obtained by the G-parity transformation acting on the wave
functions of the Dirac sea nucleons (see Ref. [3] for details),
which appear in the relativistic description of the nucleon [17].
By applying the same transformation, the nonlinear RMF
Lagrangian of Refs. [15,16] (neglecting terms responsible
for the baryon-antibaryon annihilation) can be expressed as
Eq. (3) with the following relations between coupling
constants:

gωN̄ = −gωN, gσN̄ = gσN . (5)

The relations (5) are satisfied if the physical system would be
exactly symmetric with respect to the G-parity transformation.
However, this is not necessary to be true in a many-body
system [2,3]. The reason is that the concept of the G-parity

symmetry is strictly applicable on the level of the elementary
processes only. However, the RMF Lagrangian (3) is dealing
with the effective interactions, which are usually tuned to
describe the bulk properties of the nuclear medium and/or
the properties of some selected nuclei. Due to the many-body
effects, such as the Pauli blocking or mixed scalar-vector terms
in the scattering amplitudes, these effective interactions may
not obey the exact G-parity symmetry anymore. To take into
account possible deviations from the G-parity symmetry, we
introduce an overall scaling of the antinucleon-meson coupling
constants with respect to the values given by Eq. (5) (see
Ref. [2]):

gωN̄ = −ξgωN, gσN̄ = ξgσN, (6)

where 0 < ξ � 1 is a scaling factor.
Throughout the paper, we consider two options for the

scaling factor of the antinucleon-meson coupling constants:
ξ = 1, motivated by the G-parity, and ξ = 0.3, which is in
a better agreement with the empirical p̄A optical potential.
For other baryonic fields we put in the present work, for
simplicity, the same coupling constants as for the nucleon:
gωN∗ = gω
 = gωY = gωN, gσN∗ = gσ
 = gσY = gσN .

All calculations have been performed emloying the NL3
parametrization [15] of the RMF model. This parametrization
provides quite reasonable nuclear matter properties: the bind-
ing energy 16.299 MeV/nucleon, the compressibility coeffi-
cient K = 271.76 MeV and the nucleon effective mass m∗

N =
0.60mN at ρ0. Moreover, the NL3 parametrization reproduces
the ground state properties of spherical and deformed nuclei
very well [15].

The Dirac equations of motion for baryons have the
following form:

(γ µ(i∂µ − gωjωµ) − m	
j )ψj = 0, (7)

where

m	
j = mj + gσjσ (8)

is the effective (Dirac) mass.
Within the mean field approximation the σ - and ω-fields are

treated classically. They satisfy the (nonlinear) Klein-Gordon–
like equations with the source terms due to coupling to baryons
and an antinucleon:

∂ν∂
νσ + ∂U (σ )

∂σ
= −

∑
j=B,N̄

gσjρSj , (9)

(
∂ν∂

ν + m2
ω

)
ωµ =

∑
j=B,N̄

gωj j
µ

bj , (10)

where ρSj = 〈ψ̄jψj 〉 is the partial scalar density and j
µ

bj =
〈ψ̄j γ

µψj 〉 is the partial baryon current. Equation (10) has to
be supplemented by the four-transversality condition

∂µωµ = 0. (11)

B. Covariant kinetic equations

Instead of solving the Dirac equations (7), we will describe
the baryons and antinucleon dynamics by the coupled set of
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the semiclassical kinetic equations [11,18–21]:

1

p	
0

[
p	µ ∂

∂xµ
+

(
gωjp

	
µF kµ + m	

j

∂m	
j

∂xk

)
∂

∂p	k

]
fj (x, p	)

= Ij [fB, fM ], (12)

where k = 1, 2, 3; µ = 0, 1, 2, 3; x ≡ (t, r); and fj (x, p	) is
the distribution function (DF) in a six-dimensional phase space
(r, p	) with p	 being the spatial components of the kinetic
four-momentum

p	µ = pµ − gωjω
µ. (13)

The baryons and antinucleon are assumed to be on the
respective effective mass shells:

p∗0 =
√

(p	)2 + (m	
j )2. (14)

The left hand side (lhs) of Eq. (12) describes the propagation
of the j th type particles in the classical σ - and ω-fields.
The right hand side (rhs) of Eq. (12) is a collision integral,
which represents the (in)elastic two-body collisions with
corresponding vacuum cross sections as well as the resonance
decays. The complete description of the collision integral
structure, in particular, the differential elementary cross sec-
tions included into the GiBUU model can be found in [10,11]
and in references therein. The in-medium modification of the
baryon-baryon and baryon-meson cross sections is neglected
in the present work.

We will apply the full kinetic equations, including collision
terms, only to describe the post-annihilation evolution of a sys-
tem. By this reason, the antiproton DF is excluded from the col-
lision integral. Instead, we enforce p̄ to annihilate into mesons
at some preselected time (see Sec. II E). Thus, in the present
work the collision integral includes the nucleon, 
(1232) and
higher baryon resonances up to the mass of 2 GeV, which can
be excited in the meson-baryon and baryon-baryon collisions.
A possible hyperon formation in the processes πN → YK

and K̄N → πY is included too. The “valence mesons”
M ≡ π, η, ρ, σ, ω, η′, φ, ηc, J/ψ,K, K̄,K∗, K̄∗ are explic-
itly taken into account. They are assumed to propagate freely
between collisions, i.e., we neglect the mean field potentials
acting on these mesons.

The scalar density and the baryon current of the j th type
baryons are expressed in terms of DF as follows:

ρSj (x) = gj

(2π )3

∫
d3p	

p	0
m	

jfj (x, p	), (15)

j
µ

bj (x) = gj

(2π )3

∫
d3p	

p	0
p	µfj (x, p	), (16)

where gj is the spin-isospin degeneracy factor (gN = gN̄ = 4,
g
 = 16, etc.).

One can show [21,22] that the kinetic equations (12) with
the σ - and ω-fields evolving according to Eqs. (9), (10) lead
to the continuity equations∑

j=B

∂µj
µ

bj = 0, ∂µj
µ

bN̄
= 0 (17)

and the energy-momentum conservation

∂νT
µν = 0, (18)

where the energy-momentum tensor is written as

T µν =
∑

j=B,N̄,M

gj

(2π )3

∫
d3p	

p	0
pµp	νfj (x, p	)

+ ∂µσ∂νσ − ∂µωλ∂νωλ

− gµν

(
1

2
∂λσ∂λσ − U (σ ) − 1

2
∂λωκ∂

λωκ + 1

2
m2

ωω2

)
.

(19)

Here we have also included possible contributions of the
“valence” mesons M , which can be produced at the annihi-
lation. It is assumed that p	 = p for the valence mesons.

C. Numerical realization

In order to solve Eq. (12) numerically, DF is represented
by the set of point-like test particles:

fj (x, p	) = (2π )3

gjn

nNj∑
i=1

δ(r − ri(t))δ(p	 − p	
i (t)), (20)

where Nj is the number of physical particles of the type j

and n is the number of test particles per physical particle (the
same for all types j ). The test particle positions ri and kinetic
momenta p	

i are evolving in time according to the following
equations:

ṙi = p	
i

p	0
i

, (21)

ṗ	k
i = gωj

p	
iµ

p	0
i

F kµ + m	
j

p	0
i

∂m	
j

∂xk

(22)

with k = 1, 2, 3 and µ = 0, 1, 2, 3. It is easy to check that DF
(20) with ri and p	

i satisfying Eqs. (21), (22) gives a formal
solution of the Vlasov equation in the case when the collision
integral in Eq. (12) is equal to zero. Equations (21), (22) are
equivalent to the Hamiltonian equations of motion for the test
particle positions ri and canonical momenta pi :

ṙi = ∂p0
i

∂pi

, (23)

ṗi = −∂p0
i

∂ri

, (24)

where p0
i = gωjω

0 +
√

(p	
i )2 + (m	

j )2 is the single-particle

energy (see [21,23]). However, it is more convenient to
propagate in time the test particle kinetic momenta rather than
the canonical ones, since then Eq. (9) for the σ -field decouples
from Eq. (10) for the ω-field.

When the collision integral in Eq. (12) is taken into
account, the test particles are propagated between the two-body
collisions using Eqs. (21), (22). All calculations have been
performed in the parallel ensemble mode. In this mode, the
two-body collisions are permitted between the test particles
belonging to the same parallel ensemble only, while the mean
field is averaged over n parallel ensembles of the test particles
propagated simultaneously [see Eq. (20)]. Therefore, a single
parallel ensemble can be considered as a physical event.
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In actual calculations, we have neglected the time deriva-
tives of the meson fields in Eqs. (9), (10). However, the spatial
derivatives were treated without any simplifying assumptions.
The reason for such a strategy is that we are dealing with
nuclear systems which have large density gradients, but
evolving slowly, as compared with the spatial and temporal
scales involved in the mesonic equations of motion. Indeed,
including the temporal gradients would lead to the frequent
oscillations of the mesonic fields with a period of less than
2π/m, where m is the meson mass. This gives the period
of 2.5 fm/c (1.5 fm/c) for the σ -(ω-)field. By taking into
account the finite wave lengths of these oscillations would
further reduce the periods. The treatment of such oscillations
would strongly complicate the numerical calculations, in
particular, due to the classical meson field radiation. On
the other hand, the characteristic periods of the oscillations
are significantly smaller than the characteristic compression
times (4–10 fm/c, see Sec. III A below). Therefore, one can
approximately average out the mesonic fields with respect to
these oscillations, that is actually assumed in our model. The
σ - and ω-fields are, therefore, calculated from the equations

− �σ + ∂U (σ )

∂σ
= −

∑
j=B,N̄

gσjρSj , (25)

(−� + m2
ω

)
ωµ =

∑
j=B,N̄

gωj j
µ

bj . (26)

Within the same approximation, the energy-momentum tensor
has the following form:

T µν =
∑

j=B,N̄,M

gj

(2π )3

∫
d3p	

p	0
pµp	νfj (x, p	)

+ (∂µσ∂νσ − ∂µωλ∂νωλ)(1 − δν0)

−gµν

(
−1

2
(∇σ )2 − U (σ ) + 1

2
∇ωλ∇ωλ + 1

2
m2

ωω2

)
.

(27)

The factor (1 − δν0) in Eq. (27) reflects the fact, that due to
the omission of the time derivatives of the meson fields in the
Lagrangian density, only the first term in the rhs contributes to
the three-momentum density T α0 (α = 1, 2, 3).

Although Eqs. (25), (26) are not covariant, they provide a
better description of the nuclear surface than pure local fields
[11]. This improves the stability of a nuclear ground state and
is more appropriate for studying nuclear response to external
hadronic and electromagnetic probes.

Equations (25), (26) have been solved numerically by
applying the alternating direction implicit iterative method of
Douglas described in Ref. [24]. Due to the scalar density de-
pendence on the effective mass [see Eqs.(8), (15)], additional
iterations are needed to solve Eq. (25). In other words, the
scalar density has to be computed self-consistently. To evaluate
the meson fields, we used a uniform grid in coordinate space
with steps 
x = 
y = 
z. For the systems p̄16O, p̄40Ca and
p̄208Pb considered below, the grid covered a cubic volume
with the side of 10, 20, and 30 fm, respectively, centered at the
center of mass (c.m.) of a p̄A system. By numerical reasons,
the δ-functions in coordinate space, introduced in Eq. (20),

have been replaced by the Gaussians of the width L:

δ(r − ri(t)) ⇒ 1

(2π )3/2L3
exp

{
− (r − ri(t))2

2L2

}
. (28)

The width of the Gaussian and the grid step sizes are pure nu-
merical parameters which should resolve the coordinate space
nonuniformities of the system. In our case the characteristic
space scale is given by the radius of the smallest considered
nucleus 16O, i.e., � 3 fm. On the other hand, in order to have
smooth density distributions, the number n of test particles
per physical particle [see Eq. (20)] should be correlated to the
width of the Gaussian as n ∝ L−3. This puts a restriction on too
small width due to CPU time increase. As an optimum choice,
we fixed in the present work 
x = 
y = 
z = L = 0.5 fm.
We have realised, however, that there is a rather moderate
tendency of increasing maximum compression (see discussion
in Sec. III A below) with decreasing Gaussian width. The
number of test particles per nucleon was set to n = 1500 in
the most of calculations.

The equations of motion (21), (22) have been solved by
applying the second-order in time predictor-corrector method
[11] with the time step of 0.1 fm/c. This value is small enough
to resolve the time scale of a few fm/c for the compression
processes (see Figs. 3 and 5 below). We have checked, that
taking smaller time step does not influence the results. The full
numerical scheme conserves the total energy with the accuracy
of about 5% of the initial total binding energy of the p̄A system.

D. Initialization

The nucleons were distributed in coordinate space ac-
cording to the Woods-Saxon density profile. The momenta
of nucleons were sampled according to the local Fermi
distribution.

The initial antiproton DF was chosen as a Gaussian wave
packet in coordinate and momentum space [25,26] located at
the center of a nucleus (x = y = z = 0):

fN̄ (t = 0, r, p	) = (2π )3

gN̄π3
exp

{−r2
/(

2σ 2
r

) − 2σ 2
r p	2}

, (29)

where σr is the width in coordinate space. Equation (29)
implies that the antiproton is at rest. The width of the
initial antiproton distribution in momentum space is (2σr )−1,
which follows from the uncertainty relation. If not mentioned
explicitly, the calculation is done with the choice σr = 1 fm.
This value agrees with results of the static RMF calculations
of Ref. [2]. As for nucleons, the antiproton DF (29) is
projected onto test particles according to Eq. (20) with the
δ-functions in coordinate space replaced by Gaussians. To
avoid misunderstanding, we note that one should distinguish
the width σr of the physical antiproton spatial distribution in
Eq. (29) and the width of the test particle Gaussian.

E. Propagation and annihilation

After the initialization, the system of nucleons and antipro-
ton was propagated in time according to Eqs. (21), (22). The
meson fields have been calculated by Eqs. (25), (26) with
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the source terms given by the scalar densities (15) and the
baryon currents (16). In such a way, the evolution of the
system toward compressed state has been followed. In this
calculation, the collision term in the rhs of the kinetic equation
(12) has been set to zero, i.e., we considered a pure mean-field
Vlasov dynamics. This was done to see most clearly the role
of the mean fields. An introduction of the N̄N and NN elastic
collisions would mainly lead to a dissipation of the collective
energy into heat. As pointed out in Ref. [2], this effect is
rather small and, therefore, can not change significantly the
compression dynamics.

The reason is that the elastic collisions are not frequent on
the time scale of compression (see Figs. 3, 4, and 5 below).
Indeed, the mean time τcoll between nucleon-nucleon collisions
can be estimated as τcoll = 1/(ρNσNNvF ), where σNN �
40 mb is the elastic nucleon-nucleon cross section (c.f. Refs.
[27,28]) and vF � 0.3c is the Fermi velocity. This gives τcoll =
3–6 fm/c for the nucleon density ρN = 2–1ρ0. The Pauli
blocking effect will further increase τcoll. A similar estimate
can also be done for N̄N elastic collisions.

At certain time moment tann, which is an external parameter
to our model, we simulated the annihilation of an antiproton.
This implies that annihilation occurs instantaneously, as
a single quantum mechanical transition, in distinction to
description of this process via the collision term in a kinetic
equation. In the last case, the antiproton distribution function
would gradually disappear on the way to the compressed state.
The purpose of the present work is to look at the strongest
possible effect of the nuclear compression on observables.
Therefore, we let the compressed system to be formed, and
simulate the sudden annihilation afterwards. The ambiguity in
the in-medium annihilation cross sections is taken into account
by varying the parameter tann.

In the actual calculations, the annihilation was simulated
as follows: For each antiproton test particle, the closest in
coordinate space nucleon test particle was chosen to be the
annihilation partner. At large enough values of the total
in-medium c.m. energy

√
s of the annihilating p̄N pair (see

below), the annihilation event of the test particle pair into
mesons was simulated using the quark model [29,30], which
has been already implemented in the GiBUU model [10]
earlier. A quark and an antiquark with the same flavor are
assumed to annihilate and transfer their total four-momentum
to the remaining (anti)quarks. The remaining four (anti)quarks
form two orthogonal qq̄ jets with equal energies in the
c.m. frame. The jets were hadronized via the Lund string
fragmentation model [31] in the JETSET version included into
the PYTHIA 6.225 program package. The applied annihilation
model corresponds to the R2 type diagram in classification
of Ref. [9], i.e., to the quark rearrangement with one qq̄

annihilation vertex. In this sense, the model has some similarity
with the two-meson doorway models of Refs. [32,33]. To
illustrate how the model works we have performed simulations
of the pp̄ annihilation.

Figure 1 shows the pion multiplicity distribution for the
pp̄ annihilation at rest in vacuum compared to the data
compilation from Refs. [9,34]. The calculated distribution is
somewhat shifted to smaller pion multiplicities with respect to
the data: The calculated average pion multiplicity 〈nπ 〉 � 4.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

  0   1   2   3   4   5   6   7   8   9  10

P
(n

π)

nπ

pp-

calculation
data fit

data

FIG. 1. (Color online) Pion multiplicity distribution for pp̄

annihilation at rest in vacuum. Data points are from Ref. [9]. The
dashed line represents the data fit [34] with the Gaussian P (nπ ) =
exp{−(nπ− < nπ >)2/2σ 2

nπ
}/

√
2πσ 2

nπ
where < nπ >= 5.01 and

σ 2
nπ

= 1.04.

compared with the experimental value of � 5.0. We would
like to remark, that non-vanishing contribution of the nπ = 2
channel in calculations is completely due to the final states
with other particles: ππη (78%), ππKK̄ (14%), ππηη(6%)
and ππ+ photons (2% before η decay). In calculations, we
took into account η decays into 2γ or into final states with
pions and disregarded photons afterwards. However, it is not
clear to us how photons were counted in the data (see also
Ref. [32]).

Figure 2 shows the calculated charged pion momentum
distributions in the c.m. frame of the annihilating pp̄ pair at
rest in vacuum. From the partial contributions of the channels
with various pion multiplicities we observe, as expected, that
the hard (soft) part of the total momentum distribution is
populated mainly by the low (high) pion multiplicity events.
The experimental data are described reasonably well, except
for the momenta 0.5 � k � 0.7 GeV/c, where the calculations
significantly overestimate the data.

We believe that the accuracy of the model in describing
the data in Figs. 1 and 2 is sufficient for the exploratory
studies of global observables in the present work. Certainly,
the improvement of the annihilation model is needed to
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FIG. 2. (Color online) Charged pion momentum distribution for
pp̄ annihilation at rest in vacuum. The total calculated distribution
is shown by the thick solid line. The calculated partial contributions
from events with various pion numbers are also depicted (see key for
notations). The calculations are normalized to the number of charged
pions per annihilation event. Data from Ref. [9] are in arbitrary units
and are rescaled to agree with calculations at k = 0.3 GeV/c.
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perform more detailed study of the mesonic final states in the
annihilation. Below we concentrate more on the in-medium
effects on the annihilation.

Due to the mean field, the invariant energy of the an-
nihilating p̄N pair can be substantially below the vacuum
threshold value of 2mN . This makes the direct application of
the JETSET model for the p̄-annihilation in nuclei physically
and numerically problematic. To overcome this difficulty, we
introduced the corrected invariant energy as follows [11,35]:

√
scorr = √

s	 − 2(m	
N − mN ), (30)

where s	 = (p	
p̄ + p	

N )2. The quantity
√

scorr is a vacuum
analog of the total in-medium invariant c.m. energy

√
s with

s = (pp̄ + pN )2. Provided that
√

s > 4mπ , we have used√
scorr in the JETSET simulation in order to produce the

mesonic final states. This lower limit of
√

s is due to the
fact that the JETSET model does not generate enough direct
2π and 3π annihilation final states.

In order to take into account the in-medium effects, in
particular, to ensure the correct in-medium threshold condition√

s > m1 + m2 + · · · + mnmes , where m1,m2, . . . , mnmes are
the vacuum masses of the produced mesons, the annihilation
event was accepted with the probability

P = �nmes (
√

s; m1,m2, . . . , mnmes )

�nmes (
√

scorr; m1,m2, . . . , mnmes )
, (31)

where

�nmes (
√

s; m1,m2, . . . , mnmes )

=
∫

d3k1

(2π )32ω1

∫
d3k2

(2π )32ω2
· · ·

∫
d3knmes

(2π )32ωnmes

× δ(4)(pp̄ + pN − k1 − k2 − · · · − knmes ) (32)

is the invariant phase space volume, ki = (ωi, ki) are the
four-momenta of the produced mesons satisfying the vacuum
mass shell conditions m2

i = k2
i , i = 1, 2, . . . , nmes. Finally, the

three-momenta of the produced mesons in the c.m. frame of the
annihilating p̄N pair were multiplied by the common factor
adjusted to get the correct in-medium total c.m. energy

√
s.

In fact, the way we simulate the in-medium effects Eq. (31)
implies using the vacuum matrix elements of the annihilation
channels, which are given by the JETSET model, while taking
into account the in-medium effects in the phase space factors
only. Similar procedures have been applied earlier in Refs.
[2,11,35].

At 2mπ <
√

s � 4mπ , the final 2π or 3π channel was
chosen by Monte Carlo according to the probability ratio

P2π

P3π

= R0
�2(

√
s; mπ,mπ )�3(2mN ; mπ,mπ,mπ )

�2(2mN ; mπ,mπ )�3(
√

s; mπ,mπ,mπ )
, (33)

where R0 = 0.152 is the ratio of the 2π and 3π final state
probabilities for the pp̄ annihilation at rest (see Table VI
in Ref. [2]). For the zero total charge Q of the annihilating
p̄N pair, the charge states of the outgoing pions were also
determined from the data compilation of Ref. [2]. Since for
Q = ±1 the data are absent, the charges of the 3π final states
were determined by assuming that the πQπ0π0 and πQπ+π−
final channels have equal probabilities. The momenta of the

outgoing pions were distributed microcanonically according
to the available two- or three-body phase space.

After the annihilation is simulated, the residual nucleons
and produced mesons were propagated in time according to
the full kinetic equations (12), including both the baryonic
mean fields and collision integrals. This takes into account
the entropy production caused by the two-body collisions at
the expansion stage. Moreover, important processes of the
meson rescattering and absorption, e.g., πN → 
 → πN or
πN → 
,
N → NN are included in the collision integral.
These processes influence the observed particle spectra.

III. TIME EVOLUTION OF BOUND p̄-NUCLEAR
SYSTEMS

A. Initial compression stage

As demonstrated in Refs. [1,2] by static RMF calculations,
a deeply-bound antiproton-nucleus system can be significantly
compressed as compared with a normal nucleus. Now we want
to study the real dynamics of such a system starting from the
unperturbed nuclear ground state at t = 0.

Figure 3 (top panels) shows the nucleon and antiproton
density profiles calculated at different times along the axis
z drawn through the center of the p̄40Ca system. Figure 3
(bottom panels) also shows the nucleon and antiproton
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FIG. 3. (Color online) Nucleon and antiproton densities (top
panels) and potentials (bottom panels) vs coordinate z on the axis
passing through the center of the p̄40Ca system at selected times
indicated in the figure. The calculations with the scaling factor
ξ = 0.3 (ξ = 1) are shown in the left (right) panels. Please, notice
different scales on vertical axis.

014604-6



DYNAMICAL SIMULATION OF BOUND ANTIPROTON- . . . PHYSICAL REVIEW C 78, 014604 (2008)

potentials Uj ≡ gωjω
0 + gσjσ, j = N, p̄, along the same

axis. Left and right panels present results for ξ = 0.3 and
ξ = 1, respectively. We see that the initial configuration is
unstable and the system starts to shrink. Both nucleon and
antiproton central densities grow quite fast, reaching their
maxima within several fm/c. In the course of the compression
process, the nucleon potential becomes deeper in the case of
the reduced antiproton coupling constants (ξ = 0.3) and does
not, practically, change in the G-parity motivated case (ξ = 1).
The antiproton potential deepens quite strongly with time for
the both sets of the antiproton coupling constants.

In the case of ξ = 0.3, the first maximum of the central
nucleon density (ρN = 0.30 fm−3) is reached at t = 10 fm/c.
At later time the system rebounds and oscillates approaching
gradually a static configuration with the nucleon density ρN �
0.26 fm−3 at the center. Since the annihilation is switched off
in this calculation, the compressed configuration may exist,
in principle, infinitely long time. However, due to numerical
reasons, the stability is destroyed by a gradual test particle
escape from a box in the coordinate space, where the mean field
is computed. Nevertheless, the numerical accuracy is good
enough to trace the stable system up to at least t = 100 fm/c.

In the case of ξ = 1, the compression process is much
faster than in the case of ξ = 0.3. Already at t = 4 fm/c we
observe the first maximum of the central nucleon density with
ρN = 0.48 fm−3. A smaller value ρN � 0.34 fm−3 is reached
asymptotically after some oscillations.

In Fig. 4 we compare time evolution of the nucleon density
distribution along the central axis z for the light (p̄16O) and
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FIG. 4. (Color online) Nucleon densities along coordinate z at
various time moments for p̄16O and p̄208Pb at ξ = 0.3 and ξ = 1.
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FIG. 5. (Color online) Time dependence of the nucleon density
at the center of the p̄16O, p̄40Ca and p̄208Pb systems for two values of
the scaling factor ξ = 0.3 (left panels) and ξ = 1 (right panels) of the
antiproton coupling constants. The dotted line shows the calculation
without p̄ annihilation. The thin solid, thick solid and dash-dotted
lines show the results with annihilation simulated at various times
tann indicated in the figure. The dashed lines show the central nucleon
density evolution for the corresponding ground state nucleus without
an antiproton.

heavy (p̄208Pb) systems. For p̄16O, the bell-like shape of the
density distribution is reached quite fast. However, in the case
of p̄208Pb, we observe a quickly growing peak in the center,
while peripheral nucleons still do not react on the compression.
This leads to the delayed shape equilibration via a complicated
compression-decompression cycle.

Figure 5 shows the time evolution of the central nucleon
density for the three systems: p̄16O, p̄40Ca and p̄208Pb.
The case without annihilation is shown by the dotted lines.
For a comparison, we also present the central density time
evolution in the respective ground state nuclei without an
antiproton inside (dashed lines). We see, that at long enough
times of the order of several tens fm/c, the static compressed
configuration is indeed reached. The small oscillations of the
central density in the compressed system visible at t > 50 fm/c
are approximately of the same amplitude as the oscillations of
the respective ground state. Thus, the reason for these small
amplitude oscillations is the fermionic ground state instability
due to the classical treatment of particles [26,36–39]. In
principle, this instability can be removed by either employing
the Pauli potential as in Refs. [36–38] or by adding a friction
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force to the Hamiltonian equations of motions for the test
particles [39]. Such modifications are beyond the scope of the
present work. We expect that they would not essentially modify
the density profiles of the compressed configurations, which
are in an overall agreement with the previous static Hartree
calculations of Refs. [1,2].

One can also notice (see lower panels of Fig. 5) a peculiar
feature of the p̄208Pb system: the dip in the central nucleon
density at t � 50 fm/c. This is mostly a consequence of the
delayed shape equilibration mentioned above in discussing
Fig. 4. The especially strong density drop for ξ = 0.3 is partly
caused by the symmetry loss due to the finite number of test
particles. The dip is absent in lighter systems, since the shape
equilibration for them is much faster (10–20 fm/c, see upper
panels in Figs. 3 and 4).

Since the compression time is of primary importance, we
have also studied the sensitivity of our results to the width
σr of the initial antiproton DF (29). We have found, that
for a larger (smaller) width the compression time becomes
somewhat longer (shorter). In-particular, for the p̄16O system
at ξ = 1 the time needed to reach the first density maximum
is 5 fm/c (2.5 fm/c) for σr = 2 fm (σr = 0.5 fm). For the same
system at ξ = 0.3 the first density maximum is reached at
10 fm/c (3 fm/c) for σr = 2 fm (σr = 0.5 fm). The value of
the maximum density reached in the compression process is
practically insensitive to σr .

We have to admit also, that there is some numerical
uncertainty in our calculations due to the choice of the width
L of the test particle Gaussian and the grid step size; e.g.,
in the calculation with 
x = 
y = 
z = L = 0.33 fm for the
lightest system p̄16O the maximum and saturation densities are
20% higher than in calculation with 
x = 
y = 
z = L =
0.5 fm. Setting the smaller grid step is not feasible for technical
reasons. Overall, this numerical uncertainty is comparable to
the one due to different choices of the scaling factor ξ in our
calculations.

B. Post-annihilation dynamics of residual nuclei

Next, we study the dynamics of a residual nucleus after
sudden annihilation of an antiproton. The annihilation was
simulated as described in Sec. II E. For each considered p̄A

system and the scaling factor ξ , three different annihilation
times tann have been chosen: They correspond to (i) the early
(tann = 0) annihilation from a noncompressed ground-state
nucleus, (ii) the annihilation at the time moment when the first
maximum of the central density is reached, and (iii) the late
annihilation from an asymptotic compressed configuration.

One can see from Fig. 5, that the annihilation from a
noncompressed ground state nucleus (thin solid lines) does not
lead to significant expansion of the residual nuclear system.
The central nucleon density stays always below but close to ρ0

in this case. In the case of annihilation from the compressed
configurations (thick solid and dash-dotted lines), we observe
that, for the light systems p̄16O and p̄40Ca, the central nucleon
density decreases sharply after annihilation and reaches values
well below ρ0. This is a clear indication of the collective
expansion of a system from the initially compressed state. On
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FIG. 6. (Color online) The baryon density (top panel) and
the radial collective velocity (bottom panel) as functions of the
radial distance for the p̄40Ca system computed with ξ = 0.3. The
annihilation time tann was set to 10 fm/c.

the other hand, for the heavy p̄208Pb system, the expansion
is not very pronounced at any choice of the annihilation
time.

It is interesting, that if the annihilation is switched on at the
first density maximum (thick solid lines), then after an abrupt
falling down the central density stays for some time ∼10–
20 fm/c close to ρ0 before decreasing further. This is explained
by an inertial compression: After annihilation, the periphery of
a residual nucleus still continues to move to the center during
some time until rebound. In the case of the p̄40Ca system, this
is demonstrated in Figs. 6 and 7, where we show the baryon
density and the radial collective velocity,

vrad = r · vcoll/r, (34)

at several times as a function of the radius r . The collective
velocity has been determined as

vα
coll = T α0/T 00, α = 1, 2, 3. (35)

At r > 4 fm, the evolution of the radial collective velocity
field is noticeably influenced by the fermionic ground state
instability discussed above. Nevertheless, one can still observe
the inertial compression. Indeed, the radial collective velocity
at t = 12 fm/c for ξ = 0.3 and at t = 6 fm/c for ξ = 1 reveals
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FIG. 7. (Color online) Same as in Fig. 6, but for ξ = 1 and tann =
4 fm/c.

the fast outward motion at the center, while the peripheral
nucleons still continue to move to the center. This explains
plateaus in the central density evolution near t � 20 fm/c in
Fig. 5. At t � 30 fm/c the whole system starts to expand. This
is reflected in the monotonically increasing radial collective
velocity with radius. The especially strong rise of vrad at large
r is due to emission of fast particles. At later times t � 50–
60 fm/c the expansion is replaced by the inward motion of the
matter in the central zone. However, the fast particles are still
continuing to escape from the dense region. We expect that

in reality the system will break-up into fragments before the
inward motion will start (see discussion Sec. IV A).

IV. OBSERVABLE SIGNALS

A. Multifragmentation of residual nuclei

It is presently well established (see [40] and references
therein) that nuclear matter at low densities (ρ < 0.6 ρ0)
becomes unstable with respect to small density perturbations,
so called spinodal instability. However, in order these density
perturbations to develop into nuclear fragments, the system
must stay long enough time ∼30 fm/c in the spinodal region.
One can see from Fig. 5, that the light systems p̄16O and
p̄40Ca spend a long time in this region. Therefore, the residual
nuclear systems can undergo a multifragment breakup, if the
annihilation happens in the compressed configurations. In
other words, the multifragment breakup of nuclei after the
p̄-annihilation may serve as a signal of the compression prior
the annihilation.

In Table I we collect the estimated parameters of fragment-
ing sources for the p̄16O and p̄40Ca systems. The case of
p̄-annihilation from the state of maximum central density is
considered here (see thick solid lines in Fig. 5). The sources
have been determined by selecting nucleons in the space
region where the baryon density is larger than ρmin = 0.01ρ0.
They are characterized by the neutron (N ) and proton (Z)
numbers, the collective kinetic energy per nucleon (Ecoll

kin )
and the residual excitation energy per nucleon (E	

res). These
parameters are defined as

N =
∫

ρ>ρmin

d3rρn(r), Z =
∫

ρ>ρmin

d3rρp(r), (36)

Ecoll
kin = 1

A

∫
ρ>ρmin

d3r
(
T 00 −

√
T µ0T 0

µ

)
, (37)

E	
res = 1

A

∫
ρ>ρmin

d3rT 00 − Eg.s.(N,Z) − Ecoll
kin , (38)

where ρn and ρp are the neutron and proton densities,
respectively; A = N + Z; and Eg.s.(N,Z) is the ground state
energy per nucleon of a nucleus with neutron number N and
proton number Z computed within our model. The collective

TABLE I. Fragmenting source parameters for the different annihilating systems and values of the scaling factor ξ of the
antiproton coupling constant. tann denotes the annihilation time moment. t is the time moment when the source parameters
have been determined. ρN is the central nucleon density. Z, Ecoll

kin and E	
res are the charge number, collective kinetic energy

per nucleon and residual excitation energy per nucleon, respectively (see Eqs. (36), (37) and (38)).

System ξ tann (fm/c) t (fm/c)a ρN (fm−3) Za Ecoll
kin (MeV/nucleon) E	

res (MeV/nucleon)

p̄40Ca 0.3 10 40 0.086 17 0.6 8.1
p̄40Ca 1.0 4 40 0.071 16 0.3 6.3
p̄16O 0.3 8 35 0.057 6 2.0 9.9
p̄16O‡ 0.3 8 35 0.056 6 2.1 9.6
p̄16O 1.0 4 36 0.051 5 1.4 7.9
p̄16O‡ 1.0 4 36 0.051 5 1.5 7.8

aIncluding Coulomb interaction in propagation of the test particles.
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kinetic energy (37) is calculated neglecting pressure effects.
Due to the initially isospin-symmetric nuclei and the neglect
of the isovector mesons in the Lagrangian density (3), we
obtained in all cases N � Z in the source. It turned out also,
that the Coulomb interaction optionally included in some of
the calculations does not change this result. Thus, only the
charge numbers Z are given in Table I. The time moment
for determination of the source parameters has been chosen
at 35–40 fm/c, when the central nucleon density is about
1/3–1/2ρ0, i.e., inside the spinodal region. The calculated
residual excitation energy is typically 6–10 MeV/nucleon
that corresponds to the temperatures 4–7 MeV. According to
the statistical multifragmentation model [41], in this energy
domain the multifragment breakup is the dominating decay
channel of residual nuclei. The collective kinetic energy is
1.4–2.1 MeV/nucleon in the case of p̄16O. This is well above
the Coulomb energy of the source, which is only about
0.4 MeV/nucleon for N = Z = 5. Unfortunately, such a
source is too small to experience the real multifragment
breakup, rather a Fermi breakup into small clusters [41]. In
the case of larger sources, produced in p̄40Ca annihilation
the collective kinetic energy is considerably smaller, 0.3–
0.6 MeV/nucleon, but still significant with respect to the total
Coulomb energy �1.0 MeV/nucleon for N = Z = 16. Thus,
we expect some signs of collective expansion to be visible in
kinetic energy spectra of produced fragments.

B. Knock-out nucleon spectra

Let us now consider other observable effects.
Figure 8 shows the c.m. kinetic energy spectra of the
nucleons emitted from the p̄16O, p̄40Ca, and p̄208Pb systems
after the p̄-annihilation. In order to separate emitted nucleons
from the bound nucleons of a residual nucleus, we used
a simple criterion: only those nucleons, both protons and
neutrons, were included in the spectra which are separated by
at least 3 fm from the other test particles of a given parallel
ensemble at t = 100 fm/c. One can see, that nucleons with
the kinetic energy Ekin � EF, where EF � 35 MeV is the
Fermi energy of the nuclear matter at ρ0, are abundantly
emitted. Such nucleons are knocked-out from the nucleus by
the mesons produced after the annihilation [14].

In Table II we list the slope parameters TN of the nucleon
kinetic energy spectra obtained by the Maxwell-Boltzmann fit

dNnuc

dEkin
∝

√
Ekin exp(−Ekin/TN ) (39)

in the region of Ekin = 200–500 MeV. We would like to
mention, that the authors of Ref. [14] report the slope
temperature of about 60 MeV for the kinetic energy spectrum
of the emitted protons in the case of p̄40Ca system, which is not
so far from our results for the annihilation in the ground-state
nucleus at tann = 0.

We want to emphasize that the kinetic energy spectra of
nucleons emitted after the p̄-annihilation from the compressed
p̄16O, and p̄40Ca systems are significantly harder than the
spectra of nucleons from the annihilation at tann = 0. This can
be explained by two effects. First, the collective expansion of
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FIG. 8. (Color online) Kinetic energy spectra of emitted nucleons
in the c.m. frame for various p̄A systems and values of the
parameter ξ . Different histograms correspond to different values of
the annihilation time tann indicated in the key.

the outer shell will increase the slope temperature, typically,
by several MeV (see Table I and Figs. 6, 7). Second, just after
the annihilation the nucleon potential at the center of a nucleus
grows suddenly by ∼80–300 MeV. This creates an additional
push for the fast nucleons emitted from the nucleus. Although
the hardening effect is most pronounced for the lightest system
p̄16O, it is also quite visible for p̄40Ca. For the heaviest system
p̄208Pb, we observe almost identical high energy tails of the
nucleon spectra for the different annihilation times. The reason
is that the collective expansion is practically absent in this
system (see Fig. 5). Also, the yield of fast nucleons is reduced
by their subsequent rescatterings in the residual nucleus.

TABLE II. Slope temperatures TN (MeV)
for the nucleon kinetic energy spectra (see
Fig. 8 and Eq. (39)). Only the values of TN for
tann = 0 (first number) and for the annihilation
at the time of the maximum compression
(second number) are given. Statistical error
is ±2 MeV.

ξ p̄16O p̄40Ca p̄208Pb

0.3 66, 81 67, 71 64, 59
1 52, 95 46, 79 45, 53
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FIG. 9. (Color online) Pion multiplicity distributions for the p̄16O
system. The line with full circles shows the calculation without mean
field and without FSI after the annihilation. The line with full boxes
shows the result with mean field, but without FSI. Other lines show the
full calculation at various choices of the annihilation time (shown in
the key). The top (bottom) panel presents results for ξ = 0.3 (ξ = 1).

C. Mesonic observables

The meson production from the p̄-annihilation inside
nucleus is influenced both by the mean field via the potentials
of the annihilating pair and by the final state interactions
(FSI), i.e., the two-body collisions and resonance decays. It
is instructive to disentangle the contributions of the mean
field effects from the rescattering and absorption effects.
To this aim, we have performed additional calculations by
subsequently switching off the FSI and the mean field.
Corresponding results are shown in Figs. 9, 10 and 11.

Figure 9 shows pion multiplicity distributions for the
p̄16O system. In the case of reduced antiproton coupling
constants (ξ = 0.3), the mean field alone does not produce any
noticeable modification of the pion multiplicity distribution.
On the other hand, FSI leads to a rather substantial shift
toward smaller nπ . For the case of ξ = 1, we observe a strong
pion multiplicity reduction due to smaller

√
s for the p̄N

annihilation, while the FSI effects are much weaker. One can
also see a quite significant compressional effect for ξ = 1,
which is only very weak for ξ = 0.3.

In Fig. 10, we present charged pion momentum spectra
in the c.m. frame of the p̄16O system. FSI strongly modifies
these spectra, mostly due to the πN → 
 → πN processes,
which effectively decelerate pions. As we have already
observed earlier in Fig. 8, emitted nucleons gain energy,
correspondingly.

The effect of the baryonic mean field on the pion momentum
spectrum is relatively moderate: we observe some depletion of
the high-momentum tail, which is more pronounced in the case
of ξ = 1. The compressional effect is visible in the reduction
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FIG. 10. (Color online) Same as in Fig. 9, but for the charged
pion momentum distributions in the c.m. frame of the p̄16O system.

of the pion yield in the momentum range 0.3 � k � 0.6 GeV/c.
This can be understood from Figs. 2 and 9: in vacuum, the
events with nπ = 5 and nπ = 6 contribute substantially to
this momentum range, while the probability of such events
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FIG. 11. (Color online) Distribution of the annihilation events on
the total invariant mass of emitted mesons for the p̄16O system. The
calculation without mean field and without FSI is shown by the line
with full circles. The results without mean field but with FSI are
shown by the dotted line. The line with full boxes shows the result
with mean field, but without FSI. The full calculation is presented by
the solid line. Upper (lower) panel corresponds to ξ = 0.3 (ξ = 1).
Only calculations at tann = 0 are shown.
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is substantially suppressed in a compressed nucleus due to the
reduced annihilation phase space [2].

The pion momentum spectrum has clearly the two compo-
nents: the slow pions, which have undergone rescatterings via
the 
-resonance excitation (k less than about 300 MeV/c), and
the high energy pions, which were emitted from the system
almost without secondary interactions. The similar result has
been obtained in earlier intranuclear cascade calculations [14].
Following Ref. [14], we have also fitted the low energy
part of the pion spectrum (E − mπ = 100–150 MeV, E =√

k2 + m2
π ) by the Maxwell-Boltzmann distribution

dNπ±

dk
= k2 exp(−E/Tπ ). (40)

This fit has produced the following slope temperatures of
the charged pion momentum spectrum for the p̄16O system:
Tπ � 45 MeV and 44 MeV for ξ = 0.3 (Tπ � 43 MeV and
36 MeV for ξ = 1) in the case of early annihilation (tann = 0)
and annihilation at the time of maximum compression, respec-
tively. The extracted Tπ is smaller than the slope temperature
of 53 MeV of the low energy pions for the p̄40Ca system
reported in Ref. [14]. However, in the calculation without mean
field, we obtain Tπ � 51 MeV, which is in a good agreement
with the result of Ref. [14]. Therefore, the difference between
our results and those of Ref. [14] is caused by the mean field
acting on the annihilating pair in medium. Moreover, we see the
softening of the pion spectrum in the case of larger antinucleon
couplings due to smaller

√
s of the annihilating pair.

Figure 11 presents the distributions of the annihilation
events in the total invariant mass of produced mesons from
the p̄16O system. The invariant mass is defined as

Minv = ((
P0

mes

)2 − P2
mes

)1/2
, (41)

where Pµ
mes = ∑

i

p
µ

i is the sum of four-momenta of the mesons

produced in a given annihilation event. The calculations were
done for the case of tann = 0.

In the absence of FSI, Minv should be equal to the invariant
energy

√
s of the annihilating p̄N pair. Indeed, without FSI

and without mean field, as expected, we get a quite sharp peak
at 2mN only slightly smeared out due to the Fermi motion
of nucleons and momentum spread of the initial antiproton
DF (29). The baryonic mean field leads to the shift of a peak
position toward smaller Minv and to some broadening of the
distribution. The broadening is due to the spatial spread of
the initial antiproton DF (29), which results in different mean-
field potentials acting on different annihilating p̄N test particle
pairs. Additionally, the FSI leads to a very strong broadening
of the invariant mass spectrum due to the deceleration and
absorption of the annihilation mesons. This is clearly seen in
Fig. 11 for the case when the RMF was switched off (dotted
line). Nevertheless, the full calculation (solid line) shows quite
strong softening of the Minv distribution due to the mean-field
effects. Obviously, this effect is stronger for the case of ξ = 1
as compared with ξ = 0.3.

Finally, in Fig. 12, we systematically study how the
meson invariant mass spectra are affected by the nuclear
compression effects. The results are shown for the different
p̄-nucleus systems. Due to the strong reduction of the nucleon
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FIG. 12. (Color online) Annihilation event distributions on the
total invariant mass of emitted mesons for various p̄A systems
and values of the parameter ξ . Different histograms correspond to
different values of the annihilation time tann indicated in the key.

effective mass with the scalar density, the meson invariant mass
spectra become softer when the annihilation happens in the
compressed configurations, as compared with the annihilation
in the normal state at tann = 0. The effect is, again, more
pronounced for the light systems p̄16O and p̄40Ca. In the p̄16O
system the shift is almost 500 MeV even in the case of ξ = 0.3.

We believe that results presented in Figs. 8, 9, 10, and 12
constitute the set of observables sensitive to the compressional
effects in nuclei induced by an antiproton.

V. SUMMARY AND OUTLOOK

We have performed dynamical modeling of possible com-
pression effects in nuclei due to the presence of an antiproton.
The semiclassical transport GiBUU model [10] incorporating
the relativistic mean fields for the baryons and antibaryons
has been employed in calculations. The model reproduces
reasonably well the earlier static calculations of bound p̄-
nuclear systems [1,2].

In this work, we did not consider the stopping process of
an incident antiproton in a target nucleus. This is a rather
complicated problem due to the unknown in-medium cross
sections of the p̄-scattering and annihilation. This problem
will be addressed in a forthcoming paper. Instead, we have
assumed, that the antiproton has penetrated to the center of the
nucleus, stopped there due to an inelastic collision, and then
get captured to the lowest energy state. Such events should be
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very rare, with a probability of the order of 10−4 for the central
collisions [2]. As proposed in Ref. [2], formation of bound
antiproton-nucleus states can be triggered by the emission of
fast nucleons, pions or kaons. We have shown, that during
the time interval of 4–10 fm/c after creation of the initial
state the central density of the target nucleus grows up to the
values of 2–3ρ0 depending on somewhat uncertain values of
the antiproton coupling constants. We expect that the life time
of strongly bound antiprotons can be long enough to observe
this cold compression effect.

Detailed kinetic simulations of the post-annihilation evo-
lution of residual nuclei have been carried out at different
assumptions on the annihilation time. It is shown, that the
p̄-annihilation in compressed light systems, like p̄16O and
p̄40Ca, leads to the pronounced collective expansion of the
residual nucleus, which may result in the multifragment
breakup. Another clear signature of the nuclear compression
is the hardening of the kinetic energy spectra of emitted
nucleons. On the other hand, the invariant mass distribution
of produced mesons is shifted to smaller invariant masses due
to the in-medium reduction of the nucleon effective mass at
high scalar density. Similar phenomena are expected also for
the case of �̄-nucleus bound states which can be produced via
the p̄p → �̄� reaction on nuclei.

Another interesting possibility is that the compressed zone
of the nucleus might undergo a deconfinement phase transition.

Then one can expect formation of a quark-antiquark droplet
with a nonzero baryon number and relatively low temperature
[2].

Our main assumption in the present study was that the
annihilation takes place in the central region of a nucleus.
The experimental selection of the central annihilation events
is a difficult problem. No clear trigger condition for such
events has been invented so far. One suggestion is that the
central annihilation events, in average, will be characterised by
isotropic emission of secondary particles and high fragment
multiplicity [13,14]. However, further theoretical and experi-
mental efforts are needed to develop a good trigger condition
for the central annihilation. Despite of these difficulties, we
propose to study the above predictions in antiproton-nucleus
reactions at the future Facility for Antiproton and Ion Research
(FAIR) at GSI (Darmstadt).
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