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We present the first study to examine the validity of the relativistic impulse approximation (RIA) for describing
elastic proton-nucleus scattering at incident laboratory kinetic energies lower than 200 MeV. For simplicity we
choose a 208Pb target, which is a spin-saturated spherical nucleus for which reliable nuclear structure models exist.
Microscopic scalar and vector optical potentials are generated by folding invariant scalar and vector scattering
nucleon-nucleon (NN ) amplitudes, based on our recently developed relativistic meson-exchange model, with
Lorentz scalar and vector densities resulting from the accurately calibrated PK1 relativistic mean field model of
nuclear structure. It is seen that phenomenological Pauli blocking (PB) effects and density-dependent corrections
to σN and ωN meson-nucleon coupling constants modify the RIA microscopic scalar and vector optical potentials
so as to provide a consistent and quantitative description of all elastic scattering observables, namely, total reaction
cross sections, differential cross sections, analyzing powers and spin rotation functions. In particular, the effect
of PB becomes more significant at energies lower than 200 MeV, whereas phenomenological density-dependent
corrections to the NN interaction also play an increasingly important role at energies lower than 100 MeV.
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I. INTRODUCTION

The relativistic impulse approximation (RIA) provides an
excellent quantitative description of complete sets of elastic
proton scattering observables from various spin-saturated
spherical nuclei at incident energies ranging from 200 to
400 MeV [1]. The latter represents the theoretical framework
for generating complex microscopic optical potentials for
solving the elastic scattering Dirac equation. The reliability
of the RIA has also been demonstrated by the fact that, for
the above energies, predictions of elastic proton scattering
observables are very similar to the corresponding results
based on the highly successful global Dirac phenomenological
optical potentials, which have been calibrated to provide
excellent quantitative predictions of elastic proton scattering
observables from stable nuclei ranging from 12C to 208Pb and
for incident energies between 20 and 1040 MeV [2].

The Melbourne group have already developed a highly
predictive microscopic Schrödinger model for describing
elastic scattering at energies between 20 and 800 MeV [3,4].
Here, however, we focus on the RIA which is based on the
relativistic Dirac equation, and is more attractive in the sense
that the microscopic scalar and vector optical potentials—
and consequently the corresponding Schrödinger-equivalent
central and spin-orbit optical potentials [1]—are directly
related to the Lorentz properties of the mesons mediating the
strong nuclear force, a connection lacking in nonrelativistic
models.

Recently we developed an energy-dependent Lorentz co-
variant parametrization of the on-shell NN scattering matrix
at incident laboratory kinetic energies ranging from 40 to
300 MeV [5]. In this paper, we employ the latter meson-
exchange model to generate relativistic microscopic scalar

and vector folding optical potentials in order to systematically
study the predictive power of the RIA for describing elastic
proton-nucleus scattering observables at energies lower than
200 MeV. At these low energies of interest, multiple scattering
effects [6], medium modifications of the NN interaction [3],
and Pauli blocking [1,7] contributions become increasingly
important, and hence the validity of the RIA needs to be
investigated at these low energies.

In Sec. II, we briefly describe the RIA as well as the
relevant input pertaining to our application thereof. Results
are presented in Sec. III, and we summarize and conclude in
Sec. IV.

II. FORMALISM

A. Relativistic impulse approximation (RIA)

A comprehensive description of the RIA, as well as
the corresponding computer codes and associated numerical
details can be found in Refs. [1] and [8]. Here, we just give a
brief introduction of it. The Dirac optical potential is given by

Uopt(q,E) = −4πip

M
〈�|

A∑
n=1

eiq·r(n)F̂(q,E; n)|�〉, (1)

where p is the magnitude of the three-momentum of the
projectile in the nucleon-nucleus center-of-mass frame, |�〉
is the A-particle ground state, and F̂ is the nucleon-nucleon
scattering operator. In the original RIA, F̂ is chosen as

F̂(q,E) =
∑
L

FL(q,E)λL
(1) · λL

(2), (2)
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where scattering amplitudes FL(q,E) are complex functions
of the momentum transfer q and laboratory energy E, which
can be obtained by the relativistic Horowitz-Love-Franey
model (see Sec. II B), and λL

(i) stand for five Dirac matrices
for the projectile or target nucleon.

Assuming the ground state is a Hartree product of single-
particle four-component wave functions Uα(r), the action of
the optical potential on the incident wave |U0〉, projected onto
coordinate space, can be written as

〈r|Uopt(q,E)|U0(r)〉

= −4πip

M

∑
L

[∫
d3r ′ρL(r′)tLD(|r′ − r|; E)

]
λLU0(r)

− 4πip

M

∑
L

[∫
d3r ′ρL(r′,r)tLX(|r′ − r|; E)

]
λLU0(r′),

(3)

where

tLD(|r|; E) ≡
∫

d3q

(2π )3
tLD(q,E)e−iq·r (4)

with tLD(q,E) ≡ (iM2/2Eckc)FL
D (q) and similarly for the

exchange pieces tLX(Q,E). The nuclear densities are defined
as

ρL(r′, r) ≡
occ′∑

i

Ūi(r′)λLUi(r), ρL(r) ≡ ρL(r, r). (5)

Here the prime on the occupied states means that one sums
over target protons when the density is to be used with pp

amplitudes and over target neutrons when it is to be used with
pn amplitudes.

The first term in Eq. (3) contains a multiplicative factor that
defines the direct optical potential:

UL
D(r, E) = −4πip

M

∫
d3r ′ρL(r′)tLD(|r′ − r|; E). (6)

Adopting a local-density approximation, the second term can
be localized to give

UL
X (r, E)

= −4πip

M

∫
d3r ′ρL(r′, r)tLX(|r′ − r|; E)j0(p|r′ − r|),

(7)

where j0 is a spherical Bessel function. For spin-zero nucleus,
the nonzero densities are only baryon, scalar, and a tensor term
associated with σ 0i . Hence, the RIA optical potential can be
written as

Uopt(r; E) = US(r; E) + γ 0UV (r; E) − 2iα · r̂UT (r; E),

(8)

where

UL(r; E) = UL
D(r; E) + UL

X (r; E). (9)

These optical potentials serve as input to solve the Dirac
equation for elastic proton scattering so as to generate the
relevant partial-wave scattering phase shifts for computing

the scattering observables, namely the total reaction cross
section σR , the differential cross section dσ/d	, analyzing
power Ay and spin rotation function Q. Similar to Ref. [1],
we resolve ambiguities in the form of the relativistic NN

scattering amplitudes by employing pseudovector coupling
for the πNN vertex. In Ref. [1], Horowitz and Murdock have
shown that the tensor potential has a negligible effect on all
the observables and nuclei of interest. In a similar vain and for
comparison to the latter, we also neglect the small tensor term.

B. Relativistic Horowitz-Love-Franey model (HLF)

The original Love-Franey model and its relativistic version,
i.e., Horowitz-Love-Franey model, have been described in
detail in Refs. [5,9–11] and references therein. Here, we briefly
allude to list some important formula and the fitting procedure
at lower energy. Essentially HLF model parametrizes the
complex relativistic amplitudes FL(q,E) in terms of a set of
N = 10 meson exchanges in first-order Born approximation,
such that both direct and exchange NN (tree-level) diagrams
are considered separately, that is

FL(q,E) = iM2

2Eckc

[
FL

D (q) + FL
X (Q)

]
, (10)

where

FL
D (q) =

N∑
i=1

δL,L(i)〈�τ1 · �τ2〉Ti f i(q), (11)

FL
X (Q) = (−1)TNN

N∑
i=1

CL(i),L〈�τ1 · �τ2〉Ti f i(Q) . (12)

Here Ti = (0, 1) denotes the isospin of the ith meson, TNN

refers to the total isospin of the two-nucleon system, 〈�τ1 · �τ2〉Ti

is 1 or −3 for different TNN and Ti, CL(i),L is the Fierz matrix
[12], and

f i(x) = g2
i

x2 + m2
i

(
1 + x2

�2
i

)−2

− i
ḡ2

i

x2 + m̄2
i

(
1 + x2

�̄2
i

)−2

,

(13)

where x represents the magnitude of either the direct three-
momentum transfer q or the exchange-momentum transfer
Q, (g2

i , ḡ
2
i ), (mi, m̄i), and (�i, �̄i) are the real and imaginary

parts of the coupling constant, mass, and cutoff parameter for
the ith meson. These parameters are obtained by fitting the
theoretical amplitudes with the values extracted from the NN

scattering data.
Recently we have developed a set of parameter at incident

laboratory kinetic energies ranging from 40 to 300 MeV [5],
in which the coupling constant is set as energy dependent,
namely,

g2(E) = g2
0

[
1 + ag(eaT Trel − 1)

]
, (14)

where

Trel ≡ T0 − Tlab

T0
(15)
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with T0 = 200 MeV, Trel is positive in the 50 to 200 MeV
energy range of interest, and g2

0, ag and aT are dimensionless
parameters extracted by fitting to the relevant data.

C. Relativistic Mean Field theory (RMF)

For extracting the relevant scalar and vector proton and
neutron densities to be folded with the HLF NN scattering
matric, we employ the so-called PK1 Lagrangian density [13],
namely,

L = ψ̄

[
iγ µ∂µ − M − gσσ − gωγ µωµ − gργ

µ�τ · �ρµ

− eγ µAµ

1 − τ3

2

]
ψ + 1

2
∂µσ∂µσ − 1

2
m2

σ σ 2 − 1

3
g2σ

3

− 1

4
g3σ

4 − 1

4
	µν	

µν + 1

2
m2

ωωµωµ + 1

4
c3(ωµωµ)2

− 1

4
�Rµν

�Rµν + 1

2
m2

ρ �ρµ · �ρµ − 1

4
FµνF

µν, (16)

where the parameters are listed in Table I, and the field tensors
for the vector mesons and the photon are respectively defined
as 


	µν = ∂µων − ∂νωµ,

�Rµν = ∂µ �ρν − ∂ν �ρµ,

Fµν = ∂µAν − ∂νAµ.

(17)

Under the variation of the Lagrangian density with respect
to the different fields, one obtains the equations of motion
for the nucleon and different mesons via a self-consistent
procedure. To obtain the parameters, the masses of spherical
nuclei 16O, 40Ca, 48Ca, 56Ni, 68Ni, 90Zr, 116Sn, 132Sn, 194Pb,
and 208Pb, the compression modulus K , the baryonic density at
saturation ρsat, and the asymmetry energy J of nuclear matter
are fitted to give the minimum by the Levenberg-Marquardt
method. The relative deviations are 0.0102 and 0.0178 for
the masses of 19 spherical nuclei and charge radii of 13
spherical nuclei, respectively, which are similar or better
than the other commonly used RMF effective interactions,
such as the NL1 [14], PL-40 [15], NL-SH [16], TM1 [17],
NL3 [18], TW99 [19], and DD-ME1 [20]. Compared to these
effective interactions, the PK1 parametrization represents an
improvement in the sense that center-of-mass corrections
are included microscopically and it also provides a unified
description of the properties of stable and unstable nuclei over
a broad mass (16 � A � 214) range.

At last, to minimize uncertainties associated with nuclear
structure input, we focus on proton scattering from 208Pb which
is a spin-zero spherical nucleus for which the PK1 effective
interaction can give excellent description. In Fig. 1, the scalar
and vector density distributions for proton and neutron of 208Pb

FIG. 1. (Color online) Scalar and vector (baryon) density (in units
of fm−3) distribution in radial direction r (in fm) for proton and
neutron of 208Pb, respectively. The proton and neutron densities are
denoted by solid and dashed curves, respectively. The dash dotted
curve corresponds to the proton scalar density, and dotted curve
indicates the neutron scalar density. The PK1 effective interaction
is used.

are shown. Another advantage for considering such a heavy
nucleus as 208Pb, is that at the low energies of interest, recoil
corrections to the Dirac scattering equation are expected to be
small and hence can be neglected.

III. RESULTS

Guided by the availability of experimental data at the lower,
middle and higher-energy regions of the 50–200 MeV range,
we focus on incident energies of 65 [21], 98 [22], 121 [23],
and 200 MeV [24,25], and examine the validity of our RIA
predictions for describing dσ/d	,Ay and Q from a 208Pb
target nucleus as the energy is systematically lowered. Note
that at approximately 100 MeV, there exists no complete set
of experimental data for one specific energy, and hence we
compare our RIA calculations (in the midenergy range) to
data for dσ/d	 and spin observables, Ay and Q, at 121 MeV
and 98 MeV, respectively.

In Figs. 2, 3, and 4, the RIA calculations are denoted
by black dashed curves (color red online) and for reference
we also display results based on the energy-dependent mass-
independent (EDAI) global Dirac optical potentials (GOP) [2]
indicated by the black dotted curves (color olive online).
We consider center-of-mass scattering angles ranging up to a
maximum value corresponding to a three-momentum transfer
of about q ≈ 2.5 fm−1 for which first-order microscopic
nonrelativistic models and relativistic global optical potentials
have been shown to be valid [26]. As expected, the global

TABLE I. The PK1 effective interaction. The masses (in MeV), meson-nucleon couplings, and nonlinear coefficients are listed.

Mn Mp mσ mω mρ gσ gω gρ g2 g3 c3

939.5731 938.2796 514.0891 784.254 763 10.3222 13.0131 4.5297 −8.1688 −9.9976 55.636

014603-3



Z. P. LI, G. C. HILLHOUSE, AND J. MENG PHYSICAL REVIEW C 78, 014603 (2008)

FIG. 2. (Color online) Differential cross sections dσ/d	 (in units
of mb/sr), analyzing powers Ay and spin rotation functions Q, plotted
as a function of center-of-mass scattering angles θc.m. (in degrees),
for elastic proton scattering from 208Pb at incident laboratory kinetic
energy of 200 MeV. The experimental data [24,25] are denoted by
open circles. Uncorrected RIA predictions are represented by black
dashed curves (legend: RIA; color red online), the black dotted
curves correspond to predictions based on the EDAI Dirac global
optical potentials (GOP) [2] (legend: GOP; color olive online), and
RIA calculations including phenomenological Pauli blocking (PB)
corrections are indicated by the black solid curves (legend: PB).

Dirac optical potentials provide an excellent description of
all the observables for the entire energy range of interest.
At 200 MeV, the RIA provides a satisfactory description of
dσ/d	 and Ay for angles ranging up to a value corresponding
to the third minimum in dσ/d	. Although the RIA provides a
good description of Q from 20 to 40 degrees, it fails to describe
the small angle behavior. At lower energies, the RIA provides
a satisfactory description of dσ/d	 up to approximately the
second minimum, but fails to describe Ay and Q.

For elastic proton scattering from a heavy nucleus such as
208Pb, Murdock and Horowitz [1] have demonstrated that Pauli
blocking (PB) corrections to the RIA optical potentials play an
increasingly significant role at lower energies. Essentially PB
represents the mechanism that prevents nucleons in the nuclear
medium from scattering to occupied intermediate states [27].
We now proceed to study the effect of PB corrections for our
low energy range of interest. Following the procedure outlined
in Ref. [1], we include PB corrections to the RIA microscopic
optical potentials via the so-called energy-dependent PB

FIG. 3. (Color online) Same as Fig. 2, except for incident
laboratory kinetic energies of 121 or 98 MeV. The experimental data
at 121 [23] and 98 [22] are denoted by open circles.

coefficients aS,V (Tlab), that is,

U
S,V
PB (r, Tlab) =

[
1 − aS,V (Tlab)

(
ρB(r)

ρ0

)2/3
]

US,V (r, Tlab),

(18)

where Tlab denotes the incident laboratory kinetic energy, ρB (r)
is the local RMF baryon density of the target nucleus, ρ0 =
0.1934 fm−3, and US,V (r, Tlab) represents the uncorrected RIA
scalar S and vector V optical potentials. Within the context
of a relativistic Dirac-Brueckner approach, values for the PB
correction factors aS,V (Tlab) have been extracted at discrete
energies of 135, 200, 300, and 400 MeV [1] and also at
discrete momenta ranging from about 0.46 to 0.75 GeV/c [28].
Consistent with the results reported in Ref. [1], in Fig. 2 we
confirm that PB corrections (black solid curve) provide an
improved description of the 200 MeV data, the effect been
most pronounced for Ay and Q at small angles. Due to the
enhanced sensitivity exhibited by spin observables, we now
focus on the influence of PB on Ay at a lower energy of 98 MeV,
where PB corrections are expected to be more significant: note
that there are no experimental data for Q at 98 MeV. The
lack of published PB coefficients at this energy necessitates
linear extrapolation of the published Dirac-Brueckner values
in Ref. [1], which is shown in Fig. 5. RIA predictions with and
without PB corrections are denoted by the gray solid (color
cyan online) and black dashed (color red online) curves in
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FIG. 4. (Color online) Same as Fig. 2, except for an incident
laboratory kinetic energy of 65 MeV. The gray dashed curve
(color cyan online) corresponds to RIA predictions based on the
renormalized medium-modified σN and ωN coupling constants
(denoted by the legend: g∗), and the gray solid lines (color cyan
online) denote the combined effect of medium modified coupling
constants together with PB corrections (legend: g∗ with PB). The
experimental data [21] are denoted by open circles. The analyzing
powers Ay and spin rotation functions Q are multiplied by 3 at the
θc.m. angles from 0 to 25 degrees.

FIG. 5. (Color online) Linear interpolation and extrapolation of
PB correction factors calculated from a relativistic Dirac-Brueckner
approach. The four curves from top to bottom indicate the PB
correction factors corresponding to the imaginary (Im) and real (Re)
parts of the vector V and scalar S optical potentials. In the code
corresponding to Ref. [8], the values at Tlab = 170 MeV are chosen
same as Tlab = 200 MeV, which causes the flat section in the curves.
The linear extrapolation at Tlab = 98 MeV is emphasized.

FIG. 6. (Color online) (a) Analyzing power Ay for elastic proton
scattering from 208Pb at 98 MeV, plotted as a function of center-of-
mass scattering angles θc.m. (in degrees). The experimental data are
taken from Ref. [22]. Uncorrected RIA predictions are represented
by black dashed curves (legend: RIA; color red online), the black
dotted curves (color olive online) correspond to predictions based on
the EDAI Dirac global optical potentials (GOP) [2] (legend: GOP),
and RIA calculations including extrapolated Dirac-Brueckner and
phenomenological PB corrections are denoted by gray [legend: PB
(DB); color cyan online] and black solid curves [legend: PB (this
work)], respectively. (b) The corresponding real (Re) and imaginary
(Im) scalar S and vector V optical potentials (in units of MeV) for
elastic proton scattering from 208Pb at 98 MeV, plotted as a function
of the nuclear radius r (in units of fm). In particular, the two black
solid curves corresponding to the real parts of the scalar and vector
optical potentials are covered by the gray curves.

Fig. 6(a), respectively. One clearly observes that the extrapo-
lated Dirac-Brueckner PB corrections cannot account for the
Ay data.

Due to the latter failure, we now proceed to study PB via a
phenomenological approach. In particular, we study to which
extent phenomenologically extracted values of aS,V (Tlab) can
provide a consistent description of complete sets of scattering
observables at the specific energies of interest. Starting with
the lower momentum values of aS,V (Tlab) published in table 2
[ρ0, p = 0.46 GeV/c] of Ref. [28], we systematically vary the
real and imaginary parts to give one GOP that provides the best
fit-by-eye of dσ/d	,Ay and Q for elastic proton scattering
from 208Pb at five discrete energies of 65, 100, 135, 170, and
200 MeV, spanning the range of interest. In fact, this is enough
for the purpose of this paper: to check the validity of the
RIA at lower energies. Our phenomenological PB factors are
listed in Table II together with the corresponding published
Dirac-Brueckner values from Ref. [1].

We now consider the effect of these phenomenological
corrections on Ay at 98 MeV, where the extrapolated Dirac-
Brueckner corrections were shown to fail. In Fig. 6(a) one
clearly sees that our phenomenological PB corrections (black
solid curve) provide a more satisfactory description of Ay

compared to the Dirac-Brueckner PB corrections (gray solid
curve). Focusing on the optical potentials, in Fig. 6(b) we
observe that the main effect of both Dirac-Brueckner (gray
solid curves) and phenomenological (black solid curves) PB
is to decrease the strengths of the real and imaginary parts
of the scalar and vector optical potentials, the effect being
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TABLE II. Phenomenological Pauli blocking correction factors a(Tlab) for real and imaginary RIA
microscopic scalar S and vector V optical potentials as various energies Tlab. Where available, the
corresponding published Dirac-Brueckner values [1] are indicated in square brackets.

Energy Scalar Vector
[MeV]

Real Imaginary Real Imaginary

65 0.020 0.68 0.14 0.85
100 0.007 0.60 0.11 0.73
135 0.005 [0.00377] 0.53 [0.108825] 0.09 [0.08403] 0.60 [0.24535]
170 0.008 0.42 0.07 0.50
200 0.010 [−0.0078] 0.35 [0.098] 0.0605 [0.0605] 0.42 [0.207]

most pronounced for the imaginary parts. Furthermore, our
phenomenological corrections have a larger effect than the
corresponding Dirac-Brueckner corrections. Also note that
the PB-corrected optical potentials differ in strength from the
corresponding global optical potentials (black dotted curve),
which suggests that the delicate interplay between the relative
strengths and signs of the scalar and vector optical potentials,
rather than absolute magnitudes, is responsible for providing
an accurate description of the diffractive behavior of all
scattering observables.

In Figs. 2, 3, and 4, we now display our theoretical
predictions including the above-mentioned phenomenological
PB corrections (black solid curves) over the entire range of
interest. Although not shown, both Dirac-Brueckner and phe-
nomenological PB corrections provide the same quantitative
improvement for all observables at 200 MeV. At 121 MeV,
PB corrections provide an excellent description of the first few
maxima and minima for dσ/d	. There are no data for Q at
98 MeV, but we note that PB corrections give results very
similar to the corresponding global Dirac optical potentials.
At the lower energy of 65 MeV, PB corrections invoke a larger
effect and provide a satisfactory description of dσ/d	 and Ay

up to about 50 degrees, but predictions deteriorate at larger
angles. Note, however, that at 65 MeV, PB corrections fail to
quantitatively describe the first two extrema for Ay , as well as
fail to reproduce Q over the entire angular range. The 65 MeV
results emphasize the important fact that optical potentials can
be deemed reliable only if complete sets of elastic scattering
observables, as opposed to only one or two observables, are
accurately described.

To further validate our phenomenological procedure for
including PB corrections, in Fig. 7 we now consider a different
spin-zero spherical target nucleus, namely 40Ca, at an incident
proton energy of 152 MeV: the meaning of the various curves
is the same as those in Fig. 2. Compared to the observables
without PB (black dashed curves), and consistent with our
conclusions for 208Pb, the corrected values (black solid curves)
provide an improved description of all observables and also
agree with the GOP results.

Although PB systematically improves the RIA predictions
at lower energies, these corrections do not provide a quanti-
tative description of complete sets of observables, and hence
it is clear that other effects also begin to play an increasingly
significant role as the energy is lowered. The question now
arises as to whether one can incorporate additional corrections

so as to consistently improve these low energy results within
the framework of the RIA. Various authors [4,30,31] have
stressed that importance of nuclear medium modifications to
the NN interaction at lower energies. In particular, a number
of theoretical models [13,32–34] predict density-dependent
corrections to meson-nucleon coupling constants as well as
nucleon- and meson-masses in normal nuclear matter. We now
adopt a phenomenological approach to investigate to what
extent the renormalization of certain meson-nucleon coupling
constants can provide a systematic improvement of the data
at 65 MeV. Since scalar and vector RIA optical potentials are
dominated by contributions from σ - and ω-meson exchange to
the NN scattering amplitudes, we vary the values of the real

FIG. 7. (Color online) Same as Fig. 2, except for elastic proton
scattering from 40Ca at incident laboratory kinetic energy of 152 MeV.
The experimental data at 152 MeV are taken from Ref. [29].
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σN and ωN coupling constants, g2
σ and g2

ω, so as to provide the
best consistent description of elastic proton-nucleus scattering.
The result of this procedure is that the value of g2

σ changes
from −7.5701 to −11.1734 and g2

ω changes from 7.4511
to 12.9704: these new values of the couplings correspond
to ag = 0.0271 and aT = 3.8364 for the σ meson and to
ag = 0.1022 and aT = 1.9527 for the ω meson [see Eq. (14) in
this paper, also Eq. (21) and Table II in Ref. [5]]. The effect of
renormalizing these couplings is illustrated by comparing the
original results (black solid curves) to the renormalized values
(gray solid curve) in Fig. 4. The most pronounced improvement
is observed for the minima of dσ/d	 at large scattering angles
and spin observables at small scattering angles. At the level of
the optical potentials, the main effect of the modified coupling
constants is to increase the strengths of the real parts of
the scalar and vector potentials at lower energies such that
the energy-dependent trend these strengths is qualitatively
similar to the corresponding GOP results, as illustrated in
Fig. 8. Furthermore, these improved predictions arising from
renormalized coupling constants are consistent with other
nuclear reaction- and structure-studies focusing on density-
dependent corrections to the NN interaction [13,30,31,35].
Note, however, that the best description of Ay and Q up to
angles of about 40 degrees, is obtained by including both PB
and density-dependent corrections (gray solid curve).

To further test the consistency of our scheme for including
both PB and density-dependent corrections, we now focus on
elastic proton scattering at an energy as low as 30 MeV where
these effects are expected to be important. In Fig. 9, it is
gratifying to observe that both phenomenological corrections
(gray solid curves) contribute significantly toward providing
an excellent description of the dσ/d	 and Ay data [36,37]
over the entire angular region. Although there are no data for
Q at this energy, we note that our predictions are similar to
the GOP results which have constrained to fit elastic scattering

FIG. 8. (Color online) Strengths of the real (Re) and imaginary
(Im) scalar S and vector V optical potentials (in units of MeV) at
the center (radius r = 0) of a 208Pb nucleus as a function of incident
laboratory kinetic energies Tlab (in units of MeV). The identification
of the curves is the same as in Fig. 4.

FIG. 9. (Color online) Same as Fig. 4, except for an incident
laboratory kinetic energy of 30 MeV. The experimental data are taken
from Refs. [36,37].

observables at energies as low as 20 MeV [2]. The above
mentioned results inspire confidence in the predictive power
of our phenomenological corrections to the RIA.

Finally, we check the validity of the RIA model for describ-
ing total reaction cross section σR data for proton scattering
from 208Pb for energies lower than 200 MeV. This integral
quantity serves as crucial input in designing accelerator-driven

FIG. 10. (Color online) The total reaction cross section σR (in
units of b) for elastic proton scattering from 208Pb versus the incident
laboratory kinetic energy Tlab (in units of MeV). The identification of
the curves is the same as in Fig. 4. The experimental data are taken
from Refs. [39–46].
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systems for transmutation of radioactive waste. However, due
to the shortage of relevant σR data, simulations are forced to
employ model-dependent values as input [38]. Furthermore,
σR values also form an essential ingredient in studies of
nucleosynthesis and stellar evolution. Consequently, the need
for developing predictive models of elastic proton scattering
should be evident. In Fig. 10 we observe that compared
to the uncorrected RIA predictions, denoted by the black
dashed line (color red online), the inclusion of both PB and
density-dependent corrections, indicated by the gray solid line
(color cyan online), provides a satisfactory description of the
data: the experimental data are from Refs. [39–46]. Our results
are consistent with corresponding nonrelativistic microscopic
predictions [26] as well as the GOP values (black dotted
curve), over the entire energy range. In particular, both RIA
and nonrelativistic models fail to describe the 70 MeV data: a
point of concern, however, is the unsystematic trend exhibited
by the data in this region, as already mentioned in Ref. [26].

IV. SUMMARY AND CONCLUSIONS

We present the first study to examine the validity of
the relativistic impulse approximation (RIA) for describ-
ing elastic proton-nucleus scattering at incident laboratory
kinetic energies lower than 200 MeV. For simplicity we
considered a 208Pb target, which is a spin-zero spherical
nucleus for which accurately calibrated relativistic mean
field nuclear structure models exist, and for which recoil
corrections to the Dirac scattering equation are expected to
be negligible. Microscopic scalar and vector optical potentials
are generated by folding our recently developed relativistic
meson-exchange model of the NN scattering matrix with
appropriate Lorentz densities arising from the PK1 Lagrangian
density. We have established that phenomenological Pauli
blocking effects and density-dependent corrections to the
σN and ωN meson-nucleon coupling constants modify the
RIA microscopic scalar and vector optical potentials so as to
provide a consistent and quantitative description of all elastic
scattering observables (σR, dσ/d	,Ay and Q) at energies
ranging from 30 to 200 MeV. In particular, the effect of PB
becomes more significant at energies lower than 200 MeV,
whereas phenomenological density-dependent corrections to
the NN interaction also play an increasingly important role
at energies lower than 100 MeV. Note that although our
initial study has been of a phenomenological nature, our
results clearly indicate the importance of including PB and

density-dependent corrections to the microscopic RIA model
for providing consistent and quantitative predictions of all
of the above-mentioned scattering observables at energies
lower than 200 MeV. Indeed the latter conclusion is consistent
with corresponding nonrelativistic microscopic studies [4,26].
Guided by our phenomenological result, the next phase will
be to incorporate the PB and density-dependent corrections
within the context of microscopic relativistic dynamical
models in a manner similar to the successful nonrelativistic
g-folding model developed by the Melbourne group [47].

In closing, we emphasize that not only is the RIA a
highly predictive model, but it also provides a microscopic
meson-exchange picture for understanding the behavior of
the successful global Dirac optical potentials. Another at-
tractive feature of the RIA is the consistent application of
the relativistic meson-exchange NN scattering matrix for
generating microscopic folding optical potentials—required
for calculating the scattering wave functions necessary for
evaluating relativistic transition matrix elements—and also for
describing the driving NN reaction mechanism in relativistic
distorted wave models of nucleon-induced reactions. One of
the most useful applications envisaged for the RIA will be
to generate microscopic optical potentials for studying elastic
and inelastic scattering of nucleons from unstable neutron- and
proton-rich nuclei for which global optical potentials do not
exist. Indeed, existing global Dirac optical potentials have been
constrained to reproduce elastic proton scattering from stable
nuclei [2], and hence there is no reason to believe that these
potentials can be reliably extrapolated for studies of exotic
nuclei. On the other hand, one can readily extend the RIA
folding procedure to calculate microscopic optical potentials
for exotic nuclei. The latter can easily be realized due to
the current availability of suitable relativistic meson-exchange
models [5,48,49] as well sophisticated relativistic mean field
nuclear structure models for unstable nuclei [50,51]. Future
work will focus on studying elastic proton scattering from
exotic nuclei.
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