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Angular momentum decomposition of Richardson’s pairs
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I. INTRODUCTION

The concept of elementary modes of excitation originated
by Landau [1] has been the basis of a rigorous mathematical
treatment of many body problems. This concept was intro-
duced in nuclear physics by Bohr and Mottelson [2] to obtain
a unified picture of nuclear structure and later was used in the
development of a nuclear field theory [3,4] that used the idea of
these elementary excitations as building blocks that conform
the states and allow us to understand the nuclear properties.
In particular, the mean field description of fermion systems,
studied at the beginning of the 1960s, was understood using
the Hartree-Fock (HF) approximation, based in the single-
particle elementary excitations, or a Hartree-Fock-Bogoliubov
approximation (HFB) that has as a ground state a coherent state
in terms of pairs. For the pairing interaction this wave function
is the BCS one:

|BCS〉 = N exp (�†),

where N is a normalization constant and �† corresponds to
the correlated pair usually called the Cooper pair, that can be
written as

�† =
∑

α

Uα

V α
c†αc

†
=̄α.

In the 1970s [6–8] it has been suggested that the low energy
spectrum of even-even nuclei can be explain using as building
blocks pairs of fermion coupled to angular momentum zero
(S) and two (D). The phenomenological prescription known
as an interacting boson model, provides a large variety of
collective nuclear states, including states that are spherical,
deformed or transitional. Using group theory techniques and a
few parameters, in a bosonic Hamiltonian with a quadrupole
interaction, to be fixed by the data, the model can describe
quite well energy-level systematics for very different types
of nuclei. Microscopic approaches to the IBM have been
attempted, where the interpretation of the bosons has been
done using coherent pairs of particles coupled to angular
momentum S or D, where the pairing interaction is responsible
for the coupling of the particles [9–11]. A link with the
usual geometric quadrupole model has been provided by the
introduction of boson intrinsic states defined in terms of a set

of parameters directly related to the deformation parameters
of the geometrical model [12]. This approach shows that
the ground states of deformed nuclei can be considered as
a condensate of bosons with angular momentum not well
defined. However the projection on well-defined angular
momentum states shows that the S and D bosons take care
of a big percentage of the wave function of the nuclear ground
state [13]. On the other hand, some publications claim that
higher angular momentum bosons should be included in order
to obtain reasonable parameters and good results for different
observables as electromagnetic transitions or one and two
particle transfers [14]. In a more recent publication it was
proposed that an exact solvable boson Hamiltonian with a
repulsive pairing interaction to simulate the influence of the
Pauli principle. From the solutions of this Hamiltonian, the
spectra of the ground state rotational band [15] was obtained.
In this case it was shown that in order to obtain reasonable
results, higher angular momenta must be included in the
treatment.

Most of the theoretical arguments are based in different
approximations that solve the pairing interaction. However,
exact solutions of the pairing hamiltonian are available from
the 1960s [17]. Even the great importance of these exactly
soluble Hamiltonians, for many body systems, went unnoticed
for quite a long time up to the moment that some publications of
Dukelsky et al. [19–22] appeared which follow these lines and
applied them to several important cases that include fermion
and boson systems. Using the Richardson prescription, it is
possible to solve exactly the pairing Hamiltonian starting
from a set of single particle states obtained from a mean
field approximation. The ground state solution is composed of
pairs of particles with a well-defined structure. With this exact
solution we can study the angular momentum distribution of
the Richardson pairs in different kind of nuclei, going from
spherical to deformed ones, in order to clarify two important
items:

(i) If pairs of particles coupled to angular momenta S and
D are enough to describe the ground state of nuclear
systems.

(ii) How similar is the exact ground state to the BCS one
for different kind of nuclei.
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II. HAMILTONIAN USED AND ITS TREATMENT

We will use a Nilsson Hamiltonian for the single particle
energies and to this Hamiltonian we add a pairing interaction:

H =
∑
i,mi

εi,mi
c
†
i,mi

ci,m̄i
− G

4

∑
i,mi ,k,mk

c
†
i,mi

c
†
i,m̄i

ck,m̄k
ck,mk

, (1)

where the operators c
†
i,mi

are the creators of a single particle in
a Nilsson state i, mi, ci,m̄i

are the time reversal annihilation
operators and εi,mi

are the energies of the corresponding
Nilsson levels.

This Hamiltonian can be written in terms of new operators
that close an SU(2) commutator algebra

H =
∑
i,mi

εi,mi
n̂i,mi

− G

4

∑
i,mi ,k,mk

A
†
i,mi

Ak,m̄k
, (2)

where the set of generators of the SU(2) algebra is

A0
i,mi

= 1

2
c
†
i,mi

ci,mi
− �i,mi

4
, A

†
i,mi

= 1

2
c
†
i,mi

c
†
i,m̄i

, (3)

being �i,mi
= 2 the degeneration of the level (i, mi). This set

of operators fulfill the following commutation relations:[
A0

i,mi
, A

†
k,mk

] = δi,j δmi,mj
A

†
i,mi

,[
A0

i,mi
, Ak,mk

] = −δi,j δmi,mj
Ai,mi

,[
Ai,mi

A
†
k,mk

] = −2δi,j δmi,mj
A0

i,mi
, (4)

that close an SU(2) group for each i, mi . The Hilbert space
of M paired particles moving in levels i, j, k, . . . , p can
be classified in terms of the product of groups SU(2)i,mi

×
SU(2)k,mk

× SU(2)l,ml
× . . . SU(2)p,mp.

A complete set of states, in the Hilbert space, of M paired
particles and ν unpaired ones, being the total number of
particles N = 2M + ν, can be written as

|i, mi ; k,mk; . . . ..p,mp; ν〉
= 1√

N
A

†
i,mi

A
†
k,mk

. . . .A†
p,mp

|ν〉, (5)

where N is a normalization constant. The possible number of
pairs in each level is 1, because they are fermions that fulfill
the Pauli principle, and the state ν corresponds to unpaired
particles occupying the rest of the states.

Following [20] the pairing interaction corresponds to
the rational family of the Richardson-Gaudin (RG) soluble
models. In this family, the integrals of motion can be written
in terms of the group generators:

Ri,mi
= A0

i,mi
− 2G

∑
k,mk

{
[A†

i,mi
Ak,mk

+ Ai,mi
A

†
k,mk

]

2(εi,mi
− εk,mk

)

+ A0
i,mi

A0
k,mk

(εi,mi
− εk,mk

)

}
. (6)

Each of these Ri,mi
depends on one parameter, that in the

rational mode, is equal to the energy of the level εi,mi
[16].

It can be checked that they commute between themselves and
with the operator A0 = ∑

i,mi
A0

i,mi
. Following the method first

introduced by Richardson [17,18], the eigenvalue problem
of these operators Ri,mi

|�〉 = ri,mi
|�〉 can be solved. The

corresponding eigenvectors appear in terms of some collective
pair operators.

|�〉 =
M∏

α=1

B†
α|ν〉, B†

α =
∑

j

1

(Eα − εj )
A

†
j , (7)

where M is equal to the number of collective B† operators that
comprise the state. The structures of the collective operators
are determined by a set of M parameters Eα , which satisfy the
set of coupled nonlinear equations

1 + 2G
∑
k,mk

dk,mk

2εk,mk
− Eα

+ 2G
∑

β(�=α)

1

Eβ − Eα

= 0, (8)

where dk,mk
= νk,mk

/2 − �k,mk
/4 takes care of the degeneracy

of the level. The associated eigenvalues take the form

ri,mi
= di,mi


1 − 2G

∑
k,mk (�=i,mi )

dk,mk

εi,mi
− εk,mk

+ 4G
∑

α

1

Eα − 2εi,mi

}
. (9)

We note here that each independent solution of the set
of nonlinear coupled equations (8) defines an eigenstate (9)
whose eigenvalues are given by

E = 2G
∑

α

Eα. (10)

From Eq. (1), and making use of Eqs. (8) and (10), a set of
M coupled linear equations in terms of M new unknowns can
be obtained. The energies Eα solutions of Eq. (9) can be either
real or complex conjugate pairs. However, due to the fact that
the complex solutions appear always as conjugate pairs, the
eigenvalues of the operator R given by Eq. (9) are always reals.
Details of the derivation can be found in Refs. [22,23].

The occupation probabilities for the different levels can be
obtained from the Hellmann-Feynman theorem, i.e.,

ni,mi
=

〈
∂H

∂εi,mi

〉
=

∑
α

∂Eα

∂εi,mi

. (11)

These occupation probabilities can be used to make an
estimation on the value of the gap parameter. If we replace
ni,mi

= V 2
i,mi

and use the BCS definition of the gap

� = G
∑
i,mi

Ui,mi
Vi,mi

, (12)

we can obtain an estimate value of the gap parameter related
to the Richardson solution.

III. ANGULAR DISTRIBUTION OF THE
RICHARDSON PAIRS

Starting from the solution of the Hamiltonian [Eq. (1)] we
have the structure of the different Richardson’s pairs in terms
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FIG. 1. In this figures are display the imaginary
part against the real part of the energy eigenvalues
of the Richardson’s neutron pairs, for 174Yb. The
different figures, from (a) to (f) are the results obtained
for increasing values of the deformation parameter
δ. Notice that for the pairs with lower energies, the
eigenvalues are reals, but the imaginary part, related to
the collectivity of the pairs, begins to increase as the
energy approach the fermi level.

of the Nilsson-pairs:

B+
α =

∑
k,m>0

λα
k,mc

†
k,mc+

k,m̄, (13)

where

λα
k,m = 1

2εk,m − Eα

. (14)

One thing we are interested in elucidating is the angular
momenta composition of the exact solution of a pairing
Hamiltonian (1). With this object in mind, we need a
representation of the pair Bα in terms of spherical single
particle operators with a good angular momentum quantum
number. For this, we transform the Nilsson single particle
operators in spherical ones using the Nilsson transformation:

c
†
k,m =

∑
j

k
j,mb

†
j,m, (15)

where b
†
j,m is the creation operator of a fermion in the state

j,m, where j,m are the angular momentum and the magnetic
number, respectively. In terms of these spherical operators, the

pairs are defined by

B†
α =

∑
k,m>0

∑
j1,j2

λα
k,mk

j1,m
k

j2,m̄
b
†
j1,m

b
†
j2,m̄

=
∑

j1,j2,J

aα
j1,j2,J

[b†j1
b
†
j2

]J0 . (16)

The coefficient aα
j1,j2,J

can be easily calculated:

aα
j1,j2,J

=
∑

k,m>0

1

2
λα

k,mk
j1,m

k
j2,m

〈j1j2m − m|J0〉(−)j2−m[1 + (−)J ]. (17)

So the pair can be developed as a linear combination of
different parts with good angular momentum:

B†
α =

∑
J

∑
j1,j2

aα
j1,j2,J

[
b
†
j1
b
†
j2

]J

0 . (18)

Therefore, we can see that the relative amount of angular
momentum J in the Richardson pair Bα is given by

P α
J = 2

∑
j1,j2

∣∣aα
j1,j2,J

∣∣2
. (19)
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FIG. 2. Different angular-momenta probabilities for the Richard-
son neutron 42nd pair (upper figure)and for the Richardson neutron
52nd pair (lower figure) of the 174Yb as a function of the strength of
the pairing interaction.

IV. APPLICATIONS TO SOME REALISTIC CASES

To avoid confusions we summarize the calculation of the
single-particle Nilsson basis that was used in the present
calculation. We start considering a set of single particle
levels calculated from a spherical harmonic oscillator with
a strong spin orbit coupling where we added corrections for
the centrifugal force and for proton-neutron asymmetry [2].
The wave functions are the ones of the harmonic oscillator
and for each set of quantum numbers n, j, l,m, the energies
(degenerated in the magnetic quantum number), are given by
the following formula:

enjl =
{

(N + 3/2) − µ

[
l(l + 1) − N (N + 3)

2

]
− κl

}
h̄ω

for j = l + 1/2,

enjl =
{

(N + 3/2) − µ

[
l(l + 1) − N (N + 3)

2

]

− κ(l + 1)

}
h̄ω for j = l − 1/2, (20)
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FIG. 3. Behavior of the gap � as a function of the pairing strength
G calculated in the 174Yb nucleus.

where N = 2n + l is the principal quantum number and the
parameters have been fixed for 174Yb (in MeV):

h̄ω = 41A−1/3

(
1 + A − 2Z

3A

)
,

(21)
κ = 0.06366 µ = 0.02606,

for neutrons.
With this single-particle basis, including up to N = 9 we

calculate the Nilsson single-particle basis diagonalizing a
Hamiltonian with a quadrupole interaction of the form:

〈j1m|HNilsson|j2m〉 = ej1,mδj1,j2 − β〈j1m|Q20|j2〉, (22)

where m is the magnetic quantum number, conserved in
the diagonalization, and j takes into account the rest of the
quantum numbers of the level n, j, l. The quadrupole operator
is the normal one:

Q20 = r2Y20(θ, φ), (23)

and the parameter β is related to the deformation parameter δ

by the equation

β = 1

3

√
16π

5
δ. (24)

From the diagonalization of Eq. (22) we obtain the Nilsson
eigenfunctions and the energy eigenvalues εi,mi

that will be
our single particle Hamiltonian.

For each deformation of the Nilsson Hamiltonian, we add a
pairing interaction and we proceed to solve the Richardson
equations for 52 neutron pairs. The equations are solved

TABLE I. Probabilities of different angular momenta J of the
BCS solutions obtained with the indicated value of the deformation
parameter δ.

δ J = 0 J = 2 J = 4 J = 6 J = 8

0.000 1.000 0.000 0.000 0.000 0.000
0.100 0.973 0.026 0.001 0.000 0.000
0.125 0.961 0.037 0.002 0.000 0.000
0.150 0.948 0.048 0.003 0.001 0.000
0.200 0.924 0.068 0.006 0.002 0.000
0.250 0.902 0.086 0.008 0.003 0.001
0.300 0.879 0.103 0.012 0.004 0.001
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TABLE II. Probabilities of different angular momenta J of the 42nd Richardson’s pair
for the indicated value of the deformation parameter δ.

δ J = 0 J = 2 J = 4 J = 6 J = 8 J = 10 J = 12 J = 14

0.001 0.993 0.007 0.000 0.000 0.000 0.000 0.000 0.000
0.100 0.243 0.370 0.244 0.123 0.020 0.001 0.000 0.000
0.125 0.198 0.371 0.258 0.134 0.036 0.003 0.000 0.000
0.150 0.162 0.360 0.267 0.150 0.055 0.006 0.000 0.000
0.200 0.154 0.474 0.280 0.073 0.017 0.003 0.000 0.000
0.250 0.216 0.364 0.152 0.129 0.107 0.029 0.004 0.000
0.300 0.129 0.109 0.200 0.351 0.158 0.040 0.011 0.002

starting with a rather large value of G (of the order of 1 MeV)
where the solution for the ground sate has a simple structure:
all pairs have an energy with a real part smaller than the smaller
single pair energy. Displaying the real and imaginary part of
the energies, in the complex energy-plain E, we produce a
simple pattern where all the energies have a nonzero imaginary
part and form a quadratic curve. From this starting point, G

is decreased by successive small amounts and the solution,
corresponding to the ground sate, can be clearly followed.

It can be shown that if two of the energies (complex
conjugates) have small imaginary parts and equal real parts
close to twice one of the single particle energies, for a smaller
value of G, they split into two solutions with real energies,
one slightly smaller and the other slightly larger than twice the
single particle energy. These energies remain real for smaller
values of G and get closer to twice the single particle energy.
We used this fact to check that, for G going to zero, the lowest
energy state obtained corresponds to the filling of the 52 lowest
levels given by the Nilsson Hamiltonian.

In Fig. 1 we display the energy of the neutron Richardson’s
pairs of 174Yb for different deformations. The strength of the
pairing interaction was chosen in such a way that the gap
parameter, defined in terms of the occupation probabilities
of the levels, was equal to 1 MeV [see Eq. (12)]. It is clear
from the figure that the energies of the Richardson’s pairs can
be separated into two different groups: on one side there are
strongly bound pairs with real energies or with very small
imaginary parts and correspond basically to pairs of nucleons
in particular Nilsson levels. These pairs usually are far away
from the Fermi energy and are not affected much by the pairing
interaction. They usually correspond to nonactive particles that
can, in principle, be disregarded in studying the low energy

spectra of the nuclei. On the other hand there are levels close
to the Fermi energy that try to develop a pattern in the E-plane
similar to the large G pattern. In Fig. 1 we show that the
deformation has a very strong influence in the behavior of
these pairs.

One of the purposes of the present study is to look at
the angular momentum decomposition of these last pairs.
In order to have a reference point, we calculate, using the
BCS treatment, the angular momentum decomposition of the
Cooper pair related to BCS ground state, using the procedure
given in Ref. [13]. In Table I the probabilities corresponding
to different deformations obtained with BCS are shown. It
is noticeable that the amount of S pairs increases as the
deformation decreases and that the S and D pairs can describe
almost completely the structure of the BCS pair.

In Tables II and III we display the angular momentum
decomposition for two of the Richardson’s pairs for different
deformations. Table II corresponds to the 42nd pair while
Table III display the same results for the 52nd pair. For
zero deformation the S pair dominates completely but as
the deformation is increased, the higher angular momenta
begin to become important. Even more, for deformations
δ = 0.15–0.3 the weight of angular momenta J = 4 to J = 10
are comparable with the lower ones S and D.

It is interesting to study the influence of the pairing strength
on the probability of obtaining different angular momentum.
In Fig. 2 we display these probabilities for the 52nd and the
42nd pairs as functions of the pairing strength, and in Fig. 3
we display the values obtained for � using these strengths. It
is shown that even if the influence of the S boson increases by
a small amount as G is increased the situation does not change
too much.

TABLE III. Probabilities of different angular momenta J of the 52nd Richardson’s pair for the
indicated value of the deformation parameter delta.

δ J = 0 J = 2 J = 4 J = 6 J = 8 J = 10 J = 12 J = 14

0.001 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.100 0.543 0.298 0.116 0.035 0.006 0.001 0.000 0.000
0.125 0.430 0.304 0.164 0.076 0.018 0.006 0.002 0.000
0.150 0.347 0.284 0.188 0.124 0.033 0.017 0.006 0.000
0.200 0.277 0.248 0.177 0.191 0.051 0.041 0.013 0.001
0.250 0.226 0.231 0.164 0.212 0.071 0.070 0.023 0.003
0.300 0.139 0.221 0.227 0.196 0.094 0.086 0.031 0.005
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TABLE IV. Absolute values of the overlaps between the same component of angular
momenta J , between some pairs, ordered for increasing energies, against the one near the
Fermi energy (52) of the 174Yb. The deformation parameter we have taken, as an example, is
δ = 0.25. The angular momenta are displayed in the columns while the pairs involved (Mi) are
shown in the files.

〈M1 |52〉 J = 0 J = 2 J = 4 J = 6 J = 8 J = 10 J = 12

42–52 0.423 0.336 0.231 0.049 0.215 0.102 0.156
43–52 0.311 0.414 0.277 0.048 0.385 0.300 0.366
44–52 0.663 0.583 0.355 0.163 0.277 0.280 0.415
45–52 0.469 0.317 0.125 0.301 0.347 0.556 0.549
46–52 0.165 0.687 0.241 0.293 0.396 0.331 0.652
47–52 0.415 0.156 0.275 0.414 0.302 0.203 0.741
48–52 0.737 0.342 0.322 0.722 0.400 0.171 0.731
49–52 0.476 0.324 0.392 0.174 0.395 0.736 0.885
50–52 0.642 0.723 0.736 0.718 0.609 0.924 0.963
51–52 0.226 0.335 0.686 0.202 0.106 0.888 0.935

It is worthwhile to note that even if it is possible to explain,
in a phenomenological way, the behavior of deformed nuclei
using only S and D bosons well [6,7], the exact calculation
with realistic parameters used in the present paper suggests that
the inclusion of pairs of fermions coupled to higher angular
momenta will be mandatory in order to obtain a microscopic
description of those nuclei. Additionally, we want to call to
attention the fact that, even if the BCS ground state is a very
good description of nuclei near sphericity, it is quite different
from the exact solution, for deformed ones.

Additionally, it should be mentioned that the different
pairs of the Richardson’s exact solution do not have similar
structures regarding the angular momenta decomposition. We
have displayed in Table IV the overlaps between different
pairs (from 42 to 51) against the one nearest the Fermi energy
(52). As the overlaps are complex numbers, we show in the
table only their absolute values. It is clear from the overlaps

obtained that they are neither similar nor follow any special
trend. Therefore, in this solution, it is not possible to speak
about a single S,D,G boson, because their proportions are
changing from one pair to the other. In consequence, even if
we consider that higher angular momenta are necessary for a
description of deformed nuclei using reasonable interactions,
it should not be directly compared to the amount of J angular
momentum of the Richardson’s pairs with the J boson of any
bosonic approximation that use only one type of bosons in
their descriptions.
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