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the nuclear chart
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The systematic investigation of hyperdeformation (HD) at high spin in the Z = 40 − 58 region of the nuclear
chart was performed in the framework of the cranked relativistic mean-field theory. The properties of the moments
of inertia of the HD bands, the role of the single-particle and necking degrees of freedom at HD, the spins at
which the HD bands become yrast, the possibility to observe discrete HD bands, and so on are discussed in detail.
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I. INTRODUCTION

Since the discovery of superdeformation (SD) in 152Dy two
decades ago [1], nuclear SD has been in the focus of attention
of the nuclear structure community; it has been discovered in
different mass regions and extensively studied experimentally
[2] and theoretically (see, for example, Refs. [3–5] and
references therein). New phenomena such as identical bands
[3] were discovered, and the rich variety of experimental data
allowed us to test modern theoretical tools under extreme
conditions of large deformation and fast rotation.

It was known for a long time from harmonic oscillator
studies [6] that even more elongated shapes, called as
hyperdeformed (HD) and characterized by the semiaxis ratio
of around 3:1, are possible. The existence of such stable
shapes was later confirmed in the macroscopic+microscopic
(MM) method [7–15]. Theoretical results on the states located
in third (HD) minima are also available in self-consistent
Hartree-Fock+Bogoliubov (HFB) approaches based on the
Skyrme and Gogny forces (see Refs. [16–18] and references
quoted therein), and relativistic mean-field approach [19].
However, these results are restricted to spin-zero states, which
are difficult to measure in experiment. To our knowledge,
the description of the HD states at high spin within the
self-consistent approach has been attempted only in 108Cd [20]
within the cranked relativistic mean-field (CRMF) method]
and in four A ∼ 40 mass nuclei [21] (within the cranked
Skyrme-Hartree-Fock approach). The general feature of all
these calculations is the fact that the semiaxis ratio of the HD
shapes is less than 3:1 [5].

Let us mention two examples of such studies: one at spin
zero and another at high spin. In actinide nuclei, the HD states
are so-called third minima states around 232Th [11,22,23].
In these nuclei, the second saddle point is split, leading to
the excited reflection-symmetric and reflection asymmetric
configurations with large quadrupole and octupole deforma-
tions, β2 ∼ 0.9 and β3 ∼ 0.35. The density distribution at
the HD minimum resembles a di-nucleus consisting of a
nearly spherical nucleus around the doubly magic nucleus
132Sn and a well-deformed fragment from the neutron-rich
A ∼ 100 region [11]. Unfortunately, it is very difficult to
study the HD states at low spin in experiment. To overcome
this problem, one should use the fact that the larger moment
of inertia connected with the larger deformation drives the

nucleus toward larger deformations with increasing angular
momentum; the HD minimum is thus favored by rotation and
becomes ultimately yrast at high spin. For example, cranked
Nilsson-Strutinsky calculations suggested the existence of
very elongated high-spin minima in nuclei around 168Yb [9].
These HD bands are expected to become yrast at spin around
80h̄.

On the experimental side, very little was known about
hyperdeformation apart from some indications of this phe-
nomenon at low spin in the uranium nuclei [24] and light nuclei
like 12C [25] and the observation of the HD ridge structures
at high spin in the A ∼ 150 mass region [26,27]. Recent
observation of the very extended shapes in 108Cd [28,29],
strongly motivated by earlier calculations of Ref. [12] and
more recent studies of Ref. [15], has renewed interest in
the study of hyperdeformation at high spin. Although the
hyperdeformed nature of the bands in this nucleus has not
been confirmed in the subsequent cranked relativistic mean-
field analysis of Ref. [20] (see also Sect. VB in Ref. [30]),
this experiment provided a strong motivation for subsequent
experimental searches in the A ∼ 125 mass region (see
Refs. [31–33]) and theoretical studies of Refs. [5,30] within
the framework of the MM method. These experiments revealed
rotational patterns in the form of ridge-structures in three-
dimensional (3D) rotational mapped spectra with dynamic
moments of inertia J (2) ranging from 63 to 111 MeV−1 in 12
different nuclei [31]; the values around 110 MeV−1 observed
in 118Te, 124Xe, and 124,125Cs suggest that the HD structures
were populated in these experiments. However, no discrete
rotational HD bands have been identified. It is also necessary
to mention that several previous attempts to search for high spin
HD structures in 147Gd [34,35], 152Dy [26,27], and 168Yb [36]
did not lead to convincing evidences for discrete HD bands.

So far, theoretical investigations of HD at high spin were
carried out mainly in the framework of the MM method. One
of the main goals of the current manuscript is to perform for
the first time a systematic study of HD within the framework of
fully self-consistent theory, the CRMF theory. Figure 1 shows
the part of the nuclear chart where our studies are performed.
We restrict our investigation to even-even nuclei; the only
exceptions are odd-mass nuclei 111I (in which extremely SD
doubly magic band has been found) and 123,124Xe, 123I and
125Cs (which are used in the study of the relative properties
of the HD bands). In each isotope chain we consider nuclei
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FIG. 1. (Color online) The chart of nuclei in the Z = 40–58 region. Only experimentally known nuclei are shown. Experimental data on
superdeformed nuclei are taken from Ref. [2]. The nuclei in which the search for HD structures has been performed in the HLHD experiment
are taken from Ref. [31].

ranging from the most proton-rich ones up to the ones located
at the neutron-rich side of the β-stability valley. Neutron-rich
nuclei beyond the valley of the β stability are excluded
from consideration because of the experimental difficulties
of studying them at high spins relevant for HD. With the
goal to guide future experimental explorations and to find
the nuclei in which the HD may be studied with current and
future experimental facilities, we define the spins at which the
HD bands become yrast in these nuclei. In addition, available
experimental data on the HD ridge structures in the Te, Xe,
and Cs nuclei are analyzed. The general features of the HD
bands are outlined.

The role of the single-particle degrees of freedom at
hyperdeformation has not been studied in detail till now. One
of the major goals of the current manuscript is the study of their
role, and it is motivated by the desire to understand to what
extent theoretical methods developed in the study of the SD
bands are also applicable to the HD bands. It is very unlikely
that the spins, parities, and excitations energies of the HD
bands will be known in the initial stage of their experimental
study. The direct test of the structure of the wave functions
of the single-nucleonic orbitals (e.g., via magnetic moments)
will also not be possible at that stage. Thus, similar to the
case of superdeformation [3,37–39], the relative properties
of different HD bands may play an important role in the
interpretation of their structure. In this context, it is important
to understand which changes of the single-particle orbitals are
involved in going from one HD band to another, and how they
affect physical observables like dynamic moments of inertia
J (2), transition quadrupole moments Qt , total spin I , etc. In
particular, we will study whether the theoretical methods that
were systematically used in the configuration assignment of the
SD bands are also applicable to the HD bands. These include
the methods based on the relative properties of the dynamic
moments of inertia J (2) [3,37], on the effective alignments
ieff [3,38,39] and on the relative transition quadrupole moments
�Qt [40,41].

The manuscript is organized as follows. The definition of
physical observables and the details of numerical calculations
are discussed in Sec. II. The spins at which the HD bands

become yrast, the regions of nuclear chart where the experi-
mental search for the HD structures may be successful, and the
general properties of the HD bands are outlined in Sec. III. The
data obtained in the search of the HD structures in the A ∼ 120
mass region and the single-particle degrees of freedom are
also analysed in this section. Section IV is devoted to the
analysis of extremely superdeformed (ESD) structure in 111I.
The calculations predict the existence of doubly magic ESD
structure in this nucleus with the deformations being close to
HD, which may be observed with the current generation of
γ -ray detectors. Finally, Sec. V contains the main conclusions
of our work.

II. THE DETAILS OF THE CALCULATIONS

In the relativistic mean-field (RMF) theory the nucleus is
described as a system of pointlike nucleons, Dirac spinors,
coupled to mesons and to the photons [42–44]. The nucleons
interact by the exchange of several mesons, namely a scalar
meson σ and three vector particles, ω, ρ, and the photon.
The CRMF theory [4,45–47] represents the extension of RMF
theory to the rotating frame. It has successfully been tested in a
systematic way on the properties of different types of rotational
bands in the regime of weak pairing such as normal-deformed
[48], superdeformed [4,49], as well as smooth terminating
bands [44].

In the current study, we restrict ourselves to reflection
symmetric shapes since previous calculations in the MM
method show no indications that odd-multipole (octupole, . . .)
deformations play a role in the SD and HD bands of the
nuclei covered by our study [15] and in the HD bands of
the A ∼ 110–125 [50] mass region.

A. Physical observables

Similar to the case of the SD bands, it is reasonable to
expect that the HD bands will not be linked to the low-spin
level scheme for a long period of time. Thus, the spins and
parities of the HD bands will not be known and it will not be
possible to define the kinematic moment of inertia J (1) because
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it depends on the absolute values of the spin. In such a situation,
the dynamic moment of inertia J (2) will play an important role
in our understanding of the structure of the HD bands. This is
similar to the case of the SD bands (see Refs. [3,37]). Other
observables, such as transition quadrupole moments Qt and
effective (relative) alignments ieff , will also be important.

In the CRMF calculations, the rotational frequency �x , the
kinematic moment of inertia J (1) and the dynamic moment of
inertia J (2) are defined by

�x = dE

dJ
, (1)

J (1)(�x) = J

{
dE

dJ

}−1

, (2)

J (2)(�x) =
{

d2E

dJ 2

}−1

. (3)

The charge quadrupole Q0 and mass hexadecupole Q40

moments are calculated by using the expressions

Q0 = e

√
16π

5

√
〈r2Y20〉2

p + 2〈r2Y22〉2
p, (4)

Q40 = 〈r4Y40〉p + 〈r4Y40〉n, (5)

where the labels p and n are used for protons and neutrons,
respectively, and e is the electrical charge. At axially symmet-
ric shapes, typical for the hyperdeformed states, the transition
quadrupole moment Qt is equal to Q0.

The quadrupole deformation β2 for axially symmetric
shapes is frequently defined in self-consistent calculations
from calculated and/or experimental quadrupole moments
using simple relation [18,51,53]

β2 = 1

XR2

√
5π

9
QX

0 , (6)

where R = 1.2A1/3 fm is the radius of the nucleus and QX
0 is a

quadrupole moment of the X-th (sub)system expressed in fm2.
Here X refers either to proton (X = Z) or neutron (X = N )
subsystem or represents total nuclear system (X = A). This
expression, however, neglects the higher powers of β2 and
higher multipolarity deformations β4, β6, . . . [54], which play
an important role at hyperdeformation.

Considering that the definition of the deformation is model
dependent [54], and that this quantity is not experimentally
measurable, we prefer to use transition quadrupole moment Qt

for the description of deformation properties of hyperdeformed
states. This is experimentally measurable quantity, so in
the future our predictions can be directly compared with
experiment. The deformation properties of the yrast SD band
in 152Dy (which is one of the most deformed SD bands
[28]) are used as a reference. This is done by introducing
normalized transition quadrupole moment Qnorm

t (Z,A) in the
(Z,A) system

Qnorm
t (Z,A) = ZA2/3

100.36
eb (7)

This equation is based on the ratio Qnorm
t (Z,A)/Qt (152Dy)

calculated using Eq. (6) under the assumption that the β2

values in the (Z,A) system and in 152Dy are the same.

We use the value Qt (152Dy) = 18.73 eb obtained in the
CRMF calculations with the NL1 parametrization of the RMF
Lagrangian for the yrast SD band in 152Dy at I = 60h̄ in
Ref. [4]. Thus, in first approximation (neglecting the
higher powers of β2 and higher multipolarity deformations
β4, β6, . . .) the equilibrium deformation of the band in the
(Z,A) system having the Qnorm

t (Z,A) value is the same as
in the yrast SD band of 152Dy. We describe the band as
hyperdeformed if its Qt value exceeds Qnorm

t (Z,A) by at least
40%. This criteria is somewhat relaxed in the Z = 40, 42, 44
nuclei for which the band is defined as HD if its Qt value
exceeds Qnorm

t (Z,A) by at least 30%.
The effective (relative) alignment ieff between two bands

is defined as the difference between the spins of two levels in
bands A and B at the same rotational frequency �x [38]:

i
B,A
eff (�x) = IB(�x) − IA(�x). (8)

This quantity has been used frequently in the analysis of the
single-particle structure of the SD bands and the configuration
assignment (see Refs. [38,39] and references quoted therein). It
depends on both the alignment properties of the single-particle
orbital(s) by which the two bands differ and the polarization
effects induced by the particles in these orbitals [52]. The latter
are in part related to nuclear magnetism.

Because the pairing correlations are relatively weak in the
HD bands of interest (see Sec. III C), their intrinsic structure
can be described by means of the dominant single-particle
components of the hyperintruder states occupied. The calcu-
lated configurations will be labeled by [p, n1n2], where p, n1,
and n2 are the number of proton N = 7 and neutron N = 7
and N = 8 hyperintruder orbitals occupied, respectively. For
most of the HD configurations, neutron N = 8 orbitals are not
occupied, so the label n2 will be omitted in the labeling of such
configurations.

Single-particle orbitals are labeled by [Nnz	]�sign ·
[Nnz	]� are the asymptotic quantum numbers (Nilsson
quantum numbers) of the dominant component of the wave
function at �x = 0.0 MeV. The superscripts sign to the orbital
labels are used to indicate the sign of the signature r for that
orbital (r = ±i).

The spins at which the SD and HD configurations become
yrast in the calculations are defined as crossing spins I SD

cr and
IHD

cr , respectively.

B. Numerical scheme of the CRMF calculations

The CRMF equations are solved in the basis of an
anisotropic three-dimensional harmonic oscillator in Cartesian
coordinates characterized by the deformation parameters β0

and γ and oscillator frequency h̄ω0 = 41A−1/3 MeV, for
details see Refs. [4,45]. The truncation of basis is performed in
such a way that all states belonging to the shells up to fermionic
NF and bosonic NB are taken into account.

The impact of the truncation of basis on the numerical
accuracy of the calculations has first been studied in the
axially symmetric RMF code, see Fig. 2. In the mass region of
interest, the calculations with NF = 12 provide a reasonable
approximation to the fully convergent NF = 26 solution up
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FIG. 2. (Color online) Potential energy surfaces (PES) obtained
in the axially symmetric RMF calculations without pairing in the
142Ce nucleus. The results of calculations with NF = 12, 14, and
26 are shown. In all these calculations, NB is fixed at 26. The
results with NF = 26 correspond to a fully converged solution:
the binding energies do not change with further increase of NF .
The gaps in the PES lines are due to jumps of the solution from
one single-particle configuration to another. The same single-particle
configurations are compared at the same value of charge quadrupole
moment. The normalized value of transition quadrupole moment
Qnorm

t corresponding to the deformation of the yrast SD band in 152Dy
is indicated by arrow. The range of hyperdeformation is also indicated.

to a deformation typical for the SD shapes. However, this
truncation scheme becomes a poor approximation when the
quadrupole moment appreciably exceeds the one correspond-
ing to the lower limit of HD; the difference between the
NF = 12 and NF = 26 solutions increases rapidly with the
increase of quadrupole moment (see Fig. 2). However, in this
quadrupole moment range the results of the calculations with
NF = 14 are closer to exact solution, although still exceeding
it by ∼1–2 MeV at the upper end of the calculated quadrupole
moment range. It was tested that with the decrease of the mass,
the difference between the NF = 14 and NF = 26 solutions
will also decrease as well so the difference falls within the
range of 1 MeV for the majority of the nuclei under study.

These conclusions have also been tested in triaxial CRMF
calculations. It was concluded that physical observables of
interest are described with sufficient numerical accuracy when
NF = 12 is used for the SD and ND states and NF = 14 for
the HD states. Thus, we employ a hybrid calculational scheme
in which the CRMF solutions in the ND and SD minima are
sought using NF = 12, whereas the ones in the HD minima
using NF = 14. In all CRMF calculations, we use NB = 20.
To eliminate the numerical inaccuracies in the definition of the
crossing spin IHD

cr , the yrast ND/SD configurations, which are
crossed by the yrast HD configuration, were recalculated in
the crossing region using NF = 14, and only then the crossing
spin was defined. One should keep in mind that even with
NF = 14 the spins at which the HD configurations become
yrast in the calculations may be overestimated by 1–2h̄ when
the deformation of the HD configurations exceeds appreciably
the one corresponding to the lower limit of HD.

When searching for different types of rotational structures
it is important to find the solutions in all local minima which
are close to the yrast line to properly define the crossing spins
between the rotational structures of different nature. This is
easily achievable in the macroscopic+microscopic approach
by creating potential energy surfaces (PES) in the deformation
space covering quadrupole and triaxial deformations [12,55].
However, the computational cost to create similar PES in the
self-consistent models is enormous, thus it has never been
attempted in rotating nuclei. To overcome this problem, we
use the fact that in self-consistent approaches without pairing
the deformation of the basis defines to a large extent the
local minima where the solutions will be obtained. Thus,
the solutions in the ND minima, including triaxial ones,
are searched using three combinations of the deformation
of basis: (β0 = 0.30, γ = −30◦), (β0 = 0.30, γ = 0◦), and
(β0 = 0.30, γ = +30◦). In a similar way, the solutions in the
SD minima are searched using the following combinations
of the deformations of basis (β0 = 0.65, γ = −30◦), (β0 =
0.65, γ = 0◦), (β0 = 0.65, γ = +30◦), and (β0 = 0.8, γ =
0◦). The latter deformation of basis also leads frequently to
the HD solutions. The deformation of basis (β0 = 1.0, γ = 0◦)
has been used for the search of the solutions in the HD minima.
Nonzero γ deformations of basis at large β0 lead either to the
same solution as γ = 0◦ or to the highly excited configurations.
For each of the above-mentioned values of the deformation of
basis, the lowest in energy solutions are calculated as a function
of spin, and the yrast line is formed from these solutions.

C. The selection of the RMF parametrization

The NL1 parametrization of the RMF Lagrangian [56]
is used in the majority of the calculations in the cur-
rent manuscript. As follows from previous studies, this
parametrization provides a good description of the moments
of inertia of the rotational bands in unpaired regime in the
SD and ND minima [4,39,44,49], the single-particle energies
for the nuclei around the valley of β stability [39,51], and
the excitation energies of the SD minima [57]. NL3 [58] is
an alternative parametrization, the quality of which has been
tested in rotating nuclei (but less extensively than in the case
of NL1) [39,48,49,59]. Some results with this parametrization
will be presented. Few results obtained with the NLSH [60]
and NLZ [61] parametrizations will be shown in Sec. III C
to illustrate the possible spread of calculated quantities. It
is necessary to keep in mind that the quality of the NLSH
parametrization in respect of the description of rotational
properties of the nuclei as well as their single-particle energies
is not as good as that of the NL1 and NL3 [39,49,51], and the
force NLZ has not been tested in that respect.

The spins at which the rotational structures belonging to
different minima in potential energy surfaces become yrast de-
pend in general on the relative energies of these minima and on
the moments of inertia of rotational structures in these minima.
Previous experience shows that different parametrizations of
the RMF Lagrangian give similar moments of inertia for the
same configuration [39,44,49,59] (see also Fig. 13 below).
Figure 3 also illustrates that the potential energy surfaces
at spin zero as a function of charge quadrupole moment
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FIG. 3. (Color online) The same as in Fig. 2 but for the results
obtained in the axially symmetric RMF calculations with pairing
using different parametrizations of the RMF Lagrangian and NF =
26. Figure shows the binding energies normalized with respect to the
lowest energy of the lowest potential energy curve.

obtained with the NL1 and NL3 parametrizations are similar
in shape. These two facts suggest that the HD configurations
should become yrast at approximately the same spins in both
parametrizations: this conclusion is confirmed in Sec. III A. It
is interesting to note that the NL3 curve in Fig. 3 is similar to
the one obtained with recently developed density-dependent
meson-exchange effective interaction DD-ME2 [62], which
represents a new class of the RMF parametrizations as
compared with NL1 and NL3. However, so far this interaction
has not been used in the studies of rotating nuclei, thus it is
not employed in the current study because its reliability in the
description of rotational properties is not known.

III. HYPERDEFORMATION AT HIGH SPIN: WHERE TO
EXPECT AND ITS GENERAL FEATURES

A. The systematics of crossing spins and transition quadrupole
moments of the HD bands

Figures 4–7 display the spins at which the SD and HD
configurations become yrast (crossing spins) in the CRMF
calculations. In addition, the calculated transition quadrupole
moments of these configurations at spin values close to the
crossing spins are shown. The calculated HD configurations
are near-prolate. One can see that the crossing spins IHD

cr are
typically lower for proton-rich nuclei. Such a feature is seen
in most of the isotope chains; by going from the β stability
valley toward the proton drip line, one can lower IHD

cr by
approximately 10h̄. The minimum of crossing spins IHD

cr is
reached at N ≈ Z + 10 in the Pd, Te, and Ru isotope chains
[see Figs. 5(e), 5(a), and 7(a)], and the Mo isotope chain
[Fig. 7(c)] shows almost no dependence of IHD

cr on mass
number. In other isotope chains, the minima in crossing spins
IHD

cr appear in most proton-rich nuclei. Considering that the
sensitivity of modern γ -ray detectors allows study of discrete
rotational bands only up to ≈65h̄ in medium mass nuclei
[63–65], and that the observation of higher spin states will most
likely require a new generation of γ -ray tracking detectors such
as GRETA or AGATA, these features of crossing spins IHD

cr
represent an important constraint.

As suggested by the studies of the Jacobi shape transition
in Ref. [30], the coexistence of the SD and HD minima at
the feeding spins may have an impact on the survival of
the HD minima because of the decay from the HD to SD
configurations. If this mechanism is active, then only the nuclei
in which the HD minimum is lower in energy than the SD one
at the feeding spin and/or the nuclei characterized by the large
barrier between the HD and SD minima will be the reasonable
candidates for a search of the HD bands. Figures 4–7 show that
the HD configurations become yrast at lower spin than the SD
ones only in a specific mass range that depends on the isotope
chain. This range can be narrow as in the case of Te isotopes
[Fig. 5(a)] or wide as in the case of Ce isotopes [Fig. 4(a)]. The
question of the population of the HD bands within the RMF
framework definitely deserves an additional study, but such a
study is beyond the scope of the present manuscript.

Figure 6 compares the results of the calculations for Cd
isotopes obtained with the NL1 and NL3 parametrizations of
the RMF Lagrangian. One can see that both parametrizations
predict similar crossing spins I SD

cr and IHD
cr and similar
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FIG. 4. (Color online) The crossing spins (left panels) at which
the SD (solid circles) and HD (open squares) configurations become
yrast and their transition quadrupole moments Qt (right panels) for
the Ce, Ba, and Xe isotopes. The values for the SD configurations
are shown only in the cases when they become yrast at lower spins
than the HD configurations. The normalized transition quadrupole
moments Qnorm

t corresponding to the deformation of the yrast SD
band in 152Dy are also shown.

transition quadrupole moments. However, in average, the
crossing spins IHD

cr calculated with NL3 are somewhat lower
(by 1–2h̄) than the ones obtained in the calculations with NL1.

B. The A ∼ 120 region: the analysis of experimental data

The recent Hyper-Long-HyperDeformed (HLHD) experi-
ment at the EUROBALL-IV γ -detector array revealed some
features expected for HD nuclei [31–33]. Although no discrete
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FIG. 5. (Color online) The same as in Fig. 4 but for the Te, Sn,
and Pd isotopes.

HD rotational bands have been identified, rotational patterns
in the form of ridge-structures in three-dimensional (3D) rota-
tional mapped spectra are identified with dynamic moments of
inertia J (2) ranging from 71 to 111 MeV−1 in 12 different
nuclei selected by charged-particle and/or γ gating (see
Table I). The four nuclei, 118Te, 124Cs, 125Cs, and 124Xe, found
with moment of inertia J (2) ∼ 110 MeV−1 are most likely
hyperdeformed,1 whereas the remaining nuclei with smaller
values of J (2) are expected to be superdeformed. The width in
energy of the observed ridges indicates that there are ≈6–10
transitions in the HD cascades, and a fluctuation analysis shows

1For comparison, the HD ridges in 152Dy are characterized by J (2) ∼
130 MeV−1 [27].
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TABLE I. The values of the dynamic moment of
inertia J (2)

exp of ridge structures measured in the HLHD
experiment [31]. Theoretical results obtained in the MM
calculations [30] are shown in the last column.

Nucleus J (2)
exp J

(2)
MM

126Ba 77 118
123Xe 71
122Xe 77 108
121Xe 63
120Te 71
118Te 111 97
125Cs 100 106
124Cs 111
124Xe 111 111
122I 71
121I 77 102
126Xe 83 110

that the number of bands in the ridges exceeds 10. The HD
ridges are observed in the frequency range of about 650 to
800 keV, and their dynamic moments of inertia have typical
uncertainty of 10% (e.g., 111 ± 11 MeV−1 in 124Xe) [66].

The experimental data show unusual features never before
seen in the studies of the SD bands. For example, the addition
of one neutron on going from 124Cs to 125Cs decreases the
experimental J (2) value by ∼10% (from 111 MeV−1 down
to 100 MeV−1; see Table I). A similar situation is also seen
in the SD minimum: the addition of one neutron on going
from 121Xe to 122Xe increases the experimental J (2) value
by ∼22% (from 63 MeV−1 to 77 MeV−1; see Table I). It is
impossible to find an explanation for such a big impact of the
single particle on the properties of nuclei: previous studies in
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FIG. 6. (Color online) The same as in Fig. 4 but for the Cd
isotopes. The results of the calculations with the NL1 (HD, open
squares; SD, solid squares) and NL3 (HD, solid triangles up; SD,
open triangles down) parametrizations of the RMF Lagrangian are
presented. Note that the calculations with NL3 were performed only
for selected nuclei.
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FIG. 7. (Color online) The same as in Fig. 4 but for the Ru, Mo,
and Zr isotopes.

the SD minima in different parts of the nuclear chart never
showed such features. The case of the pair of 123Xe and 124Xe
is even more intriguing: a single particle triggers the transition
from the SD to HD minima (see Table I). Considering the fact
that the ridges corresponding to the SD and HD minima are
observed in neighboring nuclei, it is difficult to understand
why the ridges corresponding to both minima have not been
seen in the same nucleus.

The calculated kinematic and dynamic moments of inertia
as well as transition quadrupole moments of the lowest HD
solutions in the candidate HD nuclei are shown in Fig. 8. The
calculated J (2) moments of inertia somewhat underestimate
experimental data. The results of the MM calculations for
118Te, 124Xe, and 125Cs (see Table I) are closer to experimental
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FIG. 8. (Color online) Calculated kinematic and dynamic mo-
ments of inertia (top panels) and transition quadrupole moments
(bottom panels) as a function of rotational frequency for the lowest
HD solutions in 118Te, 124,125Cs, and 124Xe. The structure of calculated
configurations is indicated at bottom panels. Experimental data for
dynamic moments of inertia of ridge structures are shown in top
panels.

data, but they are obtained at fixed quadrupole deformation
β2, whereas other deformation parameters β4, β6, and β8

are automatically readjusted so as to minimize the total free
Routhian for the vacuum configuration.

In the MM calculations, the kinematic moments of inertia
of the configurations in the HD minimum decrease smoothly
with the spin, whereas their dynamic moments of inertia are
nearly constant (see Figs. 10 and 11 in Ref. [30]). The behavior
of these observables as a function of rotational frequency
(or spin) is completely different in the self-consistent CRMF
calculations (see Figs. 8, 11, and Fig. 15 below). The kinematic
moment of inertia is either nearly constant or very gradually
increases with rotational frequency. The dynamic moment of
inertia gradually increases over the calculated frequency range
showing the features typical to the SD bands in the A ∼ 190
mass region that are affected by pairing [3,67]: this is despite
the fact that pairing is neglected in the CRMF calculations.
The transition quadrupole moment Qt is also increasing with
rotational frequency; such a feature has not been seen before
in the calculations without pairing for the SD bands. The
microscopic origin of these unusual features will be discussed
in more details in Sec. III C.

C. 124Xe nucleus

The results of the CRMF calculations for some HD
configurations in 124Xe are displayed in Fig. 9. The HD
minimum becomes lowest in energy at spin 82h̄, and the
[1,2] configuration is the yrast HD configuration in the spin
range of interest. The occupation of the single-particle orbitals
in this configuration is presented in Fig. 10. The excited
HD configurations displayed in Fig. 9 are built from this
configuration by exciting either one proton or one neutron or
simultaneously one proton and one neutron. The total number
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FIG. 9. (Color online) Energies of the calculated configurations
relative to a smooth liquid drop reference AI (I + 1), with the inertia
parameter A = 0.01. The ND and SD yrast lines are shown by dotted
and dot-dot-dashed lines, respectively. Solid and dot-dashed lines are
used for the [1,2] and [1,21] HD configurations, respectively. Dashed
lines represent excited HD configurations.

of excited HD configurations shown is 35. It interesting to
mention that the configuration involving the lowest N = 8
neutron orbital (the [1,21] configuration in Fig. 9) is calculated
at low excitation energy.

The calculations reveal a high density of the HD con-
figurations that will be even higher if the additional calcu-
lations for the excited configurations would be performed
starting from the low-lying excited HD configurations, such
as the [1,21] configuration. This high density is due to two
facts: relatively small Z = 54 and N = 70 HD shell gaps
in the frequency range of interest (see Fig. 10) and the
softness of the potential energy surfaces in the HD minimum.
Figure 11(b) illustrates the latter feature: the particle-hole
excitations discussed above, characterized by low excita-
tion energy, lead to appreciable changes in the transition
quadrupole moments Qt . It is interesting to mention that there
are large similarities between the single-particle Routhians
in the vicinity of the Z = 54 and N = 70 HD shell gaps
obtained in the CRMF calculations for yrast HD configuration
in 124Xe (Fig. 10) and the ones obtained in the Woods-
Saxon calculations for the HD minimum in 122Xe employing
the so-called universal parametrization of the Woods-Saxon
potential (see Figs. 8 and 9 in Ref. [30]). As a consequence,
the high density of the excited HD states in 124Xe is also
expected in the MM calculations based on the formalism of
Ref. [30].

The high density of the HD configurations may question
our neglect of pairing. This is because there are numerous
possibilities to scatter proton and neutron pairs and this process
is energetically inexpensive due to the high density of the
calculated configurations. To test the impact of pairing on
the moments of inertia and binding energies, the comparative
studies of the vacuum HD configuration and its unpaired
analog in 124Xe and of the vacuum SD configuration and its
unpaired analog in 152Dy have been performed within the
cranked relativistic Hartree+Bogoliubov (CRHB) [68] and
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FIG. 10. Proton (top panel) and neutron (bottom panel) single-
particle energies (Routhians) in the self-consistent rotating potential
as a function of the rotational frequency �x . They are given along
the deformation path of the yrast HD configuration (the [1,2]
conf. in Fig. 9) in 124Xe and obtained in the calculations with the
NL1 parametrization of the RMF Lagrangian. Long-dashed, solid,
dot-dashed, and dotted lines indicate (π = +, r = +i), (π = +, r =
−i), (π = −, r = +i), and (π = −, r = −i) orbitals, respectively.
At �x = 0.0 MeV, the single-particle orbitals are labeled by the
asymptotic quantum numbers [Nnz	]� (Nilsson quantum numbers)
of the dominant component of the wave function. Solid (open) circles
indicate the orbitals occupied (emptied) in the [1,2] configuration.
The dashed box indicates the frequency range corresponding to the
spin-range I = 60–85h̄ in this configuration.

CRMF approaches. An approximate particle number projec-
tion by means of the Lipkin-Nogami method is employed in
the CRHB approach. Note that unpaired analog of the vacuum
HD configuration in 124Xe (built from the [1,2] configuration
by the excitation of the proton from the π [770]1/2(r = +i)
orbital into the π [420]1/2(r = +i) orbital, see Fig. 10) is
nonyrast in the spin range of interest. As follows from this
study, in both nuclei the pairing has a similar impact on the
moments of inertia of the configurations under consideration.
Taking into account that the SD bands in the A ∼ 150 mass
region are well described in the calculations without pairing
[4,39], it is reasonable to expect that the neglect of pairing
is a valid approximation for the moments of inertia of the
HD bands in 124Xe. Pairing leads to an additional binding
of ∼500 keV in the case of yrast SD band in 152Dy; this
additional binding slightly exceeds 1 MeV in the case of the
vacuum HD configuration in 124Xe. The dominant effects in the
quenching of pairing correlations are the Coriolis antipairing
effect and the quenching due to shell gaps: the latter effect
being more pronounced in the SD bands of the A ∼ 150 mass
region because of the larger size of the SD shell gaps (see
Fig. 4 in Ref. [4]). The third mechanism of the decrease
of pairing is the blocking effect [69]. Due to this effect the
impact of pairing on physical observables will be even lower
in the HD bands of 124Xe based on the excitation(s) of one
(two) particles considered in Fig. 9. Thus, although weak
pairing will somewhat modify the relative energies of different
configurations, in no way will it create an energy gap between
the vacuum and excited configurations.

The calculations suggest that it will be difficult to observe
discrete HD bands in 124Xe because their high density
will lead to a situation in which the feeding intensity will
be redistributed among many low-lying bands, thus dras-
tically reducing the intensity with which each individual
band is populated. However, the high density of the HD
bands may favor the observation of the rotational patterns
in the form of ridge-structures in three-dimensional rota-
tional mapped spectra as it has been seen in the HLHD
experiment [31].

Figure 8 shows that the HD shapes undergo a centrifugal
stretching that result in an increase of the transition quadrupole
moments Qt with increasing rotational frequency. This process
also reveals itself in the moments of inertia: the kinematic mo-
ments of inertia are either nearly constant or slightly increase
with increasing rotational frequency, whereas the dynamic
moments of inertia increase continuously and substantially
over the frequency region of interest. On the contrary, the
dynamic moments of inertia of the HD bands are almost
constant as a function of rotational frequency in the MM
calculations (see Figs. 10 and 20 in Ref. [30]), which is most
likely a consequence of fixed quadrupole deformation. The
above-mentioned features are general ones for the HD bands
in the A ∼ 120 mass region, see Figs. 8, 11, and 15. They are in
complete contract to the features of the SD bands in unpaired
regime, in which the Qt, J

(1), and J (2) values (apart from
the unpaired band crossing regions) decrease with increasing
rotational frequency (see Refs. [4,37,44,49] and references
therein).
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moments Qt (panel b) of the HD configurations
in 124Xe shown in Fig. 9. They are displayed as a
function of rotational frequency �x . The regions
of band crossings are excluded in these plots.

Systematic analysis of the yrast/near-yrast HD configu-
rations in the part of the nuclear chart under investigation
shows that the centrifugal stretching is a general feature.
At the spins, where the HD minimum is lowest in energy,
it reveals itself (with very few exceptions) by the increase
of transition quadrupole Qt and mass hexadecapole Q40

moments. Only in a few HD bands, characterized by the modest
transition quadrupole moment, at low rotational frequencies
these quantities decrease with increasing �x . However, even
in these bands the Qt and Q40 values start to increase above
specific value of rotational frequency. Similar features are also
seen in the dynamic moments of inertia; with a few exceptions
the J (2) values increase in the spin range of interest. The
variations (both the increases and decreases) in the kinematic
moments of inertia are rather small (∼2% of absolute value)
in the frequency range of interest.

The basis of the CRMF model is sufficiently large to see if
there is a tendency for the development of necking. Figure 12
shows some indications of the necking and the clusterization
of the density into two fragments in the [1,2] configuration of
124Xe, but this effect is not very pronounced in this nucleus.

The kinematic and dynamic moments of inertia as well
as the transition quadrupole and mass hexadecapole moments
of the [1,2] configuration in 124Xe are shown for different
parametrizations of the RMF Lagrangian in Fig. 13. The
gradual increase of all physical observables is due to cen-
trifugal stretching. The NLZ (NLSH) parametrizations provide
the largest (smallest) values of the above mentioned physical
observables, whereas the results obtained with NL1 and NL3
are in between those results. Similar relations between the
results obtained with these parametrizations also exist in
other regions of nuclear chart studied so far in the CRMF or
CRHB frameworks, namely in the A ∼ 60 [70], A ∼ 150 [39],
and A ∼ 190 [68] regions of superdeformation and in the
A ∼ 250 [51] region of normal deformation. The NL1 and
NL3 parametrizations, which have been extensively used in
the previous studies of rotating systems and superdeformation
[44], give the values of physical observables of interest which

differ only by few percentages. It is known that the NLSH
parametrization somewhat underestimates the experimental
moments of inertia [39,70]. The NLZ parametrization has not
been used in the previous studies of rotating systems, so it is
unknown how well it describes such systems.
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of y and z coordinates for the [1,2] configuration in 124Xe at rotational
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transition quadrupole Qt and mass hexadecupole
Q40 moments of the [1,2] configuration in 124Xe
calculated with different parametrizations of the
RMF Lagrangian.

D. Single-particle properties at hyperdeformation: an example
of neighborhood of 124Xe.

The role of the single-particle degrees of freedom at
hyperdeformation was mainly overlooked in the previous
studies. It has been studied to some extent only within
the MM method in Refs. [10,30]. However, the studies of
Ref. [30] suggest that the 124Xe nucleus is very rigid in the
HD minimum: the dynamic moments of inertia of different
HD bands differ by no more than 2%, and their changes as
a function of spin are very small (see Fig. 10 in Ref. [30]).
Similar results were obtained for HD bands in 146Gd and 152Dy
in Ref. [10].

On the contrary, the CRMF calculations for the dynamic
moment of inertia of the yrast and excited HD configurations
in 124Xe show much larger spread and much larger variations
as a function of rotational frequency; see Fig. 11(a). In addi-
tion, large variations in the calculated transition quadrupole

moments Qt of these configurations are clearly seen in
Fig. 11(b). This suggests that the HD minimum is relatively
soft and that the individual properties of the single-particle
orbitals play an important role in the definition of the properties
of the HD bands. One of our goals is to investigate the
impact of the particle in a specific single-particle orbital on the
properties of the HD bands and to study whether the methods
of configuration assignment based on the relative properties of
different bands are also applicable at HD.

1. The structure of the wave function

The structure of the wave function at HD is analyzed on
the example of a few single-particle orbitals of the [1,2]
configuration in 124Xe (Fig. 14). The evolution of these orbitals
in energy with rotational frequency is displayed in Fig. 10. The
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FIG. 14. (Color online) The weights a2
N of

different N components in the structure of the
wave functions of the indicated orbitals. They
are shown as a function of rotational frequency.
For simplicity, the region of the crossing be-
tween the ν[880]1/2− and ν[411]3/2− orbitals
at �x ∼ 0.55 MeV is removed; dotted lines
are used in panel (b) to connect the weights
corresponding to the ν[880]1/2− orbital before
and after crossing.
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FIG. 15. (Color online) Dynamic moments
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inertia of the [1,2] configuration A in 124Xe
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The J (2) values of the configurations in the
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frequency range corresponding to the spin range
I = 60–85h̄ in the [1,2] configuration of 124Xe.

wave function � is expanded into the basis states by

� =
∑
N,α

cN,α|Nα〉, (9)

where N and α represent the principal quantum number and
the set of additional quantum numbers specifying the basis
state, respectively. We specify the weight a2

N of the basis states
belonging to the specific value of N in the structure of the wave
function as

a2
N =

∑
N−fixed,α

c2
N,α (10)

with the condition
∑

N a2
N = 1 following from the orthonor-

malization of the wave function of the single-particle orbital.
Hyperdeformation leads to a considerable fragmentation of

the wave function over N , which is much larger than in the case
of SD. In the regions away from the band crossing the weight
a2

N of the dominant N component of the wave function does not
exceed 0.8, whereas the weight of second largest component
is typically around 0.2 (Fig. 14). Very strong fragmentation
of the wave function is seen in the case of the ν[761]3/2+
orbital: before the band crossing the weights of the N = 7 and
N = 5 components of the wave function are approximately
0.6 and 0.3, respectively. Even stronger fragmentation is
seen in the region of the band crossing of the ν[761]3/2+
and ν[301]3/2+ orbitals at �x ∼ 0.7 MeV (Figs. 10) where
they strongly interact and gradually exchange their character
[Figs. 14(a) and 14(c)]. Similar fragmentation is also seen for
the π [770]1/2+ orbital (Fig. 14) that interacts strongly with
the π [532]5/2+ orbital in the band crossing region at �x ∼
0.8 MeV (Fig. 10).

2. The methods of configuration assignment

The HD bands in nuclei neighboring to 124Xe, which differ
by either one proton or one neutron from the [1,2] configuration
in 124Xe, and their relative properties with respect of the

[1,2] configuration in 124Xe, are studied to investigate the
applicability of different methods of configuration assignment
at HD.

The dynamic moments of inertia for the four HD bands in
each of these nuclei are compared with the one of the [1,2]
configuration in 124Xe in Fig. 15. The difference between the
dynamic moments of inertia of the configurations in nuclei
with masses A and A ± 1 is due to the impact of the particle
in the specific single-particle orbital by which two compared
configurations differ. The results of the calculations question
conventional wisdom [37] that the largest impact on the
dynamic moment of inertia is coming from the particles in
the intruder orbitals. Indeed, the impact of the neutron in the
hyperintruder ν[880]1/2− orbital on the dynamic moments of
inertia [Fig. 15(d)] is comparable to the one of nonintruder
ν[642]5/2+ orbital or even smaller by a factor of ∼2 than
the impact due to the neutron in nonintruder ν[532]3/2+
orbital [Fig. 15(b)]. A similar situation is also seen for
protons, where, for example, the impact of the proton in the
hyperintruder π [770]1/2+ orbital is smaller than its impact
in the nonintruder π [420]1/2− orbital. This suggests that not
only angular momentum, carried by the particle in specific
single-particle orbital, but also polarization effects it induces
into time-even and time-odd mean fields [52] are important
when considering relative properties of two configurations.
Based on this example, one can conclude that the configuration
assignment of the HD bands, based only on the relative
properties of the dynamic moments of inertia of two compared
bands, is unreliable.

The configuration assignments at SD have been mostly
based on the effective alignment approach (see Refs. [38,
39,70] and references therein). The success of this method
is due to the fact that it was possible to separate intruder
and nonintruder orbitals because the former show pronounced
dependence of the effective alignments ieff on the rotational
frequency (see, for example, Figs. 2, 3, 5, 6, and 8 in
Ref. [39]). On the contrary, the effective alignments of
nonintruder orbitals are typically constant as a function of
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FIG. 16. (Color online) Effective alignments

ieff extracted from the calculated configurations
for the orbitals active in the vicinity of the
Z = 54/55 and N = 70 HD shell gaps (see
Fig. 10). The calculated configurations are the
[1,2] configuration in 124Xe and the configura-
tions in neighboring nuclei (shown in Fig. 15)
obtained by adding or removing a single particle
(proton or neutron). The effective alignment
between configurations X and Y is indicated
as “X/Y.” The configuration X in the lighter
nucleus is taken as a reference, so the effective
alignment measures the effect of the additional
particle. The compared configurations differ in
the occupation of the orbitals shown in the
panels. Note that the vertical scale of different
panels is different. Vertical dashed lines indicate
the frequency range corresponding to the spin
range I = 60–85h̄ in the configuration A of
124Xe.

rotational frequency. It also follows from the studies in the
A ∼ 140–150 region of superdeformation that the change of
effective alignment by ≈1h̄ within the observed frequency
range allows us to identify aligning intruder orbitals with a
high level of confidence.

A configuration assignment based on the effective align-
ments depends on how accurately these alignments can
be predicted. For example, the application of the effective
alignment approach in the A ∼ 140–150 region of superde-
formation requires an accuracy in the prediction of ieff on
the level of ∼0.3h̄ and ∼0.5h̄ for nonintruder and intruder
orbitals, respectively [3,38,39]. In the highly deformed and
SD bands from the A ∼ 60–80 mass region, these require-
ments for accuracy are somewhat relaxed [48,70]. We expect
that in the A ∼ 125 mass region of HD, the effective
alignments should be predicted with a precision similar to
that in the A ∼ 140–150 region for a reliable configuration
assignment.

Our analysis shows that a reliable configuration assignment
for the HD bands based solely on the effective alignment
approach will be problematic (at least in the A ∼ 125 mass
region) because of several reasons. First, the hyperintruder or-
bitals do not show appreciable variations of ieff with rotational
frequency. Figure 16 shows that the effective alignments of
the hyperintruder orbitals such as π [770]1/2+ and ν[880]1/2−
show little variations with rotational frequency [see Figs. 16(a)
and 16(d)]. On the contrary, the effective alignments of
the ν[532]3/2+ and ν[530]1/2− orbitals show much larger
variations reaching 1.5h̄ in the spin range I = 60–85h̄ in
the case of the latter orbital [see Fig. 16(b)]. However, the
variations of ieff as a function of rotational frequency are small
for the majority of the orbitals in the spin range of interest.
Thus, contrary to the case of SD, it will be more difficult

to distinguish among hyperintruder, intruder, and nonintruder
orbitals based on the variations of ieff with rotational frequency.
This situation will become even more complicated if the
suggestion of Ref. [30] that the spin range over which the
HD bands are expected to be observed (24h̄ at the most; this
is shorter than in the case of SD) is true. These two features
[small variations of ieff and expected spin (frequency) range of
the HD bands] will lead to a situation where the ieff values for
many orbitals will look alike within the typical “error bars” of
the description of ieff by theoretical models, so that it will be
difficult to distinguish between them within the framework of
the effective alignment approach.

Similar to the case of SD [40,41], additional information
on how the single particle affects the properties of the HD
bands can be extracted from the relative transition quadrupole
moments �Qt . Figure 17 shows that the hyperintruder
π [770]1/2+ and ν[880]1/2− orbitals with �Qt ≈ 2 eb and
�Qt ≈ 1.25 eb have the largest impact on the transition
quadrupole moments among the studied proton and neutron
orbitals. One has to keep in mind that the addition of a proton
changes the proton number by 1. This change contributes
approximately 0.5 eb in relative transition quadrupole moment
�Qt of the proton orbitals. This effect is not present in the �Qt

values of the neutron orbitals.
The �Qt values were used only as a complimentary tool

of the configuration assignment at SD. This is because of
the difficulty to measure them in experiment [71,72] and the
fact that they show little variation as a function of rotational
frequency, thus providing less information than ieff . The same
features are also valid at HD; see Fig. 17 for the variations
of the �Qt values. In addition, some single-particle orbitals
such as π [422]3/2− and π [303]7/2− [Fig. 17(c)] show very
similar �Qt values. This will not allow us to make a unique
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FIG. 17. (Color online) Relative transi-
tion quadrupole moments �Qt = Qt (A + 1) −
Qt (A) (A is the mass of the nucleus) extracted
from the calculated configurations in indicated
nuclei. The compared configurations are shown
as “X/Y”: the configuration X in the lighter
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placed in the orbitals shown in the panels. Ver-
tical dashed lines indicate the frequency range
corresponding to the spin range I = 60–85h̄ in
the [1,2] configuration of 124Xe.

configuration assignment even if the experimental �Qt values
for these orbitals are available. However, their ieff values
differ by ∼1h̄ [Fig. 16(c)], and this fact can be used in the
configuration assignment.

However, the fact that in general the effective alignment
approach fails to provide a unique configuration assignment
at HD increases the role of the method of configuration
assignment based on relative transition quadrupole moments.
Our analysis shows that only simultaneous application of
these two methods by comparing experimental and theoret-
ical (ieff,�Qt ) values will lead to a reliable configuration
assignment at HD.

Let us illustrate this on the hypothetical example of two
“experimental” bands; one in 123I and another in 124Xe. In
this example, the [1,2] configuration is assigned to the band
in 124Xe. Let us assume that the effective alignments in the
123I/124Xe pair of the bands increase from 4.0h̄ to 4.25h̄ in
the frequency range 0.62–0.87 MeV under selected spins
of these bands. Under these conditions, the “experimental”
bands differ in the occupation of the π [770]1/2+ orbital
[Fig. 16(a)]. However, it is reasonable to expect that the
spins of “experimental” bands will not be fixed, so these
changes in effective alignment should be from (4.0 + n)h̄
to (4.25 + n)h̄, where n = 0,±1,±2, . . . . Assuming that
the accuracy of the description of effective alignments in
theoretical calculations is around 0.4h̄, one can conclude
that for n = −3 the “experimental” bands can also differ
in the occupation of either the π [532]5/2− or π [651]3/2+
orbitals [Fig. 16(a)]. In a similar way to the A ∼ 150 region
of SD [38,39], the systematic studies of the pairs of the
bands that differ by one proton may narrow the choice of the
orbitals involved. However, the �Qt values for these orbitals
are drastically different; �Qt ≈ 2.0 eb for the π [770]1/2+
orbital, �Qt ≈ 1.4 eb for π [651]3/2+, and �Qt ≈ 0.7 eb
for π [532]5/2− (see Fig. 17). So, if both quantities, ieff

and �Qt , are measured simultaneously, a unique configu-

ration assignment for “experimental” band in 123I will be
possible.

The band crossing features of the HD bands provide an
additional tool of configuration assignment that can be used
more frequently than in the case of the SD bands because
of strong mixing between the different N shells at HD. The
large peaks in J (2) of the νA and νB configurations in 125Xe
[Fig. 15(d)] are due to the band crossings with a strong interac-
tion. These crossings are also visible in the effective alignments
ieff [Fig. 16(d)] and relative transition quadrupole moments
�Qt [Fig. 17(d)]. They originate from the crossing of the same
signatures of the ν[301]3/2 and ν[761]3/2 orbitals, where νA

and νB have signatures r = +i and r = −i, respectively. The
former orbital is occupied before band crossing, the latter after
band crossing. An unusual feature of these band crossings is
the fact that they originate from the interaction of the orbitals,
the dominant N components of which differ by �N = 4. At
SD, the crossings between the orbitals dominated by different
N shells have been characterized by a weak interaction leading
to a sharp jump in J (2) [4,73,74]. The observed unpaired SD
band crossings with strong interaction are between the orbitals
with the same dominant N shells and they were observed in
the nuclei around 147Gd [4,75].

E. General observations: the density of the HD bands
and the necking degree of freedom

As discussed in Sec. III C on the example of 124Xe, the
high density of the HD bands is one of the major obstacles
for the observation of discrete HD bands. It will lead to
a situation where the feeding intensity will be redistributed
among many low-lying HD bands, thus drastically reducing
the intensity with which each individual band is populated.
As a consequence, the feeding intensity of an individual HD
band will drop below the observational limit of experimental
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facility; this fact has to be taken into account when planning
future experiments for a search of discrete HD bands.

Two factors contribute to the high density of the HD bands,
namely relatively small proton and neutron HD shell gaps
in the frequency range of interest and the softness of the
potential energy surfaces in the HD minimum (see Sec. III C).
Systematic mapping of the density of the HD states as a
function of the proton and neutron numbers is too costly in
the computational sense because it involves the calculation
of the lowest in energy particle-hole excitations. Thus, we
decided to look at the problem of the density of the HD states
in a somewhat simplistic way by considering the proton and
neutron energy gaps between the last occupied and the first
unoccupied states in the yrast HD configurations; the small
size of these gaps will most likely point to the high density of
the HD bands.

The analysis of the Nilsson diagrams in Fig. 18 already
reveals some HD gaps in the single-particle spectra. At the
values of Q0 ∼ 17–20 eb typical for the HD configurations
in Cd isotopes [Fig. 6(b)], there are very large proton Z = 48
and neutron N = 48 HD shell gaps and smaller neutron gaps
at N = 58 and 60. In general, this figure suggests that the
hyperdeformation will be more favored in the nuclei with a
similar number of protons and neutrons because the proton

and neutron shell effects for the HD shapes will act coherently;
this trend has already been seen in the crossings spins IHD

cr for
different isotope chains in Sec. III A.

The size of these gaps and their presence will be altered
(especially for medium- and small-size energy gaps) when the
rotation and the self-consistent readjustment of the neutron
and proton densities with the change of particle number are
taken into account. Indeed, this is seen in Fig. 19, which shows
the energy gaps between the last occupied and first unoccupied
single-particle orbitals as a function of the neutron number for
different isotope chains. The largest proton gap at Z = 48 is
seen in Cd isotopes; its size is around 1.5 MeV in proton-
rich nuclei and it increases up to 3 MeV with the increase of
neutron number. In other isotope chains, the size of the proton
energy gap is smaller than in Cd isotopes and it fluctuates
around 1 MeV. For the majority of the nuclei, the size of the
neutron energy gap fluctuates around 1 MeV. However, its size
increases up to 1.5 MeV in some nuclei and in 96Cd it reaches
2 MeV (see Fig. 19 for details).

Taking into account that the proton and neutron HD shell
gaps in 124Xe are around 1 MeV (Fig. 10) and considering
the results for the density of the HD states in this nucleus as a
reference (Sec. III C), one can conclude that the analysis of the
energy gaps suggests that in most of the nuclei the density of
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the HD bands will be high. For these nuclei, the observation of
discrete HD bands using existing facilities is most likely not
possible. The only exceptions are Cd nuclei and a few nuclei
in which the size of at least one gap reaches 1.5 MeV (see
Fig. 19 for details). For example, in Cd nuclei the large size of
the Z = 48 HD shell gap (especially, for nuclei in the valley
of the β stability) will make proton particle-hole excitations
energetically expensive. As a consequence, the density of the
HD bands has to be lower in Cd isotopes as compared with the
one in other isotopes.

One has to remember that the high density of the HD
bands is not necessarily a negative factor. It favors the
observation of the rotational patterns in the form of ridge
structures in three-dimensional rotational mapped spectra as
it has been seen in the HLHD experiment for a few nuclei
[31]. The observation of ridge structures as a function of
proton and neutron number, which seems to be feasible with
existing experimental facilities such as GAMMASPHERE,
will provide invaluable information about HD at high spin.

The importance of the necking degree of freedom for the
high-spin HD states has been studied in the MM approach

in Refs. [8,15]. However, this degree of freedom has not
been investigated in detail at high spin in self-consistent
approaches so far. To fill this gap in our knowledge, the
systematics of the self-consistent proton density distributions
in the HD states obtained in the CRMF calculations are
shown in Fig. 20. One can see that in some nuclei such as
124Te, 130Xe, 132Ba the necking degree of freedom plays an
important role, whereas others (for example, 100Mo and 136Ce)
show no necking. The neck is typically less pronounced in
the HD states of the lighter nuclei because of their smaller
deformation (see also Fig. 5 in Ref. [20]). It becomes even more
important in extremely deformed structures that according to
the language of Ref. [5] can be described as megadeformed.
Figure 21 shows an example of density distribution for the
megadeformed state in 102Pd, which becomes yrast at I ∼ 85h̄
in the CRMF calculations. The neck is more pronounced in
the proton subsystem than in the neutron one both in the HD
and megadeformed structures due to the Coulomb repulsion of
the segments. This is illustrated in Fig. 21. Our self-consistent
calculations indicate that the shell structure is also playing a
role in a formation of neck. For example, the neck is visible
in 132Ba but is not seen in 116Ba (Fig. 20). This is contrary
to the fact that the calculated transition quadrupole moments
of the HD states in these nuclei [Fig. 4(d)] and their density
elongations (Fig. 20) are comparable. These results indicate
that, in general, the necking degree of freedom is important
in the HD states and that it should be treated within the
self-consistent approach that, in particular, allows different
necking for the proton and neutron subsystems.

IV. 111I NUCLEUS: A CANDIDATE FOR A DOUBLY
MAGIC EXTREMELY SD BAND

The results of the CRMF calculations for the configurations
forming the yrast line or located close to it in energy are
shown in Fig. 22. According to the calculations, normal-
and highly deformed bands, many of which show the high
triaxiality that is indicative of approaching band termination
[55], dominate the yrast line up to I ≈ 64h̄. At higher spin,
more deformed structures become yrast. The configuration
A has the structure π61ν62 and is yrast in the spin range
I = 64–73h̄: no hyperintruder N = 7 orbitals are involved
in its structure. In this spin range it is characterized by the
transition quadrupole moment Qt ∼ 15.7 eb and by the γ

deformation of ∼1◦. The normalized transition quadrupole
moment in this system is Qnorm

t = 11.7 eb, thus this band
is approximately 35% more deformed than the SD band
in 152Dy. As a consequence, in terms of deformation, this
band can be characterized as an extremely superdeformed
(ESD) band that is only slightly less deformed than the
HD bands.

In addition, the configuration A is well separated from the
excited SD/HD configurations below I ∼ 73h̄ (see Fig. 22).
This is due to the presence of the large Z = 53 and N = 58
ESD shell gaps in the single-particle spectra (see Fig. 23). In
this configuration, all single-particle states below the Z = 53
and N = 58 ESD shell gaps are occupied by protons and
neutrons, respectively. Thus, this ESD band is a doubly magic

014315-16



HYPERDEFORMATION IN THE CRANKED RELATIVISTIC . . . PHYSICAL REVIEW C 78, 014315 (2008)

y 
(f

m
)

80Zr

-5 0 5 10

-5

0

5

Symmetry 

90Zr

 -10 -5 0 5 10

axis z (fm)

88Mo

-10 -5 0 5 10

100Mo

 -10  -5 0 5 10

y 
(f

m
)

92Ru

 -5

0

5

104Ru 92Pd 110Pd

y 
(f

m
)

98Cd

-5

0

5

122Cd 104Sn 122Sn

y 
(f

m
)

106Te

-5

0

5

124Te 110Xe 130Xe

y 
(f

m
)

116Ba

-5

0

5

132Ba 124Ce 136Ce

-10

FIG. 20. The self-consistent proton density ρp(y, z) as a function of y and z coordinates for the HD configurations. They are displayed
at spin values at which these configurations become yrast. For each isotope chain, the densities in two nuclei (typically, most proton-
and neutron-rich ones included in calculations) are shown. The densities are displayed in steps of 0.01 fm−3 starting from ρp(y, z) =
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one. This band appears as doubly magic also in the calculations
with widely used NL3 [58] and NLZ [61] parametrizations
of the RMF Lagrangian; see Table II. Extensive calculations
with the NL3 parametrization (similar to the ones presented
in Fig. 22) show that this band become yrast at I ∼ 62h̄.
The Z = 53 ESD shell gap is smaller than 1 MeV only in
the NLSH [60] parametrization of the RMF Lagrangian (see
Table II). However, it is known that the single-particle
energies are not well described in this parametrization [51].

TABLE II. The size of the Z = 53 and N = 58 ESD
shell gaps (in MeV) obtained with different parametrizations
of the RMF Lagrangian for the configuration A in 111I at spin
I = 60h̄ (rotational frequency �x ≈ 0.96 MeV).

NL1 NL3 NLZ NLSH

Z = 53 1.45 1.25 1.65 0.70
N = 58 1.75 1.85 1.60 2.00
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FIG. 23. The same as in Fig. 10 but for the configuration A in
111I. Solid (open) circles indicate the orbitals occupied (emptied). The
dashed box indicates the frequency range corresponding to the spin
range I = 50–75h̄ in this configuration.

One should note, however, that the size of the ESD gaps in
the configuration A of 111I is somewhat smaller than the one
for the yrast SD band in 152Dy (compare Fig. 22 in the present
manuscript with Fig. 3 in Ref. [4]; see also Figs. 4, 11, 12 in
Ref. [39] obtained with different parametrizations of the RMF
Lagrangian and relevant for 151Tb).
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The dynamic moments of inertia of the configuration A in
111I and the configurations in neighboring nuclei are shown
in Fig. 24. The increase of J (2) at �x ∼ 1.2 MeV is in part
due to unpaired band crossing caused by the interaction of
the occupied ν[413]7/2− and unoccupied ν[651]3/2− orbitals
(Fig. 23). A centrifugal stretching may also contribute to
this increase of J (2). The effect of the occupation of a
single-proton (neutron) intruder orbital on the properties of
the ESD bands is much more pronounced than that in the HD
bands of the nuclei around 124Xe (see Sec. III D); the changes
induced into dynamic moment of inertia reach at least 10%
of its absolute value for the π [660]1/2+ [Fig. 24(c)], π [4 +
6]1/2+ [Fig. 24(a)], ν[651]3/2+ [Fig. 24(d)], and ν[651]3/2−
[Fig. 24(d)] orbitals. In a similar way, the effective alignments
of these orbitals as well as of the π [541]1/2+ orbital show
appreciable variations as a function of rotational frequency
(see Fig. 25), reaching at least 1h̄ in the spin range of interest.
This suggests that the configuration assignment based on the

effective alignment method will be more reliable in the case
of ESD bands as compared with the HD bands in the nuclei
around 124Xe (see Sec. III D for a discussion of these methods).
Relative properties of the dynamic moments of inertia of two
compared bands will also play a complimentary role in the
configuration assignment.

V. CONCLUSIONS

For the first time, the hyperdeformation at high spin has
been studied in a systematic way within the framework of a
fully self-consistent theory: the cranking relativistic mean-field
theory. The study covers even-even nuclei in the Z = 40–58
part of nuclear chart. The main results can be summarized as
follows:

(i) The crossing spins IHD
cr , at which the HD configurations

become yrast, are lower for proton-rich nuclei. This is
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FIG. 25. (Color online) The same as in
Fig. 16 but for effective alignments of the single-
particle orbitals in the vicinity of the Z = 53
and N = 58 SD shell gaps (see Fig. 23). The
effective alignments are defined with respect to
the configuration A in 111I. Vertical dashed lines
indicate the frequency range corresponding to the
spin range I = 50–75h̄ in the configuration A
of 111I.
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a feature seen in the most of studied isotope chains; by
going from the β-stability valley toward the proton drip
line one can lower IHD

cr by approximately 10h̄.
(ii) The density of the HD bands in the spin range where

they are yrast or close to yrast is high in the majority
of the cases. For such densities, the feeding intensity
of an individual HD band will most likely drop below
the observational limit of modern experimental facilities.
This fact has to be taken into account when planning
the experiments for a search of discrete HD bands.
Our calculations indicate Cd isotopes and few other
nuclei with large shell gaps (see Sec. III E for details)
as the best candidates for a search of discrete HD bands.
An alternative candidate is the doubly magic extremely
superdeformed band in 111I, the deformation of which is
only slightly lower than that of the HD bands and which
may be observed with existing experimental facilities.

(iii) The high density of the HD bands will most likely
favor the observation of the rotational patterns in the
form of ridge structures in three-dimensional rotational
mapped spectra. The study of these patterns as a function
of proton and neutron numbers, which seems to be
possible with existing facilities, will provide a valuable
information about hyperdeformation at high spin.

(iv) With a very few exceptions, the HD shapes undergo
a centrifugal stretching that results in an increase of
the values of the transition quadrupole Qt and mass
hexadecapole Q40 moments as well as the dynamic
moments of inertia J (2) with increasing rotational fre-
quency. The kinematic moments of inertia J (1) show very
small variations in the frequency range of interest. These
are general features of the HD bands that distinguish
them from the normal and superdeformed bands. Such
features have not been seen before in the calculations
without pairing. In unpaired regime, the Qt, J

(2), and
J (1) values decrease with rotational frequency in the SD
configurations; the only exceptions are the regions of
unpaired bands crossings.

(v) The individual properties of the single-particle orbitals
are not lost at HD. In the future, they will allow the
assignment of the configurations to the HD bands using
the relative properties of different bands. Such methods
of configuration assignment were originally developed
for superdeformation. In contrast to the case of SD,
our analysis in the A ∼ 125 mass region shows that
only simultaneous application of the methods based on
effective alignments and relative transition quadrupole
moments by comparing experimental and theoretical
(ieff,�Qt ) values will lead to a reliable configuration
assignment for the HD bands. Moreover, additional
information on the structure of the HD bands will be
obtained from the band crossing features; the cases of
strong interaction of the bands in unpaired regime at HD
will be more common as compared with the situation
at SD.

The physics of hyperdeformation at high spin is also defined
by the fission barriers; the competition with fission certainly
makes the population of the HD states difficult. It is an
important issue that, however, goes beyond the scope of the
current manuscript. It is likely that the fission barriers are
small or nonexistent at the spins around 80–90h̄ in some of the
studied nuclei; the observation of the HD bands then will not
be possible in these systems. This problem definitely deserves
a deeper attention; the study of the fission barriers at high spin
typical for HD within the framework of the cranked relativistic
Hartree-Bogoliubov theory is in its initial stage and the results
will be presented in a forthcoming article.
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J. Timár, and B. D. Valnion, Phys. Rev. Lett. 80, 2073 (1998).

[25] C. M. Brink, H. Friedrich, A. Weiguny, and C. W. Wong, Phys.
Lett. B33, 143 (1970).

[26] A. Galindo-Uribarri, H. R. Andrews, G. C. Ball, T. E. Drake,
V. P. Janzen, J. A. Kuehner, S. M. Mullins, L. Persson, D. Prévost,
D. C. Radford, J. C. Waddington, D. Ward, and R. Wyss, Phys.
Rev. Lett. 71, 231 (1993).

[27] G. Viesti, M. Lunardon, D. Bazzacco, R. Burch, D. Fabris,
S. Lunardi, N. H. Medina, G. Nebbia, C. Rossi-Alvarez, G. de
Angelis, M. De Poli, E. Fioretto, G. Prete, J. Rico, P. Spolaore,
G. Vedovato, A. Brondi, G. La Rana, R. Moro, and E. Vardaci,
Phys. Rev. C 51, 2385 (1995).

[28] R. M. Clark, P. Fallon, A. Görgen, M. Cromaz, M. A.
Deleplanque, R. M. Diamond, G. J. Lane, I. Y. Lee, A. O.
Macchiavelli, R. G. Ramos, F. S. Stephens, C. E. Svensson,
K. Vetter, D. Ward, M. P. Carpenter, R. V. F. Janssens, and
R. Wadsworth, Phys. Rev. Lett. 87, 202502 (2001).

[29] A. Görgen, R. M. Clark, P. Fallon, M. Cromaz, M. A.
Deleplanque, R. M. Diamond, G. J. Lane, I. Y. Lee, A. O.
Macchiavelli, R. G. Ramos, F. S. Stephens, C. E. Svensson,
K. Vetter, D. Ward, M. P. Carpenter, R. V. F. Janssens, and
R. Wadsworth, Phys. Rev. C 65, 027302 (2002).

[30] N. Schunck, J. Dudek, and B. Herskind, Phys. Rev. C 75, 054304
(2007).

[31] B. Herskind, G. B. Hagemann, G. Sletten, Th. Døssing,
C. Rønn Hansen, N. Schunck, S. Ødegård, H. Hübel,
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(1988).

[38] I. Ragnarsson, Nucl. Phys. A557, 167c (1993).
[39] A. V. Afanasjev, G. Lalazissis, and P. Ring, Nucl. Phys. A634,

395 (1998).
[40] W. Satuła, J. Dobaczewski, J. Dudek, and W. Nazarewicz, Phys.

Rev. Lett. 77, 5182 (1996).
[41] M. Matev, A. V. Afanasjev, J. Dobaczewski, G. A. Lalazissis,

and W. Nazarewicz, Phys. Rev. C 76, 034304 (2007).
[42] B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).
[43] P.-G. Reinhard, Rep. Prog. Phys. 52, 439 (1989).
[44] D. Vretenar, A. V. Afanasjev, G. Lalazissis, and P. Ring, Phys.

Rep. 409, 101 (2005).
[45] W. Koepf and P. Ring, Nucl. Phys. A493, 61 (1989).
[46] W. Koepf and P. Ring, Nucl. Phys. A511, 279 (1990).
[47] J. König and P. Ring, Phys. Rev. Lett. 71, 3079 (1993).
[48] A. V. Afanasjev and S. Frauendorf, Phys. Rev. C 71, 064318

(2005).
[49] A. V. Afanasjev, I. Ragnarsson, and P. Ring, Phys. Rev. C 59,

3166 (1999).
[50] N. Schunck (private communication, 2008).
[51] A. V. Afanasjev, T. L. Khoo, S. Frauendorf, G. A. Lalazissis,

and I. Ahmad, Phys. Rev. C 67, 024309 (2003).
[52] A. V. Afanasjev and P. Ring, Phys. Rev. C 62, 031302(R) (2000).
[53] M. Samyn, S. Goriely, and J. M. Pearson, Phys. Rev. C 72,

044316 (2005).
[54] W. Nazarewicz and I. Ragnarsson, in Handbook on Nuclear

Properties, edited by D. N. Poenaru and W. Greiner (Claredon
Press, Oxford, 1996), p. 80.

[55] A. V. Afanasjev, D. B. Fossan, G. J. Lane, and I. Ragnarsson,
Phys. Rep. 322, 1 (1999).

[56] P.-G. Reinhard, M. Rufa, J. Maruhn, W. Greiner, and J. Friedrich,
Z. Phys. A 323, 13 (1986).

[57] G. A. Lalazissis and P. Ring, Phys. Lett. B427, 225 225 (1998).
[58] G. A. Lalazissis, J. König, and P. Ring, Phys. Rev. C 55, 540

(1997).
[59] M. Devlin, A. V. Afanasjev, R. M. Clark, D. R. LaFosse, I. Y. Lee,

F. Lerma, A. O. Macchiavelli, R. W. MacLeod, I. Ragnarsson,
P. Ring, D. Rudolph, D. G. Sarantites, and P. G. Thirolf, Phys.
Rev. Lett. 82, 5217 (1999).

[60] M. M. Sharma, M. A. Nagarajan, and P. Ring, Phys. Lett. B312,
377 (1993).

[61] M. Rufa, P.-G. Reinhard, J. A. Maruhn, W. Greiner, and M. R.
Strayer, Phys. Rev. C 38, 390 (1988).

014315-21



A. V. AFANASJEV AND H. ABUSARA PHYSICAL REVIEW C 78, 014315 (2008)
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