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Relativistic quasiparticle time blocking approximation: Dipole response of open-shell nuclei
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The self-consistent relativistic quasiparticle random-phase approximation (RQRPA) is extended by the
quasiparticle-phonon coupling (QPC) model using the quasiparticle time blocking approximation (QTBA).
The method is formulated in terms of the Bethe-Salpeter equation (BSE) in the two-quasiparticle space with an
energy-dependent two-quasiparticle residual interaction. This equation is solved either in the basis of Dirac states
forming the self-consistent solution of the ground state or in the momentum representation. Pairing correlations
are treated within the Bardeen-Cooper-Schrieffer (BCS) model with a monopole-monopole interaction. The
same NL3 set of the coupling constants generates the Dirac-Hartree-BCS single-quasiparticle spectrum, the
static part of the residual two-quasiparticle interaction and the quasiparticle-phonon coupling amplitudes. A
quantitative description of electric dipole excitations in the chain of tin isotopes (Z = 50) with the mass numbers
A = 100, 106, 114, 116, 120, and 130 and in the chain of isotones with (N = 50) 88Sr, 90Zr, 92Mo is performed
within this framework. The RQRPA extended by the coupling to collective vibrations generates spectra with a
multitude of 2q ⊗ phonon (two quasiparticles plus phonon) states providing a noticeable fragmentation of the
giant dipole resonance as well as of the soft dipole mode (pygmy resonance) in the nuclei under investigation.
The results obtained for the photo absorption cross sections and for the integrated contributions of the low-lying
strength to the calculated dipole spectra agree very well with the available experimental data.
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I. INTRODUCTION

Theoretical approaches based on covariant density func-
tional theory (CDFT) remain undoubtedly among the most
successful microscopic descriptions of nuclear structure. The
CDFT approaches are derived from a Lorentz invariant density
functional that connects in a consistent way the spin and spatial
degrees of freedom in the nucleus. Therefore, it needs only
a relatively small number of parameters that are adjusted to
reproduce a set of bulk properties of spherical closed-shell
nuclei [1,2] and it is valid over the entire periodic table.
Over the years, relativistic mean-field (RMF) models based
on the CDFT have been successfully applied to describe
ground-state properties of finite spherical and deformed nuclei
over the entire nuclear chart [3] from light nuclei [4] to
super-heavy elements [5,6] and from the neutron drip line
where halo phenomena are observed [7] to the proton drip
line [8] with nuclei unstable against the emission of protons [9].
The relativistic cranking approximation has been developed to
calculate rotational bands [10,11]. For a description of nuclear
excited states, the relativistic random-phase approximation
(RRPA) [12] and the quasiparticle RRPA (RQRPA) [13]
have been formulated as the small amplitude limit of the
time-dependent RMF models. These models have provided
a very good description for the positions of giant resonances
and a theoretical interpretation of the low-lying dipole [13] and

quadrupole [14,15] excitations. Proton-neutron versions of the
RRPA and the RQRPA have been developed and successfully
applied to the description of spin/isospin excitations as
the isobaric analog resonance (IAR) or the Gamow-Teller
Resonance (GTR) [16].

Recently, several attempts have been made to extend the
RMF and RRPA formalism beyond the mean-field approach,
first, to solve the well-known problem of the RMF single-
particle level density in the vicinity of the Fermi surface that
is too low because of the too-small effective mass. The energy
dependence of the single-nucleon self-energy was emulated
in a phenomenological way [17] and microscopically by
coupling the single-particle configurations to low-lying surface
vibration [18]. This provided a considerable improvement for
the description of the single-particle spectra. In addition, the
quadrupole motion has been studied within the relativistic
generator coordinate method (GCM) [19,20].

In Refs. [21,22], we have extended the relativistic RPA
by introducing a coupling to collective vibrations using the
techniques developed and realized long ago for nonrelativistic
approaches in terms of the Green’s function formalism
[23–26]. An induced additional interaction between single-
particle and vibrational excitations provided a strong frag-
mentation of the pure RRPA states causing the spreading
width of giant resonances and the redistribution of the pygmy
strength to lower energies. This method does not include
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pairing correlations and therefore it is restricted essentially to
the few nuclei with doubly closed shells in the nuclear chart.

In the present work we consider systems with pairing
correlations. Again, we are guided by ideas of the quasiparticle
time-blocking approximation (QTBA) developed and applied
for nonrelativistic systems in Refs. [27] and [28], which
takes into account quasiparticle-phonon coupling (QPC) and
pairing correlations on an equal footing. However, our
approach is based on CDFT and formulated in terms of
relativistic Green’s functions of the Dirac-Hartree-Bardeen-
Cooper-Schrieffer (DHBCS) equations. Similar, but in details
different, approaches developed earlier within a nonrelativistic
formalism can be found in Refs. [29–31].

The main assumption of the quasiparticle-phonon coupling
model [32] is that the two types of elementary excitations—
two-quasiparticle and vibrational modes—are coupled in such
a way that configurations of 2q ⊗ phonon type with low-lying
phonons strongly compete with simple 2q configurations close
in energy or, in other words, that quasiparticles can emit
and absorb phonons with rather high probabilities. Obviously,
these processes should affect both the ground and excited states
and therefore, the corresponding amplitudes should be taken
into account both in the single-nucleon self-energy and in the
effective interaction in the nuclear interior.

To describe excited states in nuclei, we extend covariant
density functional theory by coupling the quasiparticles to
low-lying vibrations in a consistent way using effective
interactions derived from the same Lagrangian without ad-
ditional phenomenological parameters. First of all, we use
the well-known quasiparticle formalism, where, in terms
of second quantization, nucleon creation and annihilation
operators become components of a two-component operator
mixing a creation and annihilation of a particle into a single
quasiparticle. This leads to the fact that for systems with
pairing correlations all quantum operators become tensors
in the two-dimensional quasiparticle space. In particular, the
relativistic energy functional is expressed in terms of the
relativistic extension of the Valatin density matrix [33] of
double dimension containing the normal as well as the abnor-
mal densities. As discussed in detail in Refs. [34–37] pairing
correlations can be considered in a very good approximation as
a non-relativistic effect and therefore the full density functional
is a sum of the relativistic energy functional depending on the
normal density and derived from the underlying Lagrangian
and a nonrelativistic pairing energy Epair, depending on the
abnormal density. The equations of motion are the self-
consistent relativistic Hartree-Bogoliubov (RHB) equations.
They are derived from this general functional by variation
with respect to the Valatin density matrix. They are solved
numerically and the self-consistent fields obtained in this way,
which do not depend on the energy, form the static part of the
nucleon self-energy. This static part determines the nuclear
ground state in the mean-field approximation.

The static effective interaction used in conventional QRPA
approximation is derived as the second derivative of the
same energy functional and therefore it contains no addi-
tional parameters. It enables us to go a step further and to
compute amplitudes, or vertices, that describe the emission or
absorption of phonons by quasiparticles within the relativistic

framework. These amplitudes form the essential ingredient
for the following considerations. They determine an additive
energy-dependent and nonlocal term in the self-energy of the
single-quasiparticle equation of motion and, consequently, an
induced effective interaction between the quasiparticles. Both
of these quantities have an influence on the particle-hole (ph)
as well as on the particle-particle (pp) channel.

For the calculation of the response of a nucleus in an
external field we use the Bethe-Salpeter equation. It contains
both the static and the dynamical effective interactions and
it is formulated in the doubled two-quasiparticle basis of the
Dirac-Hartree-BCS eigenstates. This Bethe-Salpether equa-
tion describes the quasiparticle-phonon coupling and pairing
correlations on the equal footing. It is solved using the
QTBA developed in Ref. [27], which allows the truncation to
2q ⊗ phonon configurations and guarantees that the solution
is positive definite. We also use the subtraction procedure
introduced and justified in the Ref. [27]. As in the case without
pairing it avoids double counting of the QPC. At zero energy,
i.e., at the ground state, particle vibrational coupling should
have no influence, because the correlations induced by QPC
in the ground state have already been taken into account in
the RHB description through the parameters of the energy
functional initially fitted to reproduce experimental data, such
as nuclear binding energies and radii. Therefore, the relativistic
mean field contains effectively all the correlations in the static
approximation. The energy dependence of the self-energy
influences only excitations at finite energy in the nucleus.

In the present work we develop the relativistic quasiparticle
time blocking approximation (RQTBA) and apply it for
the description of electric dipole excitations in even-even
spherical open-shell nuclei, such as the tin (Z = 50) isotopes
100,106,114,116,120,130Sn and the (N = 50) isotones 88Sr, 90Zr,
92Mo. The RQTBA method, whose physical content is an
extension of the RQRPA by a coupling to low-lying collective
vibrations, provides spectra enriched with the 2q ⊗ phonon
states. They cause a strong redistribution of the RQRPA
strength. As a result, we obtain an additional broadening of
the giant dipole resonance (GDR) and a spreading of the soft
dipole mode (pygmy dipole resonance, PDR) to lower energies
in the nuclei under investigation.

The article is organized as follows. In Sec. II we formulate
basic relations of our approach in a rather general form. In
Sec. II D we give a more detailed formalism for spheri-
cal nuclei in the form adapted for numerical calculations.
Section III is devoted to the description of some numerical
details and to the presentation of our results for even-even
semi-magic nuclei. Finally, Sec. IV contains conclusions and
an outlook.

II. GENERAL FORMALISM

A. Basic relations of the covariant density functional theory for
nuclei with pairing

In this subsection we recall the general formalism of
covariant density functional theory with pairing, introduce
notations, and determine conventions used later on.
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In open-shell nuclei, pairing correlations play an essential
role and have to be incorporated consistently in a description
of the ground state as well as of excited states, including
many-body dynamics. Considering pp correlations in addition
to the usual ph interaction, existing in normal systems,
one has to provide a unified description of both pp and
ph channels.

In contrast to Hartree- or Hartree-Fock theory, where pp

correlations are neglected, and where the building blocks of
excitations (the quasiparticles in the sense of Landau) are
either nucleons in levels above the Fermi surface (particles)
or missing nucleons in levels below the Fermi surface (holes),
we have now quasiparticles in the sense of Bogoliubov that
are described by a combination of creation and annihilation
operators. This fact can be expressed in a standard way by
introducing the following two-component operator, which is a
generalization of the usual particle annihilation operator:

�(1) =
[

a(1)
a†(1)

]
. (1)

Here a(1) = eiHt1ak1e
−iH t1 is a nucleon annihilation operator

in the Heisenberg picture and the quantum numbers k1

represent an arbitrary basis, 1 = {k1, t1}. To keep the notation
simple we use in the following 1 = {r1, t1} and omit spin and
isospin indices.

Let us introduce the chronologically ordered product of the
operator �(1) in Eq. (1) and its Hermitian conjugated operator
�†(2), averaged over the ground state |�0〉 of the system that
will be concretized below. This tensor of rank 2

G(1, 2) = −i〈�0|T �(1)�†(2)|�0〉 (2)

is the generalized Green’s function that can be expressed
through a 2 × 2 matrix:

G(1, 2) = −iθ (t1 − t2)〈�0|
[

a(1)a†(2) a(1)a(2)
a†(1)a†(2) a†(1)a(2)

]
|�0〉

+ iθ (t2 − t1)〈�0|
[

a†(2)a(1) a(2)a(1)

a†(2)a†(1) a(2)a†(1)

]
|�0〉.

(3)

Similar definitions for the Green’s function in nonrelativistic
superfluid systems have been used in Refs. [27,28,38,39]. Note
that we define the definition of Green’s functions here in the
way of nonrelativistic many-body theory, which differs form
the conventional definition 〈T ��̄〉 adopted in relativistic field
theories by the replacement of �̄ by �†, i.e., by a Dirac matrix
β = γ0. This notation is more convenient for our analysis and
the matrix β needed for Lorentz invariance is included in the
vertices. Therefore the generalized density matrix is obtained
as a limit

R(r1, r2, t1) = −i lim
t2→t1+0

G(1, 2) (4)

from the second term of Eq. (3), and, in the notation of
Valatin [33], it can be expressed as a matrix of doubled
dimension containing as components the normal density ρ

and the abnormal density κ, the so called pairing tensor:

R(r1, r2, t) =
[

ρ(r1, r2, t) κ(r1, r2, t)

−κ
∗(r1, r2, t) δ(r1 − r2) − ρ∗(r1, r2, t)

]
.

(5)

These densities play a key role in the description of a superfluid
many-body system.

In covariant density functional theory for normal systems
the ground state of the nucleus is a Slater determinant de-
scribing nucleons, which move independently in meson fields
φm characterized by their quantum numbers for spin, parity,
and isospin. In the present investigation we use the concept
of conventional relativistic mean-field theory and include the
σ -, ω-, and ρ-meson fields and the electromagnetic field as
the minimal set of fields providing a rather good quantitative
description of bulk and single-particle properties in the nucleus
[1,40,41]. This means that the index m runs over the different
types of fields m = {σ, ω, ρ,A}. The summation over m

implies in particular scalar products in Minkowski space for the
vector fields and in isospace for the ρ field. To obtain a Lorentz
invariant theory, these classical fields φm = {σ, ωµ, �ρµ,Aµ}
are generated in a self-consistent way by the exchange of
virtual particles, called mesons, and the photon.

Finally, the energy depends in the case without pairing
correlations on the normal density matrix ρ and the various
fields φm:

ERMF[ρ, φ] = Tr[(αp + βm)ρ] +
∑
m

{
Tr[(β�mφm)ρ]

±
∫ [

1

2
(∇φm)2 + Um(φ)

]
d3r

}
. (6)

Here we have neglected retardation effects, i.e., time deriva-
tives of the fields φm. The plus sign in Eq. (6) holds for scalar
fields and the minus sign for vector fields. The trace operation
implies a sum over Dirac indices and an integral in coordinate
space. α and β are Dirac matrices and the vertices �m are given
by

�σ = gσ , �µ
ω = gωγ µ, ��µ

ρ = gρ �τγ µ,

�µ
e = e

(1 − τ3)

2
γ µ, (7)

with the corresponding coupling constants gm for the various
meson fields and for the electromagnetic field.

The quantities Um(φ) are, in the case of a linear meson
couplings, given by the term

Um(φ) = 1
2m2

mφ2
m (8)

containing the meson masses mm. For nonlinear meson
couplings, as, for instance, for the σ meson in the parameter
set NL3 we have, as proposed in Ref. [42]:

U (σ ) = 1

2
m2

σ σ 2 + g2

3
σ 3 + g3

4
σ 4. (9)

with two additional coupling constants g2 and g3.
In superfluid covariant density functional theory the energy

is a functional of the Valatin density R and the fields
φm. Therefore RHB theory can be derived from an energy
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functional that depends on the normal density ρ and the
abnormal density κ as well as on the meson and Coulomb
fields φm. We use here a density functional of the form

ERHB[ρ, κ, κ
∗, φ] = ERMF[ρ, φ] + Epair[κ, κ

∗], (10)

where the pairing energy is expressed by an effective interac-
tion Ṽ pp in the pp channel:

Epair[κ, κ
∗] = 1

4 Tr [κ∗Ṽ pp
κ]. (11)

Here and in the following a tilde sign is used to express the
static character of a quantity, i.e., the fact that it does not
depend on the energy. Of course, in Eq. (10) we could also use
density-dependent pairing forces with Epair = Epair[ρ, κ] as it
is done, for instance, in Refs. [43,44]. However, in the present
investigation we do not consider this possibility. The effective
interaction Ṽ pp in the particle-particle channel is supposed
to be independent on the interaction in the particle-hole
channel (see, e.g., Ref. [13]) mediated by the mesons and the
electromagnetic fields determined above. Generally, the form
of Ṽ pp is restricted only by the conditions of the relativistic
invariance of Epair with respect to the transformations of the
abnormal densities (see Ref. [45]). In this section, we consider
the general form of Ṽ pp as a nonlocal function in coordinate
representation. In all the applications discussed in Sec. II D we
use for Ṽ pp a simple monopole-monopole interaction.

The classical variational principle applied to the energy
functional of Eq. (10)

δ

∫ t2

t1

(〈�0|i∂t |�0〉 − ERHB[ρ, κ, κ
∗, φ])dt = 0 (12)

leads to the equation of motion for the generalized density
matrix R:

i∂tR = [HRHB(R),R] (13)

with the RHB Hamiltonian

HRHB = 2
δERHB

δR =
(

hD − m − λ �

−�∗ −hD∗ + m + λ

)
,

(14)

where λ is the chemical potential (counted from the continuum
limit). In the static case we find

[HRHB(R),R] = 0. (15)

Because of time reversal invariance the currents vanish and we
obtain the single nucleon Dirac Hamiltonian

hD = αp + β(m + �̃) (16)

with the RMF self-energy

�̃(r) =
∑
m

�mφm(r). (17)

The pairing field � reads in this case:

�(r, r ′) = 1

2

∫
d r ′′d r ′′′Ṽ pp(r, r ′, r ′′, r ′′′)κ(r ′′, r′′′). (18)

Equation (15) leads to the relativistic Hartree-Bogoliubov
equations [35]

HRHB

∣∣ψη

k

〉 = ηEk

∣∣ψη

k

〉
, η = ±1, (19)

where |ψη

k 〉 are the eigenfunctions corresponding to eigen-
values ηEk . They are the 8-dimensional Bogoliubov-Dirac
spinors of the following form

|ψ+
k (r)〉 =

[
Uk(r)

Vk(r)

]
, |ψ−

k (r)〉 =
[
V ∗

k (r)

U ∗
k (r)

]
. (20)

Note that the index k labels here and in the following
quasiparticles in contrast to the index k1 used after Eq. (1)
for the particle basis.

The generalized density matrix is obtained as follows:

R(r, r ′) =
∑

k

|ψ−
k (r)〉〈ψ−

k (r ′)|, (21)

where the summation is performed only over the states
having large upper components of the Dirac spinors [i.e.,
large functions f(k)(r) in Eq. (A1) below]. This restric-
tion corresponds to the so-called no-sea approximation (see
Ref. [37]).

The behavior of the meson and Coulomb fields is derived
from the energy functional (10) by variation with respect to
the fields φm. We obtain Klein-Gordon equations. In the static
case they have the form

− �φm(r) + U ′[φm(r)] = ∓
∑

k

V T
k (r)β�mV ∗

k (r). (22)

Equation (22) determines the potentials entering the single-
nucleon Dirac Hamiltonian (16) and is solved self-consistently
together with Eq. (19). The system of Eqs. (19) and (22)
determine the ground state of an open-shell nucleus in the
relativistic Hartree-Bogoliubov approach.

Neglecting the small effects of the pairing cut-off, the
Hartree-Bogoliubov theory with a monopole-monopole force,
as it is used in the present investigation, is equivalent to
Hartree-BCS approximation, where the Dirac hamiltonian hD

(16) and the normal nucleon density are diagonal. In this case
the spinors (20) are expressed through eigenvectors of the
operator hD, see Eq. (A13) of the Appendix A. Below we
formulate our approach in the space of these eigenvectors
which we call Dirac-Hartree-BCS (DHBCS) basis and use
indices k or ki, i = 1, 2, . . . for the set of quantum numbers in
this basis.

B. Quasiparticle-vibration coupling as a model for an energy
dependence of the single-quasiparticle self-energy

The single quasiparticle equation of motion (19) determines
the behavior of a nucleon with a static self-energy. To
include dynamics, i.e., a more realistic time dependence in
the self-energy one has to extend the energy functional by
an appropriate term leading to a self-energy (17) with time
dependence. In the present work we use for this purpose
the successful but relatively simple particle-vibration coupling
model introduced in Refs. [32,46]. Following the general logic
of this model, we consider the total single-nucleon self-energy
for the Green’s function defined in Eq. (2) as a sum of the
RHB self-energy and an energy-dependent nonlocal term in
the doubled space:

�(r, r ′; ε) = �̃(r, r ′) + �(e)(r, r ′; ε) (23)
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with

�̃(r, r ′) =
[
β�̃(r)δ(r − r ′) �(r, r ′)

−�∗(r, r ′) −β�̃∗(r)δ(r − r ′)

]
. (24)

The energy-dependent operator �(e)(r, r ′; ε) will be deter-
mined below (the upper index e in this quantity indicates
the energy dependence). The Dyson equation for the single-
quasiparticle Green’s function (2) in the doubled space has the
following form:

[ε − HRHB − �(e)(ε)]G(ε) = 1. (25)

To study the influence of the energy-dependent part of the
self-energy on the single-quasiparticle energies we formulate
Eq. (25) in the DHBCS basis diagonalizing the Dirac
Hamiltonian hD of Eq. (16):∑

η=±1

∑
k

[
(ε − η1Ek1 )δη1ηδk1k − �

(e)η1η

k1k
(ε)

]
G

ηη2
kk2

(ε)

= δη1η2δk1k2 , (26)

where

�
(e)η1η2
k1k2

(ε) =
∫

d3rd3r ′〈ψη1
k1

(r)
∣∣�(e)(r, r ′; ε)

∣∣ψη2
k2

(r ′)
〉
, (27)

G
η1η2
k1k2

(ε) =
∫

d3rd3r ′〈ψη1
k1

(r)
∣∣G(r, r ′; ε)

∣∣ψη2
k2

(r ′)
〉
. (28)

In this basis the single-quasiparticle Green’s function G̃ of the
static mean field has the following simple diagonal form:

G̃
η1η2
k1k2

(ε) = δk1k2δη1η2G̃
η1
k1

(ε),

G̃
η1
k1

(ε) = 1

ε − η1Ek1 + iη1δ
, δ → +0. (29)

As in Refs. [18,21], we use the particle-phonon coupling model
for the energy-dependent part of the self-energy �(e). In the
DHBCS basis its matrix elements are given by:

�
(e)η1η2
k1k2

(ε) =
∑
η=±1

∑
ηµ=±1

∑
k,µ

δηµ,ηγ
ηµ;η1η

µ;k1k
γ

ηµ;η2η∗
µ;k2k

ε − ηEk − ηµ(�µ − iδ)
,

δ → +0. (30)

The index k formally runs over all single-quasiparticle states,
including antiparticle states with negative energies. In the
doubled quasiparticle space we can no longer distinguish
occupied and unoccupied states considering that all the orbits
are partially occupied. But in practical calculations, it is
assumed that there are no pairing correlations in the Dirac
sea [37] and the orbits with negative energies are treated in the
no-sea approximation. As it has been shown in calculations
for nuclei with closed shells in Ref. [18], the numerical
contribution of the diagrams with intermediate states k with
negative energies is very small due to the large energy
denominators in the corresponding terms of the self-energy
(30). The index µ in Eq. (30) labels the set of phonons taken
into account. �µ are their frequencies and ηµ = ±1 labels
forward and backward going diagrams in Eq. (30). The vertices
γ

ηµ;η1η2

µ;k1k2
determine the coupling of the quasiparticles to the

collective state µ:

γ
ηµ;η1η2

µ;k1k2
= δηµ,+1γ

η1η2
µ;k1k2

+ δηµ,−1γ
η2η1∗
µ;k2k1

. (31)

In the conventional version of the particle-vibrational coupling
model the phonon vertices γµ are derived from the correspond-
ing transition densities Rµ and the static effective interaction:

γ
η1η2
µ;k1k2

=
∑
k3k4

∑
η3η4

Ṽ
η1η4,η2η3
k1k4,k2k3

Rη3η4
µ;k3k4

, (32)

where Ṽ
η1η4,η2η3
k1k4,k2k3

denotes a relativistic matrix element of the
static residual interaction in the doubled space. It is obtained as
a functional derivative of the relativistic mean-field self-energy
�̃ with respect to the relativistic generalized density matrix R:

Ṽ
η1η4,η2η3
k1k4,k2k3

= δ�̃
η4η3
k4k3

δRη2η1
k2k1

. (33)

The transition densitiesRµ are defined by the time dependence
of the generalized density (5)

R(t) = R0 +
∑

µ

(Rµei�µt + h.c.) (34)

describing the oscillating system. We use the linearized version
of the model that assumes that the transition densities Rµ are
not influenced by the particle-phonon coupling and that they
can be computed within the relativistic QRPA. In the linearized
version of the QPC model we solve the RQRPA equations for
transition densities

Rη

µ;k1k2
= R̃

(0)η
k1k2

(�µ)
∑
k3k4

∑
η′

Ṽ
ηη′
k1k4,k2k3

Rη′
µ;k3k4

, (35)

where

Rη

µ;k1k2
= Rη,−η

µ;k1k2
, R̃

(0)η
k1k2

(ω) = R̃
(0)η,−η

k1k2
(ω),

(36)
Ṽ

ηη′
k1k4,k2k3

= Ṽ
η,−η′,−η,η′
k1k4,k2k3

,

which means that we cut out certain components of the tensors
in the quasiparticle space. The quantity R̃ is, as usual, the two-
quasiparticle propagator, or the mean-field response function,
which is a convolution of two single-quasiparticle mean-field
Green’s functions (29):

R̃
(0)η
k1k2

(ω) = 1

ηω − Ek1 − Ek2

. (37)

In Eq. (35) we use the static quasiparticle-interaction Ṽ of
Eq. (33). Of course, in general, we should calculate these
transition densities taking into account also the additional
energy-dependent residual interaction V (e) [see Eq. (44)
below] in a self-consistent iteration procedure. However, this
is not done in the investigations presented here.

C. Response function in the quasiparticle time-blocking
approximation

Now we have to formulate the Bethe-Salpeter equation
(BSE) for the response of a superfluid nucleus in a weak
external field. The method to derive the BSE for superfluid
nonrelativistic systems from a generating functional is known
and can be found, e.g., in Ref. [27] where the generalized
Green’s function formalism was used. Applying the same
technique in the relativistic case, one obtains a similar ansatz
for the BSE. In full analogy to the case without pairing
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described in Ref. [21] it is convenient to begin the derivation
in the time representation. Let us therefore include the
time variable and the variable η defined in Eq. (19), which
distinguishes components in the doubled quasiparticle space,
into the single-quasiparticle indices using 1 = {k1, η1, t1}. In
this notation the BSE for the response function R reads:

R(14, 23) = G(1, 3)G(4, 2)

− i
∑
5678

G(1, 5)G(6, 2)V (58, 67)R(74, 83), (38)

where the summation over the number indices 1, 2, . . . implies
integration over the respective time variables. The function G

is the exact single-quasiparticle Green’s function and V is
the amplitude of the effective interaction irreducible in the
ph channel. This amplitude is determined as a variational
derivative of the full self-energy � with respect to the exact
single-quasiparticle Green’s function:

V (14, 23) = i
δ�(4, 3)

δG(2, 1)
. (39)

Similar as in Ref. [21], we introduce the free re-
sponse R0(14, 23) = G(1, 3)G(4, 2) and formulate the Bethe-
Salpeter equation (38) in a shorthand notation, omitting the
number indices:

R = R0 − iR0V R. (40)

For the sake of simplicity, we will use this shorthand notation in
the following discussions. Because the self-energy in Eq. (23)
has two parts � = �̃ + �(e), the effective interaction V in
Eq. (38) is a sum of the static RMF interaction Ṽ and the
energy-dependent term V (e):

V = Ṽ + V (e), (41)

where (with t12 = t1 − t2)

Ṽ (14, 23) = Ṽ
η1η4,η2η3
k1k4,k2k3

δ(t31)δ(t21)δ(t34), (42)

V (e)(14, 23) = i
δ�(e)(4, 3)

δG(2, 1)
, (43)

and Ṽ
η1η4,η2η3
k1k4,k2k3

is determined by Eq. (33). In the DHBCS basis
the Fourier transform of the amplitude V (e) has the form:

V
(e)η1η4,η2η3
k1k4,k2k3

(ω, ε, ε′)

=
∑
µ,ηµ

ηµγ
ηµ;η3η1∗
µ;k3k1

γ
ηµ;η4η2

µ;k4k2

ε − ε′ + ηµ(�µ − iδ)
, δ → +0. (44)

To make the Bethe-Salpeter equation (40) more convenient for
the further analysis we eliminate the exact Green’s function G

and rewrite it in terms of the mean field Green’s function G̃

which is diagonal in the DHBCS basis. In time representation
we have the following ansatz:

G̃(1, 2) = −iη1δk1k2δη1η2θ (η1τ )e−iη1Ek1 τ , τ = t1 − t2,

(45)

and its Fourier transform is given by Eq. (29).
Using the connection between the mean field GF G̃ and the

exact GF G in the Nambu form

G̃−1(1, 2) = G−1(1, 2) + �(e)(1, 2), (46)

one can eliminate the unknown exact GF G from the Eq. (40)
and rewrite it as follows:

R = R̃0 − iR̃0WR (47)

with the mean-field response R̃0(14, 23) = G̃(1, 3)G̃(4, 2),
and W is a new interaction of the form

W = Ṽ + W (e), (48)

where

W (e)(14, 23) = V (e)(14, 23) + i�(e)(1, 3)G̃−1(4, 2)

+ iG̃−1(1, 3)�(e)(4, 2)

− i�(e)(1, 3)�(e)(4, 2). (49)

Thus, we have obtained the BSE in terms of the mean-field
propagator, containing the well-known mean-field Green’s
functions G̃ and a rather complicated effective interaction W

in Eq. (48), which, however, is also expressed through the
mean-field Green’s functions.

Then, we apply the quasiparticle time blocking approxima-
tion to the Eq. (47) employing the time projection operator in
the integral part of this equation. In our case this procedure
is a combination of the nonrelativistic QTBA [27] with the
relativistic version of this method [21] developed for the
systems without pairing correlations. The time projection
leads, after some algebra and the transformation to the energy
domain, to an algebraic equation for the response function.
For the ph-type components of the response function it has
the form:

R
ηη′
k1k4,k2k3

(ω) = R̃
(0)η
k1k2

(ω)δk1k3δk2k4δηη′ + R̃
(0)η
k1k2

(ω)

×
∑

k5k6k7k8

∑
η′′

W̄
ηη′′
k5k8,k6k7

(ω)Rη′′η′
k7k4,k8k3

(ω), (50)

where

R
ηη′
k1k4,k2k3

(ω) = R
η,−η′,−η,η′
k1k4,k2k3

(ω), (51)

R
η1η4,η2η3
k1k4,k2k3

(ω) = −i

∫ ∞

−∞
dt1dt2dt3dt4δ(t1 − t2)δ(t3 − t4)

× δ(t4)eiωt13R(14, 23), (52)

W̄
ηη′
k1k4,k2k3

(ω) = Ṽ
ηη′
k1k4,k2k3

+ (
�

η

k1k4,k2k3
(ω) − �

η

k1k4,k2k3
(0)

)
δηη′ . (53)

In Eq. (53) �(ω) is the dynamical part of the interaction
amplitude in the QTBA responsible for the particle-phonon
coupling with the following forward (η = 1) and backward
(η = −1) components:

�
η

k1k4,k2k3
(ω) =

∑
µ

[
δk1k3

∑
k6

γ
−η

µ;k6k2
γ

−η∗
µ;k6k4

ηω − Ek1 − Ek6 − �µ

+ δk2k4

∑
k5

γ
η

µ;k1k5
γ

η∗
µ;k3k5

ηω − Ek5 − Ek2 − �µ

−
(

γ
η

µ;k1k3
γ

−η∗
µ;k2k4

ηω − Ek3 − Ek2 − �µ

+ γ
η∗
µ;k3k1

γ
−η

µ;k4k2

ηω − Ek1 − Ek4 − �µ

)]
, (54)
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where we denote γ
η

µ;k1k2
= γ

ηη

µ;k1k2
. Indices ki in this expression

formally run over the whole DHBCS space, but in applications
we usually consider that the amplitude �

η

k1k4,k2k3
(ω) describes

phonon coupling only within some energy window around
the Fermi surface. It implies that this amplitude contains no
antiparticle-quasiparticle (αq) configurations.

Notice, that in our approach we cut out only the components
without ground state correlations (GSC) induced by phonon
coupling that include the main contribution of the phonon
coupling and neglect some more delicate terms. However,
ground-state correlations of the QRPA type are taken into
account due to the presence of the Ṽ

ηη′
k1k4,k2k3

terms of the static
interaction in Eq. (50). By definition, the propagator R(ω)
in Eq. (50) contains only configurations that are not more
complicated than 2q ⊗ phonon.

In Eq. (50) we have included the subtraction procedure
because of the same reasons as in the Ref. [21]. Because the
RMF ground state is adjusted to experimental data, it contains
effectively many correlations in the static approximation
and, in particular, also admixtures of phonons. Therefore,
when we include them explicitly in the dynamics, this static
part should be subtracted from the effective interaction to
avoid double counting of the QPC correlations. Because the
parameters of the density functional and, as a consequence, the
effective interaction Ṽ are adjusted to experimental ground-
state properties at the energy ω = 0, this part of the interaction
�(ω), which is already contained in Ṽ , is given by �(0). This
subtraction method has been introduced in the Ref. [27] for
self-consistent schemes.

Eventually, to describe the observed spectrum of the excited
nucleus in a weak external field P as, for instance, an
electromagnetic field, one needs to calculate the strength
function:

S(E) = − 1

π
lim

�→+0
Im�(E + i�), (55)

expressed through the polarizability �(ω) defined as

�(ω) = 1

2
P †R(ω)P := 1

2

∑
k1k2k3k4

∑
ηη′

P
η∗
k1k2

R
ηη′
k1k4,k2k3

(ω)P η′
k3k4

.

(56)

The imaginary part � of the energy variable is introduced
for convenience to obtain a more smoothed envelope of the
spectrum. This parameter has the meaning of an additional
artificial width for each excitation. This width emulates
effectively contributions from configurations that are not taken
into account explicitly in our approach.

In relativistic RPA and QRPA calculations the Dirac sea
plays an important role. A consistent derivation of relativistic
RPA (QRPA) as the small amplitude limit of time-dependent
RMF (RHB) theory in Ref. [12] shows that one has to include
in addition to the usual ph configurations also antiparticle-
hole (αh) configurations. Otherwise current conservation is
violated [47] and the position of giant resonances cannot
be described properly in relativistic RPA [48]. However,
this increases the number of configurations dramatically as
compared to nonrelativistic QRPA calculations and requires,
in particular, in deformed relativistic QRPA calculations

[49] an extremely large numerical effort. Recently, a simple
method was proposed to avoid this problem. As discussed in
Ref. [50], the static no-sea (SNS) approximation takes the
contributions of the empty Dirac sea into account in a very
good approximation by a renormalization of the total effective
interaction W̄ (ω) in the Bethe-Salpeter equation.

D. Application of the approach: calculation scheme

The formulated relativistic QTBA is applied to calculations
of the dipole strength in spherical nuclei with pairing. In
this application we mainly follow the calculation scheme
employed in Ref. [21,22], however, with some considerable
modifications accounting pairing effects: all the equations are
solved in the doubled space. The computation is performed by
the following main steps:

(i) To calculate ground-state properties the Dirac equation
(A7) together with the BCS equation (A11) for single
nucleons are solved simultaneously with the Klein-Gordon
equation (22) for meson fields in a self-consistent way to
obtain the single-quasiparticle basis, which is the Dirac-
Hartree-BCS basis, see Appendix A for details.

(ii) The RQRPA equations (35) with the static interaction Ṽ

of Eq. (33) are solved in the Dirac-Hartree-BCS basis to
determine the low-lying collective vibrations (phonons),
their energies and amplitudes. Details of the solution for
a spherically symmetric case are given in Appendix B.
The two sets of quasiparticles and phonons form the
multitude of 2q ⊗ phonon configurations which enter the
quasiparticle-phonon coupling amplitude �(ω) in Eq. (54).

(iii) The equation for the response function (50) is solved using
this additional amplitude in the effective interaction W̄ (ω)
(53). In Appendix C we give this equation in a coupled form
for a given multipolarity formulated in the momentum-
channel representation. Making a double convolution of
the response function with the external field operator P ,
one obtains the polarizability (56) and the strength function
(55) determining the spectrum of the nucleus.

III. COMPUTATIONAL DETAILS, RESULTS, AND
DISCUSSION

A. Numerical details

For this first application we have chosen two chains of
spherical even-even semimagic nuclei: one chain with Z = 50
and another one with N = 50. We have calculated the isovector
dipole spectrum in the giant dipole resonance region and in the
low-lying energy region in the two approximations: RQRPA
and RQTBA for the quasiparticle-vibration coupling. All the
results presented below have been obtained with making use of
the NL3 parameter set [51] for the covariant density functional
(6).

In the present work, pairing correlations were treated in
the BCS approximation where the single-quasiparticle wave
functions diagonalize the single-nucleon density matrix ρ. As
pairing interaction we use the simple monopole-monopole
form (B8) within the smoothed energy window with the
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parameters w = 20 MeV, d = 1 MeV. The parameter G was
chosen in such a way that the resulting gap at the Fermi surface
reproduces the empirical gap expressed by the well known
three-point formula:

�
(3)
Nτ

= − (−1)Nτ

2
[B(Nτ − 1) + B(Nτ + 1) − 2B(Nτ )], (57)

where B(Nτ ) is the experimentally known binding energy
of the nucleus with Nτ nucleons in the subsystem with
pairing correlations (neutrons or protons). The RMF plus
BCS equations are solved by expanding the nucleon spinors
in a spherical harmonic oscillator basis [3]. In the present
calculation we have used the basis of 20 oscillator shells.

In solving the RQRPA Eq. (B1) we have used the method
proposed in Ref. [52] for a reduction of the eigenvalue problem
by the generalized Cholesky decomposition. In the RQRPA as
well as RQTBA calculations both Fermi and Dirac subspaces
were truncated at energies far away from the Fermi surface: in
the present work as well as in the Refs. [21,22] we fix the limits
E2q < 100 MeV and Eαq > −1800 MeV with respect to the
positive continuum (so far from the Fermi surface there are
no pairing effects, therefore we have there pure particles and
holes). A small artificial width was introduced as an imaginary
part of the energy variable h̄ω to have a smooth envelope of the
calculated curves. In the calculations for tin isotopes we took
200 keV smearing for the spectrum in the wide energy region
0–30 MeV and 20 keV for the low-lying portion of the same
spectrum below 10 MeV to distinguish its fine structure. For the
N = 50 isotopes we used the smearing 400 keV, assuming the
more pronounced contribution of the single-particle continuum
in the GDR region, and 10 keV for the low-lying strength.

The energies and amplitudes of the most collective phonon
modes with spin and parity 2+, 3−, 4+, 5−, 6+ have been
calculated with the same restrictions and selected using the
same criterion as in the Refs. [21,22] and in many other
non-relativistic investigations in this context. Only the phonons
with energies below the neutron separation energy for the
investigated tin isotopes and below 10 MeV—for the N = 50
nuclei enter the phonon space because the contributions of the
higher-lying modes are supposed to be small. Our previous
experience within the nonrelativistic approach of Ref. [28]
without the restriction of the phonon space by the energy
has shown that the inclusion of the high-lying modes into
the phonon space causes the change of the mean energies
and widths of the resonances comparable with the smearing
parameter (imaginary part of the energy variable) used in the
calculations, because the physical sense of this parameter is to
emulate contributions of remaining configurations which are
not taken into account explicitly.

As a test of numerical correctness of our codes, the
response equation has been solved both in the DHBCS basis
and in momentum-channel space and identical results have
been obtained. Because the quasiparticle-phonon coupling
amplitude (C4) has a pole structure, its contributions to the final
result for the strength function decrease considerably when we
go away from the Fermi surface. Therefore, this coupling has
been taken into account only within the 2q-energy window
E2q � 25 MeV around the Fermi surface. This restriction
means that above this energy we have no poles induced by the

complex configurations and obtain the pure RQRPA poles, but
with larger strength that comes from the integral contribution
of the lower-lying energy spectrum. It has been checked that a
further increase of this window does not influence considerably
the strength functions at energies below the value of this
window.

Although a large number of configurations of the 2q ⊗
phonon type are taken into account explicitly in our approach,
nevertheless we stay in the same two-quasiparticle space as
in the RQRPA, therefore the problem of completeness of
the phonon basis does not arise and, therefore, the phonon
subspace and the subspace of the 2q ⊗ phonon states can
be truncated in the above-mentioned way. Another essential
point is, that on all three stages of our calculations the same
relativistic nucleon-nucleon static interaction Ṽ has been em-
ployed. The vertices (B9) entering the QPC energy-dependent
interaction are calculated with the same force. Therefore no
further parameters are needed, and our calculation scheme is
fully consistent.

The subtraction procedure developed in the Ref. [27] for
self-consistent schemes has been incorporated in our approach.
As it was mentioned above, this procedure removes the static
contribution of the quasiparticle-phonon coupling from the
static interaction in the ph channel. Therefore, the QPC
interaction takes into account only the additional energy
dependence introduced by the dynamics of the system. It
has been found in the present calculations as well as in
the calculations of the Ref. [28] that within the relatively
large energy interval (0–30 MeV) the subtraction procedure
provides a rather small but noticeable increase of the mean
energy of the giant dipole resonance (about 0.7 MeV for tin
region) and gives rise to the change by a few percents in the
sum rule. Notice that the absolute value of the energy shift
produced by the subtraction of �(0) in Eq. (53) is comparable
with but not equal exactly to the absolute value of the shift
produced by the dynamical part of the interaction amplitude
�(ω) which always reduces the mean energy of the resonance.
The subtraction procedure restores the response at zero energy
and, therefore, it does not disturb the symmetry properties of
the RQRPA calculations. The zero energy modes connected
with the spontaneous symmetry breaking in the mean-field
solutions, as, for instance, the translational mode in the dipole
case, remain at exactly the same positions after the inclusion
of the quasiparticle-vibration coupling. In practice, however,
because of the limited number of oscillator shells in our
calculations this state is found already in the RQRPA without
the QPC at a few hundreds keV above zero. In cases, where the
results depend strongly on a proper separation of this spurious
state, as, for instance, for investigations of the pygmy dipole
resonance in neutron rich systems, we have to include a large
number of the 2q configurations in the RQRPA solution to
avoid mixing of the spurious state with the low-lying physical
states.

B. Isovector dipole strength distribution: pygmy and
giant resonances

In Figs. 1 and 2 the calculated dipole spectra for the
tin isotopes 100Sn, 106Sn, 114Sn and 116Sn, 120Sn, 130Sn,
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FIG. 1. The calculated dipole spectra for the light tin isotopes
100Sn, 106Sn, 114Sn. Photo absorption cross sections computed with
the artificial width 200 keV (b, d, f). The low-lying portions of the
corresponding spectra in terms of the strength function, calculated
with 20-keV smearing (a, c, e). Calculations within the RQRPA are
shown by the dashed curves, and the RQTBA by the solid curves.

respectively, are given. The right panels of the figures show
the photo absorption cross section

σE1(E) = 16π3e2

9h̄c
E SE1(E), (58)

which is determined by the dipole strength function SE1,
calculated with the usual isovector dipole operator. The left
panels show the low-lying parts of the corresponding spectrum
in terms of the strength function, calculated with the small
imaginary part for the energy variable, to see the fine structure
of the spectrum and sometimes individual levels in this region.
Figure 3 represents the analogous results for the three N = 50
nuclei: 88Sr, 90Zr, and 92Mo. Calculations within the RQRPA
are shown by the dashed curves, and the RQTBA by the
solid curves. Experimental data are taken from the EXFOR
database [53].

These three figures clearly demonstrate how the two-
quasiparticle states, which are responsible for the spectrum of
the RQRPA excitations, are fragmented through the coupling
to the collective vibrational states. The effect of the particle-
vibration coupling on the low-lying dipole strength below and
around the neutron threshold within the presented approach is
shown in the left panels of the Figs. 1–3. Our calculations

FIG. 2. The same as in Fig. 1, but for heavier tin isotopes 116Sn,
120Sn, 130Sn, compared to data of Ref. [53] for 116,120Sn shown by
black circles with bars.

for the tin chain give us an example how the low-lying
strength develops with the increase of the neutron excess.
In the doubly magic 100Sn two first relatively weak RRPA
peaks appear between 9 and 10 MeV. Quasiparticle-phonon
coupling redistributes these structures and shifts them about
one MeV lower. In the 106Sn due to the pairing correlations
in the neutron system the whole RQRPA picture is shifted
toward higher energies, and there is practically no strength
below 10 MeV. In the corresponding figure we find only
the strength caused by the fragmentation of the higher-lying
RQRPA peaks above 11 MeV. In the 114Sn the neutron excess
becomes enough to form the pronounced pygmy mode situated
in the RQRPA at about 9.2 MeV and spread over many states
of the 2q ⊗ phonon nature beginning from 5 MeV. Figure 2
shows how this tendency develops in the more neutron-rich
nuclei: more strength is split to this region and this strength
goes to lower energies.

From the obtained results we can make a general conclusion
that the presence of pairing correlations at least in one of the
nucleonic subsystems causes a noticeably stronger fragmenta-
tion of both the GDR and the PDR modes comparatively the
case of a normal system that was considered, for instance, in
Refs. [21,22]. This effect has the two sources. First, pairing
correlations lead to a diffuseness of the Fermi surface and,
thus, increase the number of possible configurations of the
2q ⊗ phonon type. The second reason for the stronger coupling

014312-9



E. LITVINOVA, P. RING, AND V. TSELYAEV PHYSICAL REVIEW C 78, 014312 (2008)

FIG. 3. The calculated dipole spectra for the N = 50 isotones
88Sr, 90Zr, 92Mo. Photo absorption cross sections computed with the
artificial width 400 keV (b, d, f). The low-lying portions of the
corresponding spectra in terms of the strength function, calculated
with 10-keV smearing (a, c, e). Calculations within the RQRPA are
shown by the dashed curves, and the RQTBA by the solid curves.
Experimental data are taken from Ref. [53] and are shown by black
circles with bars.

effect is the considerable lowering of energies and increased
transition probabilities of the lowest 2+ states due to pairing
correlations of the superfluid type. In spherical open-shell
medium mass nuclei the highly collective first 2+ states
appear at energies around 1 MeV (and they are usually well
reproduced in RQRPA), whereas in magic nuclei and often
in nuclei near the shell closures they appear much higher, at
about 3–4 MeV, and have the considerably reduced transition
probabilities. This has an important physical consequence
manifesting as a strong configuration mixing in the case of
presence of very low-lying vibrational states. These modes
admix to others, in particular, to the GDR and the PDR and the
lower their energies and the higher their transition probabilities
are, the stronger fragmentation they cause.

We have performed the systematic analysis of the transition
densities of the RQRPA and the RQTBA states in nuclei under
investigation. We have found that the 2q transition densities
of the states in the broad low-lying energy region, originating
due to the fragmentation of the RQRPA pygmy mode, have
the behavior which is very similar to the behavior of the
initial RQRPA state: proton and neutron components oscillate

TABLE I. Characteristics of the isovector dipole spectrum for the
investigated N = 50 and Z = 50 nuclei: mean energies 〈E〉, widths
� and energy-weighted sum rule (EWSR) values calculated with
the RQRPA and with the RQRPA extended by the particle-phonon
coupling (RQTBA), compared to data. The values of 〈E〉 and � have
been obtained by a Lorentz fit of the computed strength functions
within the intervals 10–22.5 MeV for Z = 50 and 10–25 MeV for
N = 50 nuclei.

〈E〉 � EWSR
(MeV) (MeV) (%)

RQRPA 17.36 3.46 125
88Sr RQTBA 17.08 5.10 112

RQRPA 17.03 3.15 124
90Zr RQTBA 16.72 4.77 110

Exp. [55] 16.74 4.16
RQRPA 17.45 3.09 128

92Mo RQTBA 17.13 4.72 113
Exp. [55] 16.82 4.14

RRPA 16.88 2.99 117
100Sn RTBA 16.39 3.43 106

RQRPA 17.17 3.07 127
106Sn RQTBA 16.53 4.89 111

RQRPA 16.35 3.67 126
114Sn RQTBA 15.80 5.42 106

RQRPA 15.95 3.11 121
116Sn RQTBA 15.35 5.17 102

Exp. [55] 15.56 5.08
RQRPA 15.88 3.05 121

120Sn RQTBA 15.31 5.33 104
Exp. [55] 15.37 5.10
RQRPA 15.13 3.49 115

130Sn RQTBA 14.66 4.74 108
Exp. [56] 15.9(5) 4.8(1.7)

in phase in the nuclear interior and neutron components
dominate on the surface in nuclei with noticeable neutron
excess. In particular, in tin isotopes heavier than 114Sn the
whole energy region below 10 MeV is full of states with
such behavior. Above this energy we found states with
transitional behavior. Increasing further the excitation energy
we observe the low-energy GDR tail with states demonstrating
purely isovector underlying structure. However, the systematic
numerical analysis of the transition densities is beyond the
scope of the present article and will be included in the separate
publication [54].

The Lorentz fit parameters for the calculated GDR in
the energy intervals: (10–22.5) MeV for the tin chain and
(10–25) MeV for the N = 50 chain are displayed in Table I
and they are compared with the corresponding data of
Refs. [55,56]. In our work the Lorentz fit is performed in such a
way that the obtained Lorentzian has the same momenta of −2,
−1, and zero orders as our microscopical strength function.
This method works well if the model strength function is rather
close to the Lorentz shape. From the Table I we notice that
the inclusion of the particle-phonon coupling in the RQTBA
calculation induces a pronounced fragmentation of the photo
absorption cross sections and brings the mean energies and
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TABLE II. Integral characteristics of the low-lying isovector dipole spectrum for tin
isotopes: the integrated strength below 10 MeV, calculated with the RQRPA and with the
RQRPA extended by the particle-phonon coupling (RQTBA), compared to the available data.

(0–10) MeV (0–8) MeV∑
B(E1) ↑ ∑

EB(E1) ↑ ∑
B(E1) ↑ ∑

EB(E1) ↑
(e2 fm2) (%) (e2 fm2) (%)

RRPA 0.14 0.30 0.00 0.00
100Sn RTBA 0.11 0.30 0.00 0.00

RQRPA 0.01 0.03 0.00 0.00
106Sn RQTBA 0.14 0.30 0.02 0.04

RQRPA 0.84 2.00 0.00 0.00
114Sn RQTBA 1.38 3.00 0.20 0.30

RQRPA 1.78 4.00 0.00 0.00
116Sn RQTBA 1.94 4.00 0.27 0.40

Exp. [58] 0.204(25)
RQRPA 3.04 6.00 0.00 0.00

120Sn RQTBA 3.08 6.00 0.62 1.00
RQRPA 4.04 7.00 2.09 4.00

130Sn RQTBA 3.44 6.00 2.37 4.00
Exp. [56] 3.2 7(3)

widths of the GDR in much better agreement with the data,
for all the investigated nuclei.

Because the dynamical part of the interaction amplitude in
the (R)QTBA behaves as 1/ω at ω → ∞ [see Eq. (54)], the
first moment m1 of the strength function is not disturbed by
the coupling to phonons. This is the well-known property that
has been proven for approaches of the second RPA (SRPA)
type [57], including the QTBA [27]. However, additional
procedures like subtraction in the self-consistent approach
can change the m1 values. Nevertheless, in Ref. [21], taking
the rather broad energy region 0–30 MeV into consideration,
we obtained equal values for the EWSR in the RRPA and
the RTBA. To make a comparison with experimental data
for the GDR, one should calculate the quantity

∑
B(EL) ↑

performing the summation (integration of the energy weighted
strength) within the finite energy interval investigated in
the respective experimental studies of stable tin isotopes.
Within such a finite energy interval the relation between the
(R)QRPA and the (R)QTBA first momenta can change, and
the difference depends considerably on the gross structure of
the corresponding strength distributions.

In our present RQTBA calculations for Z = 50 and N = 50
nuclei the position of the GDR main peak remains almost
unchanged as compared to the RQRPA. But due to the different
shapes of the GDR in these two models, in particular, due to
the other sharp peaks at higher energies about 18–20 MeV,
appearing in the RQRPA, the RQRPA EWSR and mean
energy values come out larger than those in the RQTBA
calculations where we observe the very smooth GDR strength
distributions close to the Lorentzian shape. In particular, the
above mentioned sharp RQRPA structures around 18–20 MeV
are fragmented in the RQTBA. In the nonrelativistic QTBA
of Ref. [28] we dealt with the opposite situation, where the
QTBA distributions came out with some additional structure
on the high-energy tail that enhanced the first momentum
of the strength function and, consequently, also the EWSR

and the mean energy of the GDR as compared to the QRPA
giving the considerably lighter high-energy tails.

The contribution of the low-lying strength to the dipole
spectrum is quantified in Tables II, III. For each nucleus
we have calculated the following quantities: the non-energy-
weighted sum

∑
B(E1) ↑, which is obtained by direct

integration of the strength, and the energy-weighted quan-
tity

∑
EB(E1) ↑, which is an integral of the cross sec-

tion expressed in the percentage of the classical Thomas-
Reiche-Kuhn sum rule. Both quantities have been calculated
with RQRPA and RQTBA to emphasize the effect of the
quasiparticle-phonon coupling for the two energy intervals:
(0–10) MeV and (0–8) MeV for tin isotopes and (0–Sn) and
(0–8) MeV for N = 50 isotones. The choice of the intervals
for the tin isotopes is determined by the fact that, on the one
hand, in our approach we associate the pygmy modes with the
dipole strength which originates from the pronounced RQRPA
peaks of the isoscalar underlying structure, whose fragments
in the RQTBA calculations are found in the broad energy
region (4–10) MeV. On the other hand, the measurements of
the low-lying strength excited in tin isotopes in the real-photon
scattering experiments [58] are restricted by the energy around
8 MeV because at higher energies the sensitivity of these
experiments decreases considerably. For the N = 50 nuclei
the recent low-lying strength data of Refs. [59,60] are available
up to neutron separation energies of these nuclei which are
11.11 MeV, 11.97 MeV, and 12.67 MeV for 88Sr, 90Zr, and
92Mo, respectively, as well as the data for the lowest-energy
portion of the dipole strength below 8 MeV, therefore we give
the partial integral strength within these intervals.

The integral contribution of the low-energy portions cal-
culated within the RQTBA agrees very reasonably with the
available data that can be seen from Tables II and III: the
inclusion of the coupling to phonons noticeably improves
the description of the data. Moreover, below 8 MeV in
the most of the investigated nuclei we observe that the
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TABLE III. Integral characteristics of the low-lying isovector dipole spectrum below the
experimental neutron thresholds Sn for the N = 50 nuclei: the integrated strength, calculated
with the RQRPA and with the RQRPA extended by the particle-phonon coupling (RQTBA),
compared to the available data.

(0–Sn) MeV (0–8) MeV∑
B(E1) ↑ ∑

EB(E1) ↑ ∑
B(E1) ↑ ∑

EB(E1) ↑
(e2 fm2) (%) (e2 fm2) (%)

RQRPA 0.28 0.87 0.00 0.00
88Sr RQTBA 0.66 2.06 0.13 0.32

Exp. [59,60] 0.19(2)
RQRPA 0.10 0.34 0.00 0.00

90Zr RQTBA 0.86 2.83 0.07 0.17
Exp. [59,60] 0.13(3)

RQRPA 0.31 1.17 0.00 0.00
92Mo RQTBA 1.28 4.42 0.03 0.06

quasiparticle-phonon coupling is the only mechanism that
brings the strength to this region where the pure RQRPA has
no solutions at all. We have found also general agreement
of our results for 116,130Sn and 88Sr,90Zr with the relatively
recent studies of the low-lying dipole strength in Refs. [61–63]
in the quasiparticle phonon model (QPM) [29], although
some details of the obtained strength distributions and the
behavior of the dipole transition densities are different. In
the QPM based on the Skyrme interaction the model space
includes up to three-phonon configurations built from a basis
of QRPA states, calculated with the separable multipole-
multipole residual interactions with adjustable parameters,
that could be a possible source of the above mentioned
differences.

Although the integral strength is described rather good
within our approach, the level densities of the obtained
low-lying spectra seem to be underestimated as compared to
the experimental works. In the other words, in our approach
the effect of fragmentation of the RQRPA excitations due
to coupling to phonons is not enough. To obtain a more
realistic effect, we could, obviously, use the experience of
the previous calculations within the nonrelativistic models.
For instance, in the Ref. [58] the calculations within the
QPM model [29] with taking into account one-, two-, and
three-phonon configurations lead to the better description of
the PDR fine structure. Additionally, we could include at least
more vibrational modes into our phonon subspace, that will
not even require any modification of the model. Another way
to enrich the spectrum is to take into account ground-state
correlations of the singular type, according to Ref. [27].

The fragmentation of the resonances, induced by the
quasiparticle-phonon coupling, is a very well known result
that has been obtained long ago [64–66] (see also relatively
recent calculations of electric dipole excitations in open-shell
nuclei, including QPC within the framework of nonrelativistic
approaches based on the Skyrme energy functional [31,67,68]
as well as on the simple semiphenomenological scheme,
including the single-particle continuum [28]). Actually, one
finds more or less a similar level of agreement between the
available experimental data and the theoretical predictions of
these approaches. We notice, however, that, in general, our

self-consistent relativistic approach reproduces the shapes and
often the mean energies of giant dipole resonances better than
the other above-mentioned approaches, that could be attributed
to the more realistic form of the meson-exchange force and to
the fully consistent calculation scheme.

From Figs. 2 and 3 one can see that the envelopes of
the calculated GDR in 116,120Sn between 10 and 22 MeV
and in 90Zr, 88Sr between 12 and 25 MeV are rather close
to the experimental cross sections. The deviations from the
smooth Lorentz shape observed in experiments could be
attributed to some minor drawbacks of our approach and
calculation scheme: neglecting of the more complicated,
than the 2q ⊗ phonon, configurations by the time blocking,
discretized continuum, restriction of the phonon subspace by
the only low-lying modes, and, at last, too-simple model for
the pairing force. Nevertheless, we find that the agreement
with the data for the GDR cross sections in these nuclei is very
good, especially taking into account the fact, that our approach
is fully consistent and contains no any fit additionally to the
fit of the RMF energy functional parameters NL3 that are
fixed in the very beginning and used for the entire nuclear
chart. Therefore, we conclude that the main mechanisms that
are responsible for the damping of the GDR are taken into
account correctly and consistently.

IV. OUTLOOK AND CONCLUSIONS

The RQTBA has been developed and applied for nuclear
structure calculations. The physical content of this approach
is the quasiparticle-vibration coupling model based on the
relativistic energy density functional and the relativistic QRPA.
The approach is formulated for a system with an even particle
number in terms of the Bethe-Salpeter equation for the ph

channel in the doubled space to describe a response of the
system in an external field and its spectral characteristics.

The static part of the single-quasiparticle self-energy is
determined by the relativistic energy functional with the
parameter set NL3 based on a one-meson exchange inter-
action with a nonlinear self-coupling between the mesons.
An independent phenomenologically parameterized term is
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introduced into the relativistic energy functional to describe
pairing correlations that are considered to be a nonrelativistic
effect and treated in terms of Bogoliubov’s quasiparticles and,
in the application, within the BCS approximation. To take the
QPC into account in a consistent way, we have first calculated
the amplitudes of this coupling within the self-consistent
RQRPA with the static interaction. Then, the calculated
QPC energy-dependent self-energy was introduced into the
Dirac-Hartree-BCS equation for the single-quasiparticle wave
function and into the equivalent Dyson equation for a single-
quasiparticle Green’s function. The Bethe-Salpeter equation
for the response function in the doubled space contains
the energy-dependent induced interaction connected with the
energy-dependent self-energy by the consistency condition.
The BSE has been formulated and solved in both Dirac-
Hartree-BCS and momentum-channel representations.

To solve the BSE in the quasiparticle time blocking
approximation, the time-projection technique is used to block
the two-quasiparticle propagation through the states that have
more complicated structure than 2q ⊗ phonon. The nuclear
response is then explicitly calculated on the 2q ⊗ phonon level
by summation of infinite series of Feynman’s diagrams. To
avoid double counting of the QPC effects a proper subtraction
of the static QPC contribution has been performed. Because the
parameters of density functional for the static RMF description
have been adjusted to experiment they include already essential
ground-state correlations.

The RQTBA introduced in the subsection II C of this work
is applied for the calculation of spectroscopic characteristics
of the isovector dipole excitations in the wide energy range up
to 30 MeV for spherical open-shell nuclei, in particular for the
isotopes 100,106,114,116,120,130Sn (Z = 50) and the isotones 88Sr,
90Zr, 92Mo (N = 50). The QPC leads to a significant spreading
width of the GDR as compared to RQRPA calculations and
causes the strong fragmentation of the pygmy dipole mode and
its spreading to lower energies. This is in an agreement with
experimental data as well as with the results obtained within
the nonrelativistic approaches.

The good agreement of our results with the experimental
data obtained without any additional adjustable parameters for
a large number of semimagic nuclei, confirms the universality
of the RMF energy functional and the predictive power of our
approach. We hope that some of the minor drawbacks of the
present calculations can be overcome by using in future an
improved version of the density functional both in the ph and
in the pp channel.

ACKNOWLEDGMENTS

Helpful discussions with D. Vretenar are gratefully ac-
knowledged. We are thankful to R. Schwengner for providing
us with experimental results for the low-lying dipole strength
in 88Sr and 90Zr. This work has been supported in part by the
Bundesministerium für Bildung und Forschung under project
06 MT 246 and by the DFG cluster of excellence “Origin
and Structure of the Universe” (www.universe-cluster.de).
E.L. acknowledges the support from the Alexander von
Humboldt-Stiftung. P.R. thanks for the support provided by the

Ministerio de Educación y Ciencia, Spain, under the number
SAB2005-0025. V.T. acknowledges financial support from the
Deutsche Forschungsgemeinschaft under the grant no. 436
RUS 113/806/0-1 and from the Russian Foundation for Basic
Research under the grant no. 05-02-04005-DFG a.

APPENDIX A: DESCRIPTION OF THE GROUND STATE

In the present work we confine ourselves by the case
of spherically symmetric nuclei where it is convenient to
separate the dependence on the magnetic quantum number
mk: k = {(k),mk}, where (k) is the set of remaining quantum
numbers that are time reversal invariant: −k = {(k),−mk}. In
this case (k) = {nk, jk, πk, τk} with the radial quantum number
nk , angular-momentum quantum number jk , parity πk , and
isospin τk , so the Dirac spinors read:

ϕk(r, t) =
[

f(k)(r)Ylkjkmk
(ϑ, ϕ)

ig(k)(r)Yl̃kjkmk
(ϑ, ϕ)

]
χτk

(t), (A1)

Yljm(ϑ, ϕ) is a two-component spinor

Yljm(ϑ, ϕ, s) =
∑
msml

(
1

2
mslml|jm

)
Ylml

(ϑ, ϕ)χms
(s), (A2)

t is the coordinate for the isospin and χτk
(t) is a spinor in the

isospin space. The orbital angular momenta lk and l̃k of the
large and small components are determined by the parity of
the state k:{

lk = jk + 1
2 , l̃k = jk − 1

2 for πk = (−1)jk+ 1
2

lk = jk − 1
2 , l̃k = jk + 1

2 for πk = (−1)jk− 1
2 ,

(A3)

f(k)(r) and g(k)(r) are radial wave functions. The phase
convention for the wave function ϕ−k is chosen so that the
following relation is fulfilled:

γ 3γ 1ϕ∗
k = (−)lk+jk−mkϕ−k . (A4)

In the literature [13] the RQRPA equations are solved
for finite-range Gogny forces in the pairing channel in the
canonical basis. This has the advantage, that the quasiparticle
matrix elements of the QRPA equations can be calculated
rather easily by multiplying the matrix elements in particle
space by BCS occupation factors, but it has the disadvantage
that the matrix H 11 in quasiparticle space is no longer diagonal
in the canonical basis. The quasiparticle energies Ek1 + Ek2

have to be replaced by complicated matrices.
We therefore use in the following applications the

RMF+BCS approximation, where the canonical basis coin-
cides with the BCS basis. In this approximation the ground-
state wave function |�0〉 is considered to be a vacuum state
with respect to quasiparticles with the creation and annihila-
tion operators α

†
k, αk determined by the special Bogoliubov

transformation:(
αk

α
†
k̄

)
=

(
uk −vk

vk uk

) (
ak

a
†
k̄

)
, αk|�0〉 = 0 ∀k, (A5)

where u2
k + v2

k = 1. Operation k̄ transforms the state k to the
time reversal state. In a spherical system we define

ak̄ = (−1)lk+jk−mka−k, (A6)
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where the choice of the phase factors is determined by
Eq. (A4).

In the RMF+BCS approximation we determine, in each
step of the iteration, first the eigenfunctions ϕk of the single-
particle Dirac Hamiltonian hD of Eq. (16)∫

dx ′hD(x, x ′)ϕk(x ′) = (m + εk)ϕk(x), (A7)

where the coordinate x = {r, α, t} combines the spatial coordi-
nates r with the Dirac index α = 1 . . . 4 and the isospin t . Next,
the Dirac spinors ϕk are used to construct the single-particle
density matrix

ρ(x, x ′) =
∑

k

ϕk(x)v2
kϕ

†
k(x ′). (A8)

In the basis of the functions ϕk (BCS basis) ρ as well as hD are
diagonal with the eigenvalues v2

k and m + εk . The pairing field
� is in this basis close to canonical form: �kk̄′ = δkk′�k . All
other matrix elements vanish in the case of a monopole force
with constant matrix elements and without cutoff, in other
cases they are neglected in the BCS approximation. Thus, in
this basis, the Hartree-Bogoliubov matrix (14) is reduced to a
set of 2 × 2 matrices, which can be diagonalized analytically.
One finds as eigenvalues the quasiparticle energies

Ek =
√

(εk − λτk
)2 + �2

k (A9)

and as eigenfunctions the occupation amplitudes uk and vk

with

v2
k = 1

2

(
1 − εk − λτk

Ek

)
(A10)

and uk =
√

1 − v2
k . The pairing gaps �k are obtained by the

solution of the gap equation

�k = −1

2

∑
k′

V
pp

kk̄,k′ k̄′
�k′

2Ek′
(A11)

in each step of the iteration and the chemical potential λτk
is

fixed via particle number conservation:∑
k

v2
k = N (or Z) for neutrons (or protons). (A12)

After the solution of the BCS equations (A11)–(A12) the
density (A8) is calculated and used for the solution of the
Klein-Gordon equations (22) determining the RMF potentials
for the Dirac-Hartree Hamiltonian in Eq. (A7) in the next step
of the iteration. In the RMF+BCS approximation the eight
components of the quasiparticle eight-component Dirac spinor
|ψη

k 〉 are simply expressed through the usual four-component
spinor wave functions ϕk:

Uk(x) = ukϕk(x)

Vk(x) = (−1)lk+jk+mkvkϕ
∗
−k(x), (A13)

and we have chosen uk, vk > 0 ∀k. This simplifies the cal-
culation of the RQRPA matrix elements in the next section
considerably. We only have to calculate the matrix elements in
particle space using the wave functions ϕk and multiply them

with the corresponding BCS occupation factors in Eqs. (B6)
and (B7).

In the present applications of our approach we use a
monopole pairing force with constant matrix elements and
a soft pairing window. Details are given in Appendix B.

APPENDIX B: SOLUTION OF THE RQRPA EQUATIONS
AND CALCULATION OF THE PHONON VERTICES

The RQRPA equations are derived as the small amplitude
limit of the time-dependent Dirac-Hartree-Bogoliubov equa-
tions for the generalized density matrix R [13]. For general
pairing forces, as, for instance, for the finite range Gogny force
in the pairing channel [69], they can be solved in the canonical
basis [70] of the RHB equations, where the full Hartree-
Bogoliubov ground-state wave function has BCS form. In the
RMF+BCS case they are solved in the Dirac-Hartree-BCS
basis (A13) described above. In spherical systems we can use
angular-momentum coupling of the two-quasiparticle states
and the reduced form of the RQRPA equation for angular
momentum Jµ is:(
η�µ − Ek1 − Ek2

)
Rη

µ(k1k2) =
∑
η′

∑
(k4)� (k3)

Ṽ
Jµ,ηη′

(k1k4,k2k3)R
η′
µ(k3k4),

(B1)

where the index µ characterizes the various solutions of the
RQRPA equation, in particular their angular momentum Jµ.
The notation (k1k2) indicates that the two quasiparticles with
the indices k1 and k2 are coupled to angular momentum Jµ.
The ηη′ components of the static residual interaction in the ph

channel read:

Ṽ
J,ηη′

(k1k4,k2k3)

=
∑

S=0,1

[δη,1 + (−1)Sδη,−1][δη′,1 + (−1)Sδη′,−1]

× [
ηS

(k1k2)η
S
(k3k4)ṽ

(ph)JS

(k1k4,k2k3) + ξS
(k1k2)ξ

S
(k3k4)ṽ

(pp)J
(k1k2,k3k4)

]
, (B2)

where ṽ
(ph)JS

(k1k4,k2k3) and ṽ
(pp)J
(k1k2,k3k4) are the reduced matrix elements

of the ph and pp interaction. We assume that the pp compo-
nents do not depend on the total spin, and the ph components
carry spin S = 0, 1. The ph components ṽ

(ph)JS

(k1k4,k2k3) describe the
one-boson exchange (OBE) interaction and could be expressed
as follows:

ṽ
(ph)JS

(k1k4,k2k3) = ± (4π )2

2J + 1

∑
m∈S

∑
L

∫ ∞

0

q2q ′2dqdq ′

(2π )6

×〈(k1)‖jL(qr)[β�mSYL]J ‖(k2)〉
×DS

m(q, q ′)〈(k3)‖jL(q ′r)[β�mSYL]J ‖(k4)〉,
(B3)

where in the first sum (m ∈ S) the index m runs over the various
meson fields carrying spin S. The index S in �mS denotes the
spin of the Pauli matrix entering the vertices �m in Eq. (7). This
implies in particular that S = 0 for the scalar and timelike parts
of the vector mesons and that S = 1 for the spacelike parts of
the vector mesons (current-current interactions).
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Representing the q integral in Eq. (B3) by a discrete sum
over mesh points, the matrix elements (B3) are a sum of
separable terms. The nonlocal meson propagator is a solution
of the integral equation:

q2DS
m(q, q ′) +

∫
d3q ′′

(2π )3
MS

m(q − q ′′)DS
m(q ′′, q ′)

= (2π )3δ(q − q ′), (B4)

where MS
m(q) is the Fourier transform of U ′′[φS

m(r)] deter-
mined by Eqs. (8), (9):

MS
m(q) =

∫
d3re−iqrU ′′[φS

m(r)
]
. (B5)

The quantities ηS
(k1k2), ξ

S
(k1k2) in the Eq. (B2) are the conventional

factors [70] which are the following linear combinations of the
occupation numbers:

ηS
(k1k2) = 1√

1 + δ(k1k2)

[
uk1vk2 + (−1)Svk1uk2

]
(B6)

ξS
(k1k2) = 1√

1 + δ(k1k2)

[
uk1uk2 − (−1)Svk1vk2

]
, (B7)

arising due to symmetrization in the integral part of the
Eq. (B1), which enables one to take each 2q pair into account
only once because of the symmetry properties of the reduced
matrix elements ṽ

(ph)JS

(k1k4,k2k3) and ṽ
(pp)J
(k1k2,k3k4). For the interaction

ṽ(pp) in the pp channel we use a simple monopole-monopole
ansatz with the so-called smooth window [71]:

ṽ
(pp)J
(k1k2,k3k4) = −G

2
δJ0δ(k1k2)δ(k3k4)

√
2jk1 + 1

1 + e(εk1 −w)/d

×
√

2jk3 + 1

1 + e(εk3 −w)/d , (B8)

where w is the value of the pairing window and d is its
diffuseness.

The RQRPA transition densities Rη

µ(k1k2) calculated from
the Eq. (B1) determine in particular the components of
the amplitudes γ

η

µ(k1k2) that couple the phonon with the
quasiparticle states |ψη1

k1
〉 and |ψη2

k2
〉 having η1 = η2 = η, i.e.,

lying on the same side with respect to the Fermi level

γ
η

µ(k1k2) = √
1 + δ(k1k2)

∑
η′

∑
(k4)≤(k3)

×
∑

S=0,1

[δη,1 − (−1)Sδη,−1][δη′,1 + (−1)Sδη′,−1]

× [
ξS

(k1k2)η
S
(k3k4)ṽ

(ph)JµS

(k1k4,k2k3)

− ηS
(k1k2)ξ

S
(k3k4)ṽ

(pp)Jµ

(k1k2,k3k4)

]
Rη′

µ(k3k4). (B9)

APPENDIX C: THE RQTBA CORRELATED PROPAGATOR
AND THE STRENGTH FUNCTION

In solving Eq. (47) for the response function, we use our
previous experience with calculations for nuclei with closed
shells [21,22]. Again, we formulate and solve this equation
both in the 2q basis of Dirac-Hartree-BCS quasiparticle pairs
and in the momemtum-channel space. In Dirac-Hartree-BCS
space its dimension is the number of 2q pairs that satisfy
the selection rules for the given multipolarity. In relativistic
nuclear calculations it is always important to take into account
the contribution of the Dirac sea. This can be done, as it is done
traditionally, explicitly, or statically by the renormalization
of the static interaction, as it is proposed in Ref. [50].
Nevertheless, for systems with pairing correlations the total
number of 2q pairs entering Eq. (47) increases considerably
not only with the nuclear mass number but also with the pairing
window. As it was investigated in a series of RRPA calculations
[12,72], the completeness of the ph (αh) basis is very
important for calculations of giant resonance characteristics
as well as for current conservation and a proper treatment of
symmetries, in particular, the dipole spurious state originating
from the violation of translation symmetry on the mean-field
level. However, the use of a large basis requires a considerable
numerical effort and, therefore, it is reasonable to solve the
Eq. (47) in a different more appropriate representation.

Our choice is determined by the following properties of
the static effective interaction Ṽ . Its ph component is based
on the exchange of mesons and explicitly contains only direct
terms and no exchange terms, therefore it can be written as a
sum of separable interactions (B3), and in the present work its
pp component is also chosen in the separable form (B8) for
convenience.

As in Refs. [21,22], we solve the response equation for a
fixed value of the energy variable ω in two steps. First, we
calculate the correlated propagator Re(ω) that describes the
propagation under the influence of the interaction �(ω) in
the time blocking approximation without GSC caused by the
phonon coupling:

R
(e)J,η

(k1k4,k2k3)(ω) = R̃
(s)J,η

(k1k4,k2k3)(ω)

+ R̃
(0)η
(k1k2)(ω)

∑
(k6≤k5)

[
�

(s)J,η

(k1k6,k2k5)(ω)

−�
(s)J,η

(k1k6,k2k5)(0)
]
R

(e)J,η

(k5k4,k6k3)(ω), (C1)

where the symmetrized matrix elements of the mean-field
propagator R̃(s) and the two quasiparticles-phonon coupling
amplitude �(s) read:

R̃
(s)J,η

(k1k4,k2k3)(ω) = R̃
(0)η
(k1k2)(ω)

[
δ(k1k3)δ(k2k4)

+ (−)J+l1−l2+j1−j2δ(k1k4)δ(k2k3)
]
, (C2)

�
(s)J,η

(k1k4,k2k3)(ω) = 1

1 + δ(k3k4)

[
�

J,η

(k1k4,k2k3)(ω)

+ (−)J+l1−l2+j1−j2�
J,η

(k2k4,k1k3)(ω)
]
, (C3)

which means that we take into account two kinds of compo-
nents: one kind with only forward (η = 1) 2q propagators of
the ph type (η1 = −η2) and another one with only backward
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propagators (η = −1), but do not include mixed ones. In the
conventional terminology it means that we neglect ground-
state correlations caused by the quasiparticle-phonon coupling.
The reduced matrix elements of the quasiparticle-phonon
coupling amplitude �

J,η

(k1k4,k2k3)(ω) read:

�
J,η

(k1k4,k2k3)(ω) =
∑

µ

(
δ(k1k3)δκk4 κk2

2jk2 + 1

∑
(k6)

γ
−η

µ(k6k2)γ
−η∗
µ(k6k4)

ηω − Ek1 − Ek6 − �µ

+ δ(k2k4)δκk3 κk1

2jk1 + 1

∑
(k5)

γ
η

µ(k1k5)γ
η∗
µ(k3k5)

ηω − Ek5 − Ek2 − �µ

+ (−1)J+Jµ

{
jk1 jk2 J

jk4 jk3 Jµ

}

×
[

(−1)jk3 −jk2 γ
η

µ(k1k3)γ
−η∗
µ(k2k4)

ηω − Ek3 − Ek2 − �µ

+ (−1)jk1 −jk4 γ
η∗
µ(k3k1)γ

−η

µ(k4k2)

ηω − Ek1 − Ek4 − �µ

])
, (C4)

where κk denotes the relativistic quantum number set:
κk = (2jk + 1)(lk − jk). The reduced matrix elements of the
particle-phonon coupling amplitude γ

η

µ(k1k2) are calculated
from the Eq. (B9). The index µ = {Jµ, nµ} denotes the set
of phonon quantum numbers that are its angular momentum
Jµ and the number of the solution nµ of the Eq. (B1). The
quantity �µ is the corresponding energy. The fact that the
right-hand side of Eq. (C4) depends only on the same η values
as the left-hand side and contains no mixing of different η

values implies that no GSC are contained in the intermediate
2q ⊗ phonon propagators.

The Eq. (C1) is too expensive numerically to be solved
in the full Dirac-Hartree-BCS basis. However, due to the
pole structure of the � amplitude it is naturally to suggest
that quasiparticle-phonon coupling effects are not important
quantitatively far from the Fermi surface. In the present
work, for numerical calculations an energy window Ewin

was implemented around the Fermi surface with respect to
pure two-quasiparticle energies E2q so the summation in
the Eq. (C1) is performed only among the 2q pairs with
E2q � Ewin. Consequently, the correlated propagator differs
from the mean-field propagator only within this window.
This approximation has been checked in the Ref. [21] in the
calculations for nuclei with closed shells by direct calculations
with different values of this energy window, and it has been
found that this window should include just the investigated
energy region. Beyond the energy window we do not obtain
additional poles caused by 2q ⊗ phonon configurations but
only the renormalized QRPA spectrum. It is important to
emphasize that many 2q and αq configurations outside of
the window are taken into account on the RQRPA level that is
necessary to obtain the reasonable centroid positions of giant
resonances as well as to find the dipole spurious state close to
zero energy. By its physical meaning, the Eq. (C1) contains
all effects of the quasiparticle-phonon coupling and all the
singularities of the integral part of the initial BSE.

In the second step, we have to solve the remaining equation
for the full response function R(ω):

R
J,ηη′
(k1k4,k2k3)(ω) = R

(e)J,η

(k1k4,k2k3)(ω)δηη′

+
∑

(k6 � k5)

∑
(k8 � k7)η′′

R
(e)J,η

(k1k6,k2k5)(ω)Ṽ J,ηη′′
(k5k8,k7k6)R

J,η′′η′
(k7k4,k8k3)(ω).

(C5)

In contrast to the Eq. (C1), this equation contains only the
static effective interaction Ṽ from the Eq. (B2).

Because both the one-boson exchange interaction and the
pairing interaction are separable in momentum space, we can
use this advantage and formulate the response equation in
the momentum-channel representation. Let us introduce the
following generalized channel index cχ = {q,m,L, S} for
χ = (ph) and cχ = S for χ = (pp). For χ = (ph) it includes
the momentum q transferred in the exchange process of the
corresponding meson labeled by the index m. The index χ

distinguishes ph- and pp-channel components of the static
interaction, L is the angular momentum, and the index S = 0, 1
has its usual meaning of the total spin carried through the
certain channel. In this way, we apply the following ansatz for
the η components of the static effective interaction Ṽ

Ṽ
(J )ηη′

(k1k4,k2k3) =
∑
cc′

Q
(c)J,η

(k1k2) dcc′Q
(c′)J,η′∗
(k3k4) , (C6)

where we omit the index χ for simplicity. For the channels
with χ = (ph):

Q
(c)J,η

(k1k2) = δη,1 + (−1)Sδη,−1√
1 + δ(k1k2)

× ηS
(k1k2)〈(k1)‖jL(qr)[β�mSYL]J ‖(k2)〉 (C7)

dcc′ = ± 1

2J + 1

DS
m(q, q ′)
(2π )6

δLL′δSS ′δmm′ (C8)

and the summation over c, c′ implies integration over
d3q, d3q ′. For the channels with χ = (pp) we have:

Q
(c)J,η

(k1k2) = δJ0δ(k1k2)
δη,1 + (−1)Sδη,−1√

1 + δ(k1k2)
ξS

(k1k2)

√
2jk1 + 1

1 + e(εk1 −w)/d

(C9)

dcc′ = −G

2
δcc′ . (C10)

Then, we can use the well-known techniques of the response
formalism with separable interactions (see, for instance,
Ref. [70]). We define the exact response function and the
correlated propagator in the generalized momentum-channel
space as follows:

RJ
cc′ (ω) =

∑
(k2 � k1)η

∑
(k4 � k3)η′

Q
(c)J,η∗
(k1k2) (C11)

R
J,ηη′
(k1k4,k2k3)(ω)Q(c′)J,η′

(k3k4) R
(e)J
cc′ (ω)

=
∑

(k2 � k1)

∑
(k4 � k3)η

Q
(c)J,η∗
(k1k2) R

(e)J,η

(k1k4,k2k3)(ω)Q(c′)J,η

(k3k4) . (C12)

In this representation Eq. (C5) reads:

Rcc′ = Re
cc′ + (RedR)cc′ . (C13)

014312-16



RELATIVISTIC QUASIPARTICLE TIME BLOCKING . . . PHYSICAL REVIEW C 78, 014312 (2008)

This equation is solved by matrix inversion

R =
(

1 − Red
)−1

Re. (C14)

To compute the nuclear response in the certain external
field, we need a convolution of the exact response function
with the external field operator P that can be suggested as
an additional channel c = p, p = {z, χ}, where the index z

contains possible additional dependences of the external field
that we do not concretize here:

P
(p)J,η

(k1k2) =
∑
LS

δη,1 + (−1)Sδη,−1√
1 + δ(k1k2)

ηS
(k1k2)〈(k1)‖ P

(p)J
LS ‖ (k2)〉.

(C15)

Making use of this definition, we can determine the polariz-
ability as:

�J (ω) = RJ
pp(ω) = R(e)J

pp (ω) +
∑
cc′

R(e)J
pc (ω)dcc′RJ

c′p(ω),

(C16)

where the quantities R(e)J
pc (ω), R(e)J

pp (ω) can be found as
follows:

R(e)J
pc (ω) =

∑
(k2 � k1)

∑
(k4 � k3)η

P
(p)J,η∗
(k1k2) R

(e)J,η

(k1k4,k2k3)(ω)Q(c)J,η

(k3k4)

(C17)
R(e)J

pp (ω) =
∑

(k2 � k1)

∑
(k4 � k3)η

P
(p)J,η∗
(k1k2) R

(e)J,η

(k1k4,k2k3)(ω)P (p)J,η

(k3k4) ,

and the quantity RJ
cp(ω), which has a meaning of the density

matrix variation in the external field P , obeys the equation:

RJ
cp(ω) = R(e)J

cp (ω) +
∑
c′c′′

R
(e)J
cc′ (ω)dc′c′′RJ

c′′p(ω). (C18)

To describe the observed spectrum of the excited nucleus in a
weak external field P , as for instance a dipole field, one needs
to calculate the strength function:

SJ (E) = − 1

π
lim

�→+0
Im�J (E + i�), (C19)

expressed through the polarizability �J (ω) defined by
Eq. (C16).

Obviously, the dimension of vectors and matrices entering
Eq. (C18) is determined by the number of mesh points in q

space and the number of m,L, S channels. In particular, it
does not depend considerably on the total dimension of 2q

and αq subspaces and on the mass number of the nucleus.
As we have realized in the calculations of Refs. [21,22], the
advantage of the momentum-channel representation appears
at some medium values of the nuclear mass number, where the
total dimension of ph and αh subspaces, which is exactly the
dimension of arrays in the Eq. (50) written in the coupled
form, become comparable with the dimension of matrices
entering Eq. (C18). In the present approach, due to the pairing
correlations, this mass region shifts toward lower masses. The
solution in the momentum-channel space is even more helpful
when we include pairing correlations, because the number of
states within the pairing window increases by more than a
factor 2 as compared to the case without pairing. For heavy
nuclei the dimension of the two-quasiparticle DHBCS basis
increases considerably and, therefore, for heavy nuclei the
solution of the response equations in momentum space is
recommendable.

Notice, that the pairing correlations cause also an additional
numerical effort in Eq. (C1). It is solved within the subspace
of 2q configurations confined by the Ewin that, in the realistic
calculations, surrounds the pairing window and, therefore,
contains considerably more configurations as compared to the
case of no pairing.
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