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Scalar nature of the nuclear density functional
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We prove the existence theorem for a scalar density functional (DF) for nuclei. The theorem is a direct
consequence of the rotational invariance of the nuclear Hamiltonian. Since the DF depends only on scalar
densities, practical predictions of ground state (g.s.) energies reduce to one-dimensional, radial calculations.
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I. INTRODUCTION

A major issue in modern nuclear physics is the theoretical
prediction and experimental creation of exotic nuclei, drip
line and superheavy ones. While the subject of mass formulas
is probably the oldest in the field and excellent results
have been obtained throughout thousands of ground states
(g.s.), it is common knowledge that the last tens or even
hundreds of keV accuracy for the binding energies of very
exotic nuclei are difficult to predict. This why DF theories
(DFTs) are currently receiving much attention and giving
rise to intense calculations. Heated debates occur about the
parametrization of such DFs. Both the parametrization and the
ensuing calculations are made sometimes unwieldy at present
because of the three-dimensional formulation of DFs. The
purpose of the present paper is to prove that, despite the rich
three-dimensional geometry of nuclear g.s., with possibly large
spins and often strong deformations, there exists a rigorous
one-dimensional DFT approach, describing both g.s. energies
and g.s. spins. The one-dimensional approach holds for all
nuclei, odd as well as even ones.

II. EXISTENCE THEOREM OF A SCALAR DF

Let Z,N,A ≡ Z + N be the proton, neutron, and mass
numbers, respectively. The nuclear Hamiltonian H is invariant
under rotations. Therefore, besides Z and N, nuclear g.s.
carry good quantum numbers, J and M, for the total angular
momentum and its z-component. Two cases occur: (i) either
J = 0, hence a nondegenerate g.s., the density of which is
isotropic, or (ii) J > 0, hence a trivial degeneracy for a
magnetic multiplet of g.s., the densities of which, nonisotropic,
contain several1 [1,2] multipoles, with the same monopole part
of the density for all members of the multiplet.

In both cases, the ensemble density operator for the g.s. of
a given nucleus,

BZN = (2J + 1)−1
∑
M

|ZNJM〉〈ZNJM|, (1)

*bertrand.giraud@cea.fr
1The list of density multipoles typically runs up to order 2J ; notice,

however, that total orbital momentum can run up to J + S if individual
spins are coupled to total spin S > 0.

is a scalar under rotations. In both cases also, the g.s. energy
obtained by

EZN = Tr BZN H. (2)

Every spherical harmonic function, except a monopole, in-
tegrates out to zero. Therefore, only the monopole components
of the proton and neutron densities contribute to the density
normalizations which identify a nucleus,

∫ ∞
0 r2drρp0(r) = Z

and
∫ ∞

0 r2drρn0(r) = N. The position r is taken here as a
scalar rather than a vector. In the following, for conciseness,
we omit the subscript 0 and often denote ρ the pair {ρp, ρn}.

Consider the “density constrained search” [3,4] for a
minimal energy,

Infρ→{Z,N}

[
(InfC→ρ Tr C H ) +

∫ ∞

0
r2dr[up(r)ρp(r)

+un(r)ρn(r)]

]
, (3)

where it is understood that the many-body density operator
C has unit trace, Tr C = 1, and is restricted to be a scalar
under rotations. The subscript, C → ρ, means that the many-
body C is constrained to induce a one-body density ρ. This
one-body ρ is then used as a further variational object. Also
up and un are scalar; with two distinct densities ρp, ρn, two
potentials are needed to represent the external potential used
by the Hohenberg-Kohn [5] theorem as a functional Lagrange
multiplier to constrain the density. Notice that now we do
not put subscripts Z,N to C, because the normalizations,
particle numbers, are implemented at the stage of the “outer”
minimization. At the “inner” stage, N and Z do not need
to be integers. To define physical sectors, however, namely
nuclei, it is understood in the following that, in such cases, the
many-body density operator C in Fock space will not mix states
with different Z or N numbers. This avoids risky interpolations
between neighboring nuclei. The sector labels, Z,N, are often
understood in the following.

This inner minimization, InfC→ρ, defines a DF for the sector
{Z,N},

FZN [ρ] ≡ InfC→ρ Tr C H, (4)

and the g.s. energy EZN of the nucleus results from

EZN = Infρ FZN [ρ]. (5)
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It is seen, therefore, that Eqs. (4) and (5) provide the basis of a
full fledged nuclear DFT in radial space, a symmetrized theory
à la Görling [6].

For the reader unfamiliar with this “constrained search” in
a space of many-body density operators it is useful to consider
the finite temperature DFT defined by Mermin [7]. Given
the (scalar) Hamiltonian H and a (scalar) external potential
U, the canonical density operator of interest is the thermal
equilibrium one, D = exp[−β(H + U )]/Z, where Z is the
canonical partition function, Z = Tr exp[−β(H + U )]. It is
trivial to see that D is a scalar at any temperature and, thus,
because of the rotational invariance of H, the Mermin nuclear
DFT can live in a world of scalar densities. At the vanishing
temperature limit, namely when β → +∞, the limit of D is
nothing but B, see Eq. (1).

This proves the main result of this paper, namely the
existence theorem for one-dimensional DFs providing nuclear
g.s. energies and the monopole parts of g.s. densities.

Add to H a term, λĴ 2, where λ is a small number and
Ĵ is the angular momentum operator. This additional term
commutes with H, hence does not change the eigenstates.
It adds to H a one-body and a two-body terms, both scalar.
Assume that the practical design of the DF is as “easy” for
H + λĴ 2 as for H alone. Let λ be small enough to avoid
shuffling the lower spectrum of H. Then the minimization
of the DF returns the energy EZN + λJ (J + 1). Use the DF
with two very small values of λ. A value of J (J + 1) is
obtained.

III. DISCUSSION

As usual for DFTs, existence theorems are not enough:
constructive algorithms are in demand. A first step toward
practical algorithms is the well-known Kohn-Sham (KS)
approach [8]. It consists in splitting H into the sum of
its one-body part H1 and the rest, H>1 ≡ H − H1, then
splitting F accordingly, into a sum F1 + F>1, and fi-
nally reproducing ρ by diagonalizing an independent parti-
cle Hamiltonian, HKS = H1 + ∑A

i=1 uKS(ri), where uKS is
now a spherically symmetric, effective field. Consider the
“ground density operator” for HKS, a zero temperature limit
again,

BKS = limβ→+∞ {exp(−βHKS)/[Tr exp(−βHKS)]} . (6)

One defines the “kinetic KS density functional” from, F1KS =
Tr BKSH1, similarly to the “kinetic density functional”, F1 =
Tr BZNH1. Since, identically, F = F1KS + (F1 − F1KS +
F>1), the proton and neutron components of the effective field
uKS are then obtained from the functional derivatives,

rupKS(r) = δ(F1 − F1KS + F>1)

rδρp(r)
,

(7)
runKS(r) = δ(F1 − F1KS + F>1)

rδρn(r)
.

For a detailed proof of such formulas, Eqs. (7), that provide
the effective field, we refer the reader to [7–9].

A remark is in order here, because, in general, Z and N

are not magic numbers. The spherical shell model provided by

HKS leaves p protons for an incomplete subshell with spin j

and n neutrons for an incomplete subshell with spin k. This
induces a degenerate set of

N = (2j + 1)!(2k + 1)!/[(2j + 1 − p)!p!(2k + 1 − n)!n!]

possible fillings, each of which violates sphericity. The
definition of BKS, Eq. (6), however, mixes with equal weights
all the Slater determinants φα related to the fillings. The
mixture, BKS = N−1 ∑

α |φα〉〈φα|, is spherical.
A model of the combination of functionals (F1 − F1KS +

F>1), remains necessary; it contains essentially Hartree
potential terms and exchange-correlation terms. Empirical
approaches have been fairly successful in the available
literature and these can be adapted to the present theory.
The dimensional reduction provided by this one-dimensional
formalism makes a practical design of the DF much easier.
It may seem paradoxical that a scalar theory holds for nuclei
which are sometimes strongly deformed, but, as a signature,
a deformation translates into a longer tail of the monopole
density. In the prediction of exotic nuclei, our scalar approach
might be of a special interest for the study of the neutron drip
line, where neutron halos are notoriously difficult to describe.

IV. CONCLUSION

From a DFT, one first expects densities and energies for g.s.
At the somewhat minor cost of temporarily ignoring density
multipoles2 other than monopoles, the existence theorem
proven here provides formally exact energies, and spins, by
a most simplified, one-dimensional theory.

Dimensional reduction diminishes the calculational burden
and makes it easier to focus efforts on the design3 of the
DF, a still difficult problem. The same reduction to rotation
invariant pictures also simplifies nonlocal [11] versions of the
DFT, in particular the quasilocal versions derived from Skyrme
force models and labeled “energy DF” theories. Indeed, an
energy DF uses slightly nonlocal information from the one-
body density matrix, n(�r ′, �r). Instead of being a function of six
variables, a scalar n boils down to a three variable function,
n(r ′, �r ′ · �r, r). Finally, rotational invariance will also be true for
the abnormal contraction matrix, κ(�r ′, �r), used in generalized
DFTs with pairing, which take advantage of functionals of
both n and κ [12].
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2Once spin is integrated out, wave function multipoles, nonetheless,
contribute to the density monopole.

3See [10] for expansions of densities in polynomials constrained by
matter conservation.
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APPENDIX: CENTER-OF-MASS TECHNICALITIES

This appendix shows how the design of the DF may
preferably be undertaken in the laboratory frame. If the center
of mass (c.m.) is factorized into a scalar wave packet, the
internal dynamics of the nucleus is unchanged, hence angular
momentum properties are the same in the laboratory and
the internal frames. The mapping between radial densities in
both frames is trivial. The subtraction of the c.m. zero-point
energy is also trivial. There is no need to stress that the
laboratory frame provides the huge advantages of the use
of single nucleon coordinates and the availability of second
quantization.

For A nucleons, the only practical degrees of free-
dom are the single nucleon coordinates �r1, �r2, . . . �rA. Let
B(�r ′

1, �r ′
2, . . . , �r ′

A, �r1, �r2, . . . , �rA) be the A-body density oper-
ator once traces over all spins have been taken. The simplest
definition of the density consists in a diagonal trace over all
the coordinates but one,

ρ(�r) = A

∫
d�r1d�r2, . . . d�rA−1

B(�r1, �r2, . . . , �rA−1, �r, �r1, �r2, . . . , �rA−1, �r). (A1)

But, as discussed by [13,14], it is more physical to use a
density σ (�r − �R), measured from the c.m. coordinate �R =
(�r1 + · · · + �rA)/A of the nucleus, rather than the density
ρ(�r), defined in the laboratory frame. Since H is also
translation invariant, the density operator for A nucleons
is rather an “internal” one, Bint(�ξ ′

1, . . . ,
�ξ ′
A−1,

�ξ1, . . . , �ξA−1),
in a representation with (A − 1) Jacobi coordinates
only, �ξ1 = �r2 − �r1, �ξ2 = �r3 − (�r2 + �r1)/2, . . . , �ξA−1 = �rA −
(�rA−1 + �rA−2 + · · · + �r1)/(A − 1). The last Jacobi coordinate
is proportional to �rA − �R, namely, �ξA−1 = A

A−1 (�rA − �R).
Except for trivial scaling factors, the “internal” density appears
naturally to be

σ (�ξ ) = A

∫
d�ξ1d�ξ2 . . . d�ξA−2 Bint(�ξ1, �ξ2, . . . , �ξA−2, �ξ, �ξ1,

�ξ2, . . . , �ξA−2, �ξ ). (A2)

Strictly speaking, the DF must be a functional of σ. However,
calculations with Jacobi coordinates are complicated. They
even become practically impossible beyond the p-shell. The
solution found in [15] to deduce the internal density σ from
the laboratory density ρ consists in a deconvolution of results
obtained in the laboratory frame after trapping the c.m. by a
harmonic potential. The Hamiltonian becomes

H =
A∑

i=1

p2
i

2m
+ Km

2

(
A∑

i=1

�ri

)2

+
A∑

i>j=1

vij +
A∑

i>j>k=1

wijk.

(A3)

Here v is the usual two-body interaction, and one can also
include a three-body interaction w or even the luxury of
more-body ones. Except for the trap, Galilean invariance is
requested; no density dependence in v,w, . . . is allowed.

The trap is parametrized by an arbitrary, but fixed constant
K, to be chosen for maximum convenience of practical
calculations. The term, Km(

∑A
i=1 �ri)2, can also be written

as Amω2R2, with the c.m. coordinate �R = A−1 ∑A
i=1 �ri and

ω = √
KA; the c.m. frequency depends on the mass number

A. The same form also shows that the trap is the sum of a
one-body and a two-body operators, representable in second
quantization without coefficients depending on A,

Km

2

(
A∑

i=1

�ri

)2

= Km

2


 A∑

i=1

r2
i + 2

A∑
i>j=1

�ri · �rj


 . (A4)

In each sector specified by integer Z and N, the g.s. of H
factorize(s) as product(s) of a common Gaussian, �(R), for the
c.m., and internal wave function(s) ψint of the (A − 1) Jacobi
coordinates,

(�r1, . . . , �rA) = �(R) ψint(�ξ1, . . . , �ξA−1),

�(R) = π− 3
4 b− 3

2 exp

[
− R2

2b2

]
, (A5)

with b = [h̄/(Amω)]
1
2 . The Gaussian is rotation invariant. Its

does not perturb the physical quantum numbers J,M when
H is substituted for H. Any mixture of such g.s. factorizes
the c.m. in the same way. Density operators are accordingly
related by

B(�r ′
1, . . . , �r ′

A, �r1, . . . , �rA)

= �(R′)�(R) Bint(�ξ ′
1, . . . ,

�ξ ′
A−1,

�ξ1, . . . , �ξA−1). (A6)

As shown in [15] the link between ρ and σ is a trivial,
invertible convolution,

ρ(�r) = A3

(A − 1)3

∫
d �R[�(R)]2 σ

[
A

A − 1

(
�r − �R

)]
. (A7)

This link is the same for any member of a magnetic multiplet.
Hence it extends to the scalar densities ρ and σ provided by
the mixture described by Eq. (1). The convolution, ρ = �2 ∗ σ,

see Eq. (A7), actually becomes, with radial scalars,

rρ(r) = 2π− 1
2 A3

(A − 1)3b

∫ ∞

0
ds exp

[
− r2 + s2

b2

]

× sinh

[
2rs

b2

]
sσ

[
A

A − 1
s

]
. (A8)

One needs only tune Eq. (4) into, F[ρ] ≡ InfC→ρ Tr C H,

and, to subtract the c.m. energy, tune also Eq. (5) into, EZN +
1
2h̄

√
KA = InfρF[ρ].

It is easy to second quantize H and use the laboratory
proton and neutron densities, ρp(r) = Tr B c

†
prcpr , ρn(r) =

Tr B c
†
nrcnr . Here, with obvious notations, we have intro-

duced proton and neutron creation and annihilation oper-
ators at a scalar position r. There is no difficulty either
in defining the proton and neutron internal densities
separately. Assume, for instance, that �r1, �r2, . . . , �rZ are
proton coordinates, distinguished from neutron coordi-
nates �rZ+1, �rZ+2, . . . , �rA. In the scheme described by [15],
the last Jacobi coordinate then refers to a neutron and
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the corresponding internal density reads

σn(�ξ ) = N

∫
d�ξ1d�ξ2 . . . d�ξA−2

Bint(�ξ1, �ξ2, . . . , �ξA−2, �ξ, �ξ1, �ξ2, . . . , �ξA−2, �ξ ). (A9)

Start now the construction of an equivalent Jacobi coordinate
set, �η1, . . . , �ηA−1, by a reduction of the neutron coordinates
first, and finish with the proton coordinates; in this way the last
Jacobi coordinate refers to a proton. Another internal density
operator, Balt

int, is needed, to describe the same physics in this
new representation. The internal density for protons then reads

σp(�η) = Z

∫
d �η1d �η2 . . . d �ηA−2Balt

int(�η1, �η2, . . . , �ηA−2, �η, �η1,

�η2, . . . , �ηA−2, �η). (A10)

It is then trivial to find that the convolution links between
laboratory and internal densities are the same, ρp = �2 ∗ σp

and ρn = �2 ∗ σn, see Eqs. (A7) and (A8). All told, the density
functional F[ρ] built in the laboratory system from H also
reads G[σ ] ≡ F[�2 ∗ σ ]. This gives the needed functional
of σ.

It is also easy to relate the one-body density matrices in the
laboratory and the internal frames. Define, with normalization
Z,N or A understood,

n(�r ′, �r) =
∫

d�r1d�r2 . . . d�rA−1 B(�r1, �r2, . . . , �rA−1,

�r ′, �r1, �r2, . . . , �rA−1, �r). (A11)

and

ν(�ξ ′, �ξ ) =
∫

d�ξ1d�ξ2 . . . d�ξA−2 Bint(�ξ1, �ξ2, . . . , �ξA−2,

�ξ ′, �ξ1, �ξ2, . . . , �ξA−2, �ξ ). (A12)

Note that d�r1d�r2 . . . d�rA−1 = d�ξ1d�ξ2 . . . d�ξA−2d �S; here �S =∑A−1
i=1 �ri/(A − 1) represents the c.m. of the first (A − 1)

nucleons being reduced into Jacobi coordinates. The last
step of the Jacobi reduction gives, trivially, �ξA−1 = �rA − �S
and �R = [�rA + (A − 1)�S]/A. Insert Eq. (A6) into Eq. (A11).
Because of the distinct values, �r ′ and �r, taken by �rA in
Eq. (A11), this last step gives distinct results for �ξA−1, and, as
well, for �R, namely,

n(�r ′, �r) =
∫

d�ξ1d�ξ2 . . . d�ξA−2d �S �

[
�r ′ + (A − 1)�S

A

]

×�

[
�r + (A − 1)�S

A

]
Bint(�ξ1, �ξ2, . . . , �ξA−2,

�r ′ − �S, �ξ1, �ξ2, . . . , �ξA−2, �r − �S). (A13)

Since ν is defined by Eq. (A12), this result, Eq. (A13), links n

and ν by

n(�r ′, �r) =
∫

d �S �

[
�r ′ + (A − 1)�S

A

]
�

[
�r + (A − 1)�S

A

]

× ν(�r ′ − �S, �r − �S). (A14)

This link is invertible. Consider indeed n(�r ′, �r) as a function
nsd of �µ ≡ (�r ′ + �r)/2 and �δ ≡ (�r ′ − �r)/2. Consider also ν

as a function νsd of the half sum and half difference of its
arguments. Take advantage of the Gaussian nature of �, see
Eq. (A5), to find that,

exp

[
δ2

b2

]
�

[
�r ′ + (A − 1)�S

A

]
�

[
�r + (A − 1)�S

A

]

= �2

[
�µ + (A − 1)�S

A

]
. (A15)

Then the link, Eq. (A14), becomes

exp

[
δ2

b2

]
nsd ( �µ, �δ)

=
∫

d �S �2

[
�µ + (A − 1)�S

A

]
νsd ( �µ − �S, �δ). (A16)

Decoupled, the degree of freedom �δ plays no other role than
a multiplicative one, by the factor, exp(δ2/b2). Then use
integration variable �T = [ �µ + (A − 1)�S]/A instead of �S and
obtain the generalization of Eq. (A7),

exp

[
δ2

b2

]
nsd ( �µ, �δ) = A3

(A − 1)3

∫
d �T [�(T )]2

νsd

[
A

A − 1

(
�µ − �T

)
, �δ

]
. (A17)

Set the auxiliary function, Nsd (�x, �δ) ≡ νsd [ A
A−1 �x, �δ]. The

Fourier transforms

nsd (�q, �δ) =
∫

d �µ e−i �q· �µnsd ( �µ, �δ),
(A18)

Nsd (�q, �δ) =
∫

d �x e−i �q·�xNsd (�x, �δ),

solve for the deconvolution which extracts ν from n,

Nsd (�q, �δ) = (A − 1)3

A3
exp

[
δ2

b2
+ b2q2

4

]
nsd (�q, �δ). (A19)

The special case, �δ = 0, obviously reduces ν and n to their
diagonals, σ and ρ.
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