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Photo- and electroproduction of the hypertriton on 3He
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Differential cross sections of the photo- and electroproduction of the hypertriton have been calculated by
utilizing modern nuclear wave functions and the elementary operator of KAON-MAID. It is found that a proper
treatment of Fermi motion is essential for the two processes. Whereas the average momentum approximation can
partly simulate the Fermi motion in the process, the “frozen nucleon” assumption yields very different results,
especially at lower energies. The Coulomb effect induced by the interaction between the positively charged kaon
and the hypertriton is found to be negligible. The influence of higher partial waves is also found to be relatively
small, in contrast to the finding of the previous work. Electroproduction is found to be much more sensitive to
the off-shell assumption than is photoproduction. It is shown that the few available experimental data favor the
assumption that the initial nucleon is off-shell and the final hyperon is on-shell. This seems to be reasonable,
since the hyperon in the hypertriton is less bound than the nucleon in the initial 3He nucleus. The effect of
the missing resonance D13(1895) is more profound in the longitudinal cross sections. Excluding this resonance
reduces the longitudinal cross sections by one order of magnitude but does not change the effects of various
off-shell assumptions on the cross sections.
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I. INTRODUCTION

The hypertriton is a bound state consisting of a proton, a
neutron, and a � hyperon. Although a hypertriton consisting
of a proton, a neutron, and a �0 hyperon could exist,
no experimental information is available at present [1–3].
Therefore, we will use the term “hypertriton” to denote the
� hypertriton in the following. Interest in the hypertriton
comes mainly from the fact that it is the lightest and the
most loosely bound hypernucleus. The separation energy into
a � and a deuteron is only 0.13 ± 0.05 MeV [4], whereas
the total binding energy is 2.35 MeV. Being the lightest
hypernucleus, the hypertriton is obviously the first system
in which the YN potential, including the interesting �-�
conversion, can be tested in the nuclear medium. This is
also supported by the fact that neither the �N nor the �N

interaction possesses sufficient strength to produce a bound
two-body system, the available YN scattering data are still
extremely poor. Therefore the hypertriton is expected to play
an important role in hypernuclear physics similar to that of
the deuteron in conventional nuclear physics. Because of
experimental difficulties, however, the existing information
on the hypertriton is mostly from old measurements [5].

Recently, theoretical investigation of the hypertriton proper-
ties have drawn considerable attentions in the nuclear physics
community [6–8]. The Bochum group [6] has investigated
the hypertriton by using various YN and NN potentials.
Interestingly, when the Jülich hyperon-nucleon potential in
the one-boson-exchange (OBE) parametrization (model Ã of
Ref. [9]) combined with various realistic NN interactions was
used, then the hypertriton turned out to be unbound. Only an
increase by about 4% in the Jülich potential can bring the
hypertriton back to a bound state. However, the use of the
Nijmegen hyperon-nucleon potential in the same calculation
[10] leads to a bound hypertriton. This fact indicates that

significant improvement in the hyperon-nucleon force sector
is strongly needed.

In principle, the hypertriton could be produced by employ-
ing hadronic properties such as stopped and low-momentum
kaon-induced reactions, A(K,π )B and A(π,K)B. Another
possible way to obtain a hypertriton is by utilizing the
proton-deuteron collision

p + d → K+ + 3
�H. (1)

Komarov et al. have studied this process theoretically at
incident proton energies Tp = 1.13–3.0 GeV and found that
the cross section is on the order of 1 nb, at most [11]. This
result has been refined in Ref. [12] by using a two-step model
and the differential cross section is found to be much smaller
than 1 nb/sr.

Because the electromagnetic beams (electrons or real
photons) are well understood, clean, and well under control,
the use of the electromagnetic processes has, however, a
competing advantage compared to the hadronic ones. More
than a decade ago one of the authors has estimated the cross
section of the hypertriton photoproduction via

γ + 3He → K+ + 3
�H (2)

and investigated the effects of the off-shell assumption and
Fermi motion on this process [13,14]. This has been performed
by using the wave function of 3He obtained as a solution of
the Faddeev equations with the Reid soft core potential [15]
and a simple hypertriton wave function developed in Ref. [16],
along with the elementary operator from Williams et al. [17].
The result showed that the cross sections are predicted to be
on the order of 1 nb and drop quickly as a function of the
kaon scattering angle. Eight years later three experimental
data points on the hypertriton electroproduction via

e + 3He → e′ + K+ + 3
�H, (3)
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FIG. 1. (Color online) The basic Feynman diagrams in the elementary operator.

at θ c.m.
K = 2.7◦, 9.5◦, and 18.9◦, were published by Dohrmann

et al. [18]. Although this process utilizes electrons (virtual
photons), and therefore is different from the process given by
Eq. (2), the result shows a surprising phenomenon; that is, the
angular distribution of the differential cross section shows an
almost flat structure. An extrapolation of the photoproduction
result to the finite k2 region is only able to reproduce the trend
of the first two data points and underpredicts the last data
point by one order of magnitude [19]. This is in contrast to the
process

e + 4He → e′ + K+ + 4
�H, (4)

reported in the same experiment [18], for which the cross
section decreases smoothly and nicely fits the prediction [20].

The present work has been greatly motivated by the facts
just described. In the present work we shall only focus on the
photo- and electroproduction of the hypertriton and leave the
electroproduction of 4

�H for future consideration. For this pur-
pose we shall use the modern nuclear wave functions [6,21] as
well as the frequently used elementary operator KAON-MAID
[22] to study the effects of the various off-shell assumptions,
Fermi motion, and Coulomb interaction between the exited
kaon and the hypertriton on the calculated differential cross
sections. Recently, this elementary operator has been used to
investigate the final-state YN and KN interactions in kaon
photoproduction off a deuteron as well as to investigate the
possibility of extracting the elementary process N (γ,K0)Y
from this process at quasi-free-scattering kinematics [23]. The
elementary operator is given in a unique form that is com-
pletely frame independent, since it can be expressed in terms
of the Mandelstam variables s, u, and t , or the four-momenta
of the photon, nucleon, kaon, and hyperon. Furthermore, the
operator does not contain the photon-polarization-vector εµ

and spin-operator σ (n) terms. This guarantees the analytical
continuation of the elementary amplitude and enables us to use
different off-shell assumptions. Thus, the result would provide
us with a refined calculation of the hypertriton photoproduction
and a direct comparison with the electroproduction data.

This paper is organized as follows: In Sec. II we shall briefly
review the properties of the elementary operator used in this
work. Section III presents the formalism of the nuclear operator
along with its relation to the elementary operator and to the
nuclear cross sections. We shall present and discuss the results
of our calculations in Sec. IV. Section V summarizes our
findings. A few important notes on the elementary amplitudes,
the antisymmetry factor of the nuclear wave functions, and
some kinematical relations are given in the Appendices.

II. PROPERTIES OF THE ELEMENTARY OPERATOR

Since photoproduction is only a special case of electro-
production, we will only consider the latter in our formalism.
The results for photoproduction are obtained by setting the
virtual photon momentum to zero. The elementary process
for electroproduction of a kaon and a hyperon on the nucleon
target can be written as

e(ki) + N (pN ) −→ e′(kf) + K(qK ) + Y (pY ). (5)

To describe this process we make use of an isobar model,
because by utilizing this model the elementary amplitudes can
be written in terms of a frame-independent operator, which
is required to include the Fermi motion in the nucleus. The
process is schematically shown in Fig. 1, where it is assumed
that the electromagnetic interaction is mediated by one photon
exchange. The elementary transition operator can be written
as

Mfi = εµ Jµ = ū( pY )
6∑

i=1

Ai(k
2, s, t, u) Miu( pN ), (6)

where the virtual photon momentum k = ki − kf and the
Mandelstam variables are defined as

s = (k + pN )2, t = (k − qK )2, u = (k − pY )2. (7)

The gauge and Lorentz invariant matrices Mi in Eq. (6) are
given by

M1 = 1
2γ5 (ε/k/ − k/ε/), (8)

M2 = γ5 [(2qK − k) · ε P · k − (2qK − k) · k P · ε] , (9)

M3 = γ5 (qK · k ε/ − qK · ε k/) , (10)

M4 = iεµνρσ γ µqν
K ερkσ , (11)

M5 = γ5(qK · ε k2 − qK · k k · ε ), (12)

M6 = γ5(k · ε k/ − k2ε/ ), (13)

where P = 1
2 (pN + pY ) and εµνρσ represents the four-

dimensional Levi-Civita tensor with ε0123 = 1. The coefficient
functions Ai are obtained from the Feynman diagrams shown
in Fig. 1.

For the purpose of the nuclear operator, the relativistic ele-
mentary operator must be decomposed into its nonrelativistic
form. In the case of free Dirac spinors, the operator in Eq. (6)
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can be decomposed into Pauli space as

u( pY )
6∑

i=1

AiMiu( pN )

= Nχ
†
f [F1 σ · ε + F2σ · kε0 + F3σ · k k · ε

+F4 σ · k pN · ε + F5σ · k pY · ε + F6σ · pN ε0

+F7σ · pN k · ε + F8σ · pN pN · ε + F9 σ · pN pY · ε

+F10σ · pY ε0 + F11σ · pY k · ε + F12σ · pY pN · ε

+F13σ · pY pY · ε + F14σ · εσ · kσ · pN

+F15σ · pY σ · εσ · k + F16σ · pY σ · εσ · pN

+F17σ · pY σ · kσ · pNε0

+F18σ · pY σ · kσ · pN k · ε

+F19σ · pY σ · kσ · pN pN · ε

+F20σ · pY σ · kσ · pN pY · ε]χi, (14)

where

N =
(

EN + mN

2mN

) 1
2
(

EY + mY

2mY

) 1
2

, (15)

and the individual amplitudes Fi are given in Appendix A
We will recast the elementary operator into a suitable form

for the nuclear process in the next section. As shown in
Ref. [13] the terms of order p2/m2, that is, F16–F20, can be
dropped from the elementary operator, since they come from
the small spinor components. Furthermore, this will not disturb
the gauge invariance of the operator. Nevertheless, for the
sake of accuracy, the omission of these terms should be done
carefully. Moreover, unlike the situation in pion production,
the particle momenta in our case are always higher than those
of the pion.

In this calculation we use the KAON-MAID parametriza-
tion [22]. The model consists of gauge-invariant background
and resonances terms. The background terms include the
standard s-, u-, and t-channel contributions along with a
contact term required to restore gauge invariance after hadronic
form factors have been introduced [24]. The resonance part
consists of three nucleon resonances that have been found in
the coupled-channels approach to decay into the K� channel,
that is, the S11(1650), P11(1710), and P13(1720). Furthermore,
the model also includes the D13(1895) state that is found to be
important in the description of SAPHIR data [25].

At finite k2 the calculated transverse and longitudinal cross
sections obtained from this model are shown in Fig. 2. Since
the model was fitted to the data of Niculescu et al. [26], a
sizable discrepancy with the reanalyzed data [27] appears
in this figure. However, we note that the model can also
nicely describe the old measurement and photoproduction
data. As reported in Ref. [22], the inclusion of the D13(1895)
state is important for the description of the structure found
in the γp → K+� total cross section [25]. We will also
investigate the influence of this state in the electroproduction
of the hypertriton. To this end we show in Fig. 2 the calculated
cross sections when this state was excluded. Obviously, the
magnitude of the cross sections is greatly reduced once we
omit this state, especially in the case of the longitudinal one,
where we can see from Fig. 2 that at k2 = −0.5 GeV2 the cross
section is about one-quarter of the value in this case.
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FIG. 2. (Color online) Comparison between calculated cross
sections obtained by including (solid lines) and excluding (dotted
lines) the D13(1895) state with experimental data. Solid squares
display the experimental measurement of Niculescu et al. [26].
This measurement has been reanalyzed by Mohring et al. [27] and
is shown here by the open circles. The solid diamonds are from
the old measurement by Brauel et al. [28]. At the photon point a
photoproduction datum [29] (open square) is shown for comparison
with the transverse cross section.

In the case of photoproduction, a sample of the angular
distribution of the differential cross section is displayed in
Fig. 3, where we compare the prediction of KAON-MAID
and that obtained from Ref. [17] with experimental data from
various measurements. It is obvious from this figure that
there exist some discrepancies among the experimental data,
especially between the new SAPHIR [30] and CLAS [32]
data. The discrepancy and its physics consequences have
been thoroughly investigated in Ref. [34] by means of a
multipole model. In spite of this problem, however, Fig. 3
indicates that KAON-MAID still gives a reliable prediction
for kaon photoproduction. This becomes more obvious when
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FIG. 3. (Color online) As in Fig. 2, but for photoproduction (k2 =
0). As a comparison, the calculated cross section from Ref. [17] is
also shown by the dash-dotted line. Solid squares and solid circles
represent the experimental data from Refs. [30] and [31], respectively.
Open squares and open circles represent CLAS [32] and older data
[33], respectively.
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we compare its prediction with the prediction of Ref. [17],
where the latter clearly overestimates the experimental data
at the very forward kaon angle. Incidentally, in this region
the result of the hypernuclear production is found to be very
sensitive to the elementary operator model used [35].

III. THE NUCLEAR OPERATOR AND CROSS SECTIONS

In analogy to the case of photoproduction [13], we write
the nuclear transition matrix element in the laboratory frame
as (see Fig. 4)

〈f|Jµ|i〉 =
√

3
∫

d3 p d3q�∗
f ( p, q ′)

× Jµ
(
k0, k, k0

1, k1, k
′0
1 , k′

1, q
0
K, qK

)
�i( p, q),

(16)

where the integrations are taken over the three-body momen-
tum coordinates

p = 1
2 (k2 − k3), q = k1, (17)

and the hyperon momentum in the hypertriton is given by

q ′ ≡ k′
1 = k1 + m2 + m3

m1 + m2 + m3
Q, (18)

with the momentum transfer Q = k − qK . The factor of
√

3 on
the right-hand side of Eq. (16) comes from the antisymmetry
of the initial state. The derivation of this factor is given in
Appendix B. Note that in the following we will also use the
notation pN ≡ k1 and pY ≡ k′

1 to facilitate the discussion of
the elementary operator.

The 3He wave functions may be written as

�i( p, q)

=
∑

α=(LSJ ljT )

φα(p, q)
∣∣{(LS)J,

(
l 1

2 )j
}

1
2Mi

〉∣∣(T 1
2

)
1
2Mt

〉

=
∑

α=(LSJ ljT )

∑
mLmSml
msmJ mj

φα(p, q)(LmLSmS |JmJ )
(
lml

1
2ms |jmj

)

× (
JmJ jmj

∣∣ 1
2Mi

)
YL

mL
(p̂)Y l

ml
(q̂)χS

mS
χ

1
2
ms

∣∣ (T 1
2

)
1
2Mt

〉
,

(19)
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FIG. 4. (Color online) Electroproduction of the hypertriton on a
3He target in the impulse approximation, where the virtual photon
interacts with only one nucleon inside the 3He target. The elementary
operator Mfi = εµ J µ is given in Fig. 1 and Eq. (6).

TABLE I. Quantum numbers and probabilities (in percent) of the
3He and the hypertriton wave functions.

α L S J l 2j 2T P (3He) P (3
�H) [6]

1 0 0 0 0 1 1 44.580 –
2 0 1 1 0 1 0 44.899 93.491
3 2 1 1 0 1 0 2.848 5.794
4 0 1 1 2 3 0 0.960 0.034
5 2 1 1 2 3 0 0.189 0.027
6 1 0 1 1 1 0 0.089 0.004
7 1 0 1 1 3 0 0.198 0.008
8 1 1 0 1 1 1 1.107 –
9 1 1 1 1 1 1 1.113 –

10 1 1 1 1 3 1 0.439 –
11 1 1 2 1 3 1 0.064 –
12 3 1 2 1 3 1 0.306 –
13 1 1 2 3 5 1 1.018 –
14 3 1 2 3 5 1 0.024 –
15 2 0 2 2 3 1 0.274 –
16 2 0 2 2 5 1 0.425 –
17 2 1 2 2 3 0 0.122 0.024
18 2 1 2 2 5 0 0.095 0.018
19 2 1 3 2 5 0 0.205 0.053
20 4 1 3 2 5 0 0.053 0.006
21 2 1 3 4 7 0 0.126 0.010
22 4 1 3 4 7 0 0.038 0.007
23 3 0 3 3 5 0 0.005 0.001
24 3 0 3 3 7 0 0.008 0.001
25 3 1 3 3 5 1 0.051 –
26 3 1 3 3 7 1 0.045 –
27 3 1 4 3 7 1 0.008 –
28 5 1 4 3 7 1 0.074 –
29 3 1 4 5 9 1 0.178 –
30 5 1 4 5 9 1 0.006 –
31 4 0 4 4 7 1 0.053 –
32 4 0 4 4 9 1 0.059 –
33 4 1 4 4 7 0 0.011 0.004
34 4 1 4 4 9 0 0.009 0.003

where we have used the notation of Ref. [36] for the Clebsch-
Gordan coefficients. The hypertriton wave functions can also
be written in the form of Eq. (19).

In Eq. (19) we have introduced α = (LSJ ljT ) to shorten
the notation, where L, S, and T are the total angular momen-
tum, spin, and isospin of the pair (2,3),respectively, and for
particle (1) the corresponding quantum numbers are labeled by
l, 1

2 , and 1
2 , respectively. Their quantum numbers, along with

the probabilities for the 34 partial waves, are listed in Table I,
where we have used the Nijmegen93 version of the 3He wave
functions [21] and the advanced model for the hypertriton wave
functions given in Ref. [6]. Clearly, most contributions will
come from the second partial wave (α = 2), which corresponds
to the s wave with isospin 0.

The elementary operator Jµ = (J 0, J) is obtained from
Eq. (14), that is,

J 0 = N{iF17 pN · ( pY × k) + (F2 − pN · pY F17) σ · k

+ (F6 + pY · k F17) σ · pN

+ (F10 + pN · kF17)σ · pY } (20)
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and

J = −N [(F1 + F14 pN · k − F15 pY · k − F16 pN · pY ) σ

+ σ · k{(F3 − pN · pY F18) k

+ (F4 − F14 − pN · pY F19) pN

+ (F5 + F15 − pN · pY F20) pY }
+ σ · pN {(F7 + F14 + pY · k F18) k

+ (F8 + pY · k F19) pN

+ (F9 + F16 + pY · k F20) pY }
+ σ · pY {(F11 + F15 + pN · k F18) k

+ (F12 + F16 + pN · k F19) pN

+ (F13 + pN · k F20) pY }
+ i {−F14 pN × k − F15 pY × k + F16 pN × pY

+ pN · ( pY × k) (F18 k + F19 pN + F20 pY )}]. (21)

It is obvious from Eqs. (8)–(13) that the gauge invariance of
the elementary operator relates Eq. (20) and Eq. (21) by

J0 = k · J /k0, (22)

which slightly simplifies the numerical calculation since we
can eliminate either J 0 or Jz by k · J = |k|Jz.

For the purpose of calculating the observables it is useful
to rewrite the elementary operator in the form of a matrix [j ],
through the relation Jµ = [σ ] [j ], that is,

Jµ = (1, σx, σy, σz)




j00 jx0 jy0 jz0

j0x jxx jyx jzx

j0y jxy jyy jzy

j0z jxz jyz jzz


 , (23)

where the individual components are given in Appendix C.
Since the hypertriton has isospin 0, we may drop the

isospin part of the wave functions. By inserting the two
nuclear wave functions in Eq. (16) and writing symbolically
m = (mLmSmlmsmJ mj ) for the sake of brevity, we can recast
the transition matrix element in the form

〈f |Jµ|i 〉
=

√
3

∑
α,α′

∑
mm′

(LmLSmS |JmJ )(LmLSmS |J ′mJ ′ )

× (
lml

1
2ms

∣∣jmj

)(
l′ml′

1
2ms ′

∣∣j ′mj ′
)

× (
JmJ jmj

∣∣ 1
2Mi

) (
J ′mJ ′j ′mj ′

∣∣ 1
2Mf

)
× δLL′ δmLmL′ δSS ′ δmSmS′ δT 0

×
∫

p2dp d3q φα′(p, q ′) φα(p, q)

×Y l′
ml′ (q̂

′)Y l
ml

(q̂)
〈

1
2 ,ms ′

∣∣Jµ
∣∣ 1

2 ,ms

〉
, (24)

where we have performed the integration over the spectator
solid angle, ∫

d p̂ YL′∗
mL′ ( p̂) YL

mL
( p̂) = δLL′ δmLmL′ , (25)

as the relative momentum of the two spectators p does not
change. By using

Jµ = j
µ

0 + σxj
µ
x + σyj

µ
y + σzj

µ
z

=
∑
n=0,1

+n∑
mn=−n

(−1)mn σ
(n)
−mn

[jµ ](n)
mn

, (26)

where the components of [ jµ ](n)
mn

are given in Eq. (23) and
Appendix C, with

[jµ](0) = j
µ

0 , (27)

[jµ](1)
±1 = ∓ 1√

2

(
jµ
x ± ijµ

y

)
, (28)

[jµ](1)
0 = jµ

z , (29)

σ (0) = 1, (30)

σ (1) = σ , (31)

and 〈
1
2 ,ms ′

∣∣ σ (n)
−mn

∣∣ 1
2 ,ms

〉
=

√
2(−1)n− 1

2 −ms′ +mn
(

1
2 −ms ′ 1

2ms |nmn

)
, (32)

we can rewrite Eq. (24) in the form

〈f|Jµ|i〉
=

√
6

∑
α,α′

∑
m,m′

∑
n,mn

(
LmLSmS

∣∣JmJ

) (
LmLSmS

∣∣J ′mJ ′
)

× (
lml

1
2ms

∣∣jmj

)(
l′ml′

1
2ms ′

∣∣j ′mj ′
) (

JmJ jmj

∣∣ 1
2Mi

)
× (

J ′mJ ′j ′mj ′
∣∣ 1

2Mf
) (

1
2 −ms ′ 1

2ms

∣∣nmn

)
× (−1)n− 1

2 −ms′ δLL′ δmLmL′ δSS ′ δmSmS′ δT 0

×
∫

p2dpd3q φα′(p, q ′) φα(p, q) Y l′
ml′ (q̂

′)

×Y l
ml

(q̂) [jµ](n)
mn

. (33)

Note that the elementary operator [ jµ ](n)
mn

is completely frame
independent, since it is independent from the frame where εµ

and σ (n) are defined. Hence, by summing and averaging over
the nuclear spins we can construct the spin-averaged Lorentz
tensor [37]

Wµν = 1

2

∑
MiMf

〈f |Jµ| i 〉〈f |J ν | i 〉∗, (34)

which is related to the nuclear structure functions by

WT = 1

4π
(Wxx + Wyy), (35)

WL = 1

4π
W00, (36)

WT T = 1

4π
(Wxx − Wyy), (37)

WLT = 1

4π
(W0x + Wx0). (38)
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The exclusive cross section 3He(e, e′K+)3
�H can be written as

d5σ

dεf d�e′d�K

= �
dσv

d�K

, (39)

where the flux of virtual photons is given by

� = α

2π2

εf

εi

KL

1

−k2

1

1 − ε
, (40)

and the differential cross section for kaons produced by virtual
photons can be written as

dσv

d�K

= dσT

d�K

+ εL
dσL

d�K

+ ε
dσTT

d�K

cos 2φK

+
√

2εL(1 + ε)
dσLT

d�K

cos φK, (41)

with the virtual photon polarization of

ε =
(

1 − 2
k2

k2
tan2 1

2
θe

)−1

, (42)

and

εL = − k2

k2 ε. (43)

The cross sections are conventionally measured in the c.m.
system. In this frame of reference the individual cross sections
are given by

dσT

d�c.m.
K

= αe

qc.m.
K

KL

M3
�H

2W
W c.m.

T , (44)

dσL

d�c.m.
K

= αe

qc.m.
K

KL

M3
�H

W
W c.m.

L , (45)

dσTT

d�c.m.
K

= αe

qc.m.
K

KL

M3
�H

2W
W c.m.

TT , (46)

dσLT

d�c.m.
K

= −αe

qc.m.
K

KL

M3
�H

2W
W c.m.

LT , (47)

where αe = e2/4π is the fine structure constant and we have
defined the photon equivalent energy [also in Eq. (40)]

KL = W 2 − M2
He

2MHe
. (48)

The transformation from the laboratory to the c.m. frame
affects the longitudinal structure functions only and leaves
the transverse ones unchanged, that is,

W c.m.
T = W lab

T , (49)

W c.m.
L = W lab

L k2
c.m.

/
k2, (50)

W c.m.
TT = W lab

TT , (51)

W c.m.
LT = W lab

LT

√
k2

c.m.

/
k2. (52)

IV. RESULTS AND DISCUSSION

The summations over m and m′ in Eq. (33) are significantly
reduced by the properties of the Clebsch-Gordan coefficient.
As a result, we only need to sum over the angular-momentum

and spin projections mJ ,mJ ′ ,mS , and ms , since the other
projections are fixed by the relations

ms ′ = ms − mn, (53)

mj ′ = Mf − mJ ′ , (54)

mj = Mi − mJ , (55)

mL = mJ ′ − mS, (56)

ml′ = mj ′ − ms ′ , (57)

ml = mj − ms. (58)

As the first step, we need to check our FORTRAN code.
This has been performed by calculating the elementary cross
sections and comparing the results with those obtained from
the original elementary code. For this purpose we replace
the wave functions in Eq. (33) by unity. As a consequence,
Eq. (33) is greatly reduced to

〈f |Jµ|i〉 =
√

2
∑
n,mn

(−1)n−1/2−Mf

×
(

1

2
− Mf

1

2
Mi|nmn

)
[jµ](n)

mn
, (59)

and the transverse and longitudinal cross sections can ex-
pressed in terms of

dσT

d�c.m.
K

= qc.m.
K

kc.m.

mpm�

32π2W 2

3∑
i=0

(|jix |2 + |jiy |2), (60)

dσL

d�c.m.
K

= qc.m.
K

kc.m.

mpm�

32π2W 2

3∑
i=0

2|ji0|2, (61)

which can be shown to be identical with the standard
definitions of the transverse and longitudinal cross sections in
the elementary process. However, we do not use Eqs. (60) and
(61) to check the code. Instead, we calculate the elementary
cross sections by using the main code that is used to compute
the nuclear cross sections, but we replace the wave functions
in Eq. (33) by unity. The output of the FORTRAN code shows
a precise agreement with the cross sections calculated directly
by using the CGLN amplitudes [38] (i.e., the solid lines in
Figs. 2 and 3), which is the standard way of calculating the
cross sections in KAON-MAID. This result convinces us that
our code has calculated the cross sections properly.

A. Photoproduction of the hypertriton

As shown in Table I the initial 3He wave function contains
34 components and the final hypertriton wave function con-
tains 16 components. Since we use the impulse approximation,
the quantum numbers of the pair remain unchanged, which is
represented by the three Kronecker delta functions δLL′δSS ′δT 0

in Eq. (33). This selection rule significantly reduces the number
of nonzero diagonal and interference terms for the components
of wave functions from 34 × 16 to just 64 components. In both
wave functions the number of supporting points for the p and
q momenta are 34 and 20, respectively.

To calculate the four-dimensional integrals in Eq. (33)
we have used Gaussian integration. We first carried out the
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FIG. 5. (Color online) Variations of the hy-
pertriton photoproduction cross section for dif-
ferent values of the number of Gauss supporting
points nθ and nφ in the angular integration of d q̂.
Only s-wave parts of the nuclear wave functions
have been used to obtain these curves.

overlap integral in p, because it is easier, and stored the
result in a 20 × 20 × 64 array, where the last component is
intended for the index of the nonzero overlap integrals. Since
the computation of the integrals is very time consuming, the
number of supporting points should be limited to as few as
possible, without sacrificing the numerical stability of the
integration. To this end in Fig. 5 we display the variations of the
cross sections as functions of the number of Gauss supporting
points for the angular integration in Eq. (33), that is, nθ and
nφ . It is obvious from this figure that the integration results
start to become stable for nθ � 30 and nφ � 10. Therefore, in
the following discussion we shall only use the results with
nθ = 30 and nφ = 10. For the full calculation at every point of
the cross sections of interest we have carried out an integration
over 34 × 20 × 64 × 30 × 10 = 13, 056, 000 grid points. The
numerical computation becomes more challenging because
the integrand consists of the elementary operator [ jµ ](n)

mn
in

the form of a 4 × 4 complex-component matrix. Fortunately,
current conservation given by Eq. (22) reduces the required
information to 4 × 3 = 12 components. The result, which is
equivalent to an integration over 156 million grid points, is
then summed over angular momentum and spin projections
mJ ,mJ ′ ,mS , and ms , as previously described.

As in the previous study [13] we have also investigated
the contribution of nonlocalities generated by Fermi motion
in the initial and final nuclei. The exact treatment of Fermi
motion is included in the integrations over the wave functions
in Eq. (33), whereas a local approximation can be carried out
by freezing the operator at an average nucleon momentum

〈k1〉 = −κ
A − 1

2A
Q = −κ

3
Q, (62)

since A = 3. For κ = 0, Eq. (62) corresponds to the “frozen
nucleon” approximation, whereas κ = 1 yields the average
momentum approximation.

Figure 6 displays the effect of Fermi motion on the
differential cross sections at three different total c.m. energies.
Note that these energies correspond to the photon laboratory
energies Eγ = 1.5, 1.8, and 2.2 GeV used in our previous
work [13] for making the comparison easier. Reference [39]
has shown that the effect of Fermi motion in the pion

photoproduction in the s and p shells is in part simu-
lated by the average momentum assumption 〈k1〉 = − 1

3 Q.
Figure 6 obviously shows that this phenomenon is also found
in the hypertriton photoproduction, whereas the use of the
“frozen nucleon” approximation (〈k1〉 = 0) leads to signif-
icantly different results. Although the average momentum
assumption can approximate the exact treatment of Fermi
motion, for the sake of accuracy we will use the exact treatment
of Fermi motion in the following discussion.

In the final state the positively charged kaon interacts with
the hypertriton by means of the Coulomb force. Therefore,
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FIG. 6. (Color online) Effects of Fermi motion on the differential
cross sections at three different total c.m. energies. The dashed curve
is obtained from the “frozen nucleon” approximation (〈k1〉 = 0), the
dash-dotted curve is obtained with an average momentum of 〈k1〉 =
− 1

3 Q, and the solid curve shows the exact treatment of Fermi motion.
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FIG. 7. (Color online) The effect of the Coulomb correction on
the differential cross sections at three different total c.m. energies. The
dashed curves show the results without Coulomb correction, whereas
the solid lines are obtained after including this correction.

in our calculation a Coulomb correction factor must be taken
into account. For this purpose we follow Ref. [40], where the
Gamow factor

FG(|qK |) = 2πζ

exp[2πζ ] − 1
(63)

was introduced, with

ζ = αe

vK

= αe

EK

|qK | (64)

and αe = e2/4π, to account for the Coulomb effect in pion
photoproduction off 3He at threshold. In Ref. [40] it has been
shown that this factor is important for describing experimental
data at threshold. In the case of hypertriton production this
factor is found to be negligible, as shown in Fig. 7. The same
finding has been also reported in a previous study [13]. This
result can be understood because the corresponding photon en-
ergy in the present work (as well as in Ref [13]) is much higher
than the threshold energy of pion photoproduction on 3He.

The influence of higher partial waves on the cross section
is shown in Fig. 8. As shown in this figure the effect is only
essential at the cross section bumps (θ c.m.

K ≈ 8◦), whereas at
very small (and very large) kaon scattering angle the effect
vanishes. Nevertheless, for the sake of accuracy, the following
results have been obtained from calculations by using all
available partial waves given in Table I.

As in the elementary process, the contribution of the
missing resonance D13(1895) in hypertriton production is also
found to be significant, especially at W = 4.04 GeV (see
Fig. 9). We feel that this is reasonable, because the energy
corresponds to the elementary total c.m. energy Wγp→K� =

θK
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FIG. 8. (Color online) Effects of the higher partial waves in the
3He(γ, K+)3

�H process at three different total c.m. energies. Dashed
curves are the cross sections obtained by using only the s-wave
contribution, whereas solid curves exhibit the results after including
all partial waves listed in Table I.

1.9 GeV, that is, almost at the resonance pole position. As
shown in Fig. 9, the effect gradually disappears at higher
energies. We note that, owing to the strong nuclear suppression
at large kaon scattering angles, this effect also vanishes
for θ c.m.

K > 25◦. Therefore, W ≈ 4.04 and 0◦ <∼ θ c.m.
K

<∼ 20◦
represent an example of the recommended kinematics for the
measurement of hypertriton photoproduction. This conclusion
is apparently also supported by Fig. 6, where for this
kinematics the variation of differential cross sections resulting
from the effect of nonlocalities is found to be remarkable.

From Fig. 9 we also observe that the present calculation
yields considerable discrepancy with the result of the previous
calculation [13]. We estimate that this discrepancy originates
from the different nuclear wave functions and elementary
operator used. Previous calculation [13] used the wave function
of 3He obtained as a solution of the Faddeev equations with
the Reid soft core potential [15] and the simple hypertriton
wave function developed in Ref. [16], which consists of only
two partial waves. Furthermore, we note that in Ref. [13] the
calculated differential cross section would increase by a factor
of about 3 if only the s wave were used (see Fig. 5 of Ref. [13]),
in spite of the fact that the contribution from other partial waves
is less than 6% (see Table I of Ref. [13]). We conclude that
the present calculation provides a more reliable result, since
it uses more accurate nuclear wave functions [6,21] and a
more accurate elementary operator [22], and the effect of the
high-momentum partial waves seems to be more reasonable.

It is obvious that all baryons involved in the hypertriton
productions are off-shell. The elementary operator has been,
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FIG. 9. (Color online) Comparison between differential cross
sections of hypertriton photoproduction obtained in the present work
with the missing resonance D13(1895) included in the elementary
operator (solid lines) and those obtained by excluding this resonance
(dashed lines). Results from the previous work [13], which have
been obtained by using different nuclear wave functions and different
elementary operator [17], are shown by the dash-dotted lines. In all
cases all available partial waves have been taken into account.

however, constructed and fitted to experimental data where
both initial nucleon and final hyperon are on-shell. In view
of this, it is of interest to study the influence of the off-shell
behavior of these baryons on the calculated cross sections. For
this purpose we make four assumptions:

(i) Both initial and final baryons are on-shell,

k0
1 = (

m2
N + k2

1

)1/2
, k′0

1 = (
m2

Y + k′2
1

)1/2
. (65)

(ii) The initial nucleon is on-shell and the final hyperon is
off-shell,

k0
1 = (

m2
N + k2

1

)1/2
, k′0

1 = k0
1 + k0 − EK. (66)

(iii) The initial nucleon is off-shell and the final hyperon is
on-shell,

k0
1 = k′0

1 + EK − k0, k′0
1 = (

m2
Y + k′2

1

)1/2
. (67)

(iv) Both initial and final baryons are off-shell. In this case
the static approximation,

k0
1 = mN, k′0

1 = k0
1 + k0 − EK, (68)

is used.

Note that we have used the first assumption in the previous
figures for the sake of simplicity. These four different off-shell
assumptions result in complicated variations of the differential
cross sections, as depicted in Fig. 10. At W = 4.04 GeV the
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FIG. 10. (Color online) The effect of different off-shell assump-
tions on the differential cross section calculated at three different total
c.m. energies. The dash-dotted curves illustrate the calculation with
the initial nucleon in 3He on-shell, that is, [k0

1 = (m2
N + k2

1)1/2]; solid
curves are obtained by assuming the final hyperon in the hypertriton
to be on-shell [k′0

1 = (m2
Y + k′2

1 )1/2]. The dashed curves show the
calculation with both initial and final baryons being on-shell, whereas
the dotted curves are obtained by assuming k0

1 = mN (with both initial
and final baryons being off-shell).

first assumption yields the smallest cross section, whereas the
third assumption leads to the largest cross section. However,
at higher W the situation changes, with the latter giving in fact
the smallest cross sections. At W = 4.04 GeV we estimate
that experimental data at forward angles with about 10% error
bars would be able to check these off-shell assumptions. For
other kinematics (higher W ) the cross section differences are
presumably too small in view of the present technology [18].

B. Electroproduction of the hypertriton

It has been widely known that the electroproduction process
offers more possibilities for studying the structure of nucleons
and nuclei. Furthermore, in Ref. [37], for example, it has been
shown that the electroproduction of pions off 3He reveals
different phenomena, compared to the photoproduction of
pions on 3He. The effect of Fermi motion, for instance,
is found to be more profound in electroproduction than in
photoproduction. The effects of different off-shell assumptions
are also found to be more considerable in electroproduction,
especially in the transverse cross section. Motivated by these
observations, here we extend our investigation described in
Sec. IV A to the finite k2 regions.

The result for hypertriton electroproduction shows, how-
ever, different behavior compared to the case of pion electro-
production of 3He. This is demonstrated by Fig. 11, where
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FIG. 11. (Color online) The effect of the s-wave approximation
on the differential cross section of the hypertriton electroproduction.
The dashed curves are the cross sections obtained by using only
the s-wave contribution, whereas the solid curves exhibit the results
after including all partial waves listed in Table I. The curves have
been obtained from Eq. (41) with k2 = −0.35 GeV2 and ε = 0.762,
whereas the azimuth angle φ croshas been averaged. Experimental
data are from Ref. [18].

we can see that the effect of the higher partial waves is
considerably smaller than in the case of photoproduction
(cf. Fig. 8). Only at higher W and very forward directions,
where the momentum transfer Q is significantly large, are the
effects sizable. Note that the electroproduction cross sections
exhibit quite different shapes compared to the photoproduction
ones. This indicates that the longitudinal terms dominate other
contributions in all three kinematics shown in Fig. 11. This
conjecture is proven by Fig. 12, from which it is obvious
that the fall-off structure of the longitudinal cross sections
drives the whole shape of the cross sections shown in Fig. 11,
whereas the behavior of the transverse cross sections (with
peaks at θ c.m.

K ≈ 8◦) is similar to that of the photoproduction
cross sections given in Fig. 8.

We have found that the dominant behavior of the longi-
tudinal cross sections originate from the missing resonance
D13(1895). Excluding this resonance results in a reduction
of the longitudinal cross sections by one order of magnitude,
whereas the transverse ones decreases only by a factor of 2.
This result indicates that the behavior of the longitudinal terms
in the elementary operator (see Fig. 2) is persistent and even
gets amplified in the nuclear cross sections.

The k2 evolutions of both transverse and longitudinal cross
sections are displayed in Fig. 13. Both Figs. 12 and 13 reveal
the different behaviors of the longitudinal and transverse
(along with other) cross sections at the forward direction and at
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FIG. 12. (Color online) Individual differential cross sections,
dσT/d�, dσL/d�, dσTT/d�, and dσLT/d�, as a function of the kaon
scattering angle at three different total c.m. energies.

θ c.m.
K ≈ 10◦. The result demonstrates the possibility of isolating

the longitudinal cross section from other contributions by
measuring the process at forward directions. Measurements
at θ c.m.

K ≈ 10◦ (with averaged φ) can give us the transverse
cross section.

Off-shell effects are also found to be important in the case
of electroproduction. This fact is clearly exhibited in Fig. 14,
where we can see that the “final hyperon on-shell” assumption
can nicely shift the cross section upward to reproduce the
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FIG. 13. (Color online) Transverse and longitudinal cross sec-
tions as a function of the virtual photon momentum squared at three
different kaon scattering angles.
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FIG. 14. (Color online) Off-shell effect in hyperon electropro-
duction. The notation for the curves and data is as in Fig. 10.

experimental data at θ c.m.
K = 2.7◦ and 9.5◦. Obviously, this

finding is in contrast to the phenomenon observed in pion
photoproduction off 3He [39], where the assumption that
the initial nucleon is on-shell yields a better agreement
with experimental data. However, the present finding can be
understood as follows: The hyperon binding energy in the
hypertriton is much weaker than the binding energy of the
nucleon in 3He. Therefore, shifting the hyperon in the final
state closer to its mass shell moves the model closer to reality.
The experimental data point at θ c.m.

K = 18.9◦ seems, however,
to be very difficult to reproduce. Although the elementary
cross section at this kinematics slightly increases, the nuclear
suppression from the two nuclear wave functions is sufficiently
strong to reduce the cross sections at θ c.m.

K � 10◦.
At W = 4.30 GeV and W = 4.50 GeV the various off-shell

assumptions yield quite different phenomena compared to
those in the case of photoproduction (compare the two lower
panels of Fig. 14 and Fig. 10). In the case of photoproduction
the assumption that the final hyperon is on-shell yields
the smallest cross sections, whereas the opposite situation
occurs in the case of electroproduction. Again, this behavior
originates from the longitudinal terms. As shown by Fig. 15,
for all W shown, the longitudinal cross sections are larger
than the transverse ones. In the former, the off-shell effects are
more profound and the assumption that the hyperon in the final
state is on-shell always yields the largest cross section. Such
behavior does not show up in the transverse cross sections.
In fact, by comparing the transverse cross sections shown in
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FIG. 15. (Color online) Comparison between off-shell effects on
the longitudinal and on the transverse cross sections at different values
of W and k2 = −0.35 GeV2. Note that for the sake of visibility
the transverse cross sections are plotted with lines and points; the
convention for the line types is as in the longitudinal cross sections.

Fig. 15 and in Fig. 10 we can clearly see that the result pre-
sented here is still consistent with that of the photoproduction.

We have also found that, although the phenomenon of
the dominant longitudinal cross sections originates from the
contribution of the missing resonance D13(1895), the fact that
the final-hyperon on-shell assumption always yields the largest
cross section is not affected by the omission of this resonance.

C. Future consideration

The massive numerical integrations in the full calculation
using all partial waves described here requires special attention
in the future. One way to reduce this task is by limiting
the number of the involved elementary amplitudes Fi given
in Appendix A. It has been shown in Ref. [41] that to a
good approximation the “big-big parts” of the Dirac spinors
(in our case, F16–F20) of a special isobar model can be
safely neglected. However, the discrepancies between the full
calculation and this approximation depends critically on both
photon and nucleon energies (see, for instance, Fig. 2 of
Ref. [41]). Thus, careful inspections in a wide range of
kinematics should be performed before we can apply this
approximation in hypertriton production.

Another method that might be of interest is to limit the
number of partial waves used in the calculation. As shown
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FIG. 16. (Color online) Variations of the hypertriton photopro-
duction cross section at W = 4.04 GeV as functions of the number
of partial waves used and the kaon c.m. angle. Note that the cross
sections for α � 5 and α � 6 coincide with that of the full calculation
(using all partial waves).

in Fig. 8, the discrepancy between the results of the full
calculation and the s-wave approximation can reach about
10%. Therefore, the use of only the s wave would not be
recommended for a precise calculation. However, the ultimate
question is the following: What is the minimum value of α

for which we would obtain the best approximation? To answer
this question we have calculated the cross sections at W =
0.4 GeV by using different numbers of partial waves, from
the s-wave approximation up to α = 6, and we demonstrate
the result in Fig. 16. From this figure we can immediately
conclude that the calculation with α � 4 would provide a good
approximation, whereas by using α � 5 we could achieve the
best result. We note that in the latter the number of nonzero
diagonal and interference terms of the components of the
wave functions turns out to be eight. Obviously, this method
provides a significant CPU-time reduction compared to the
full calculation, which has 64 nonzero components. In spite
of this encouraging result, however, an extensive investigation
of this approximation in a wide range of kinematics will need
to be addressed in the future, before we can draw the firm
conclusion that we can really use the triton and hypertriton
wave functions with only five partial waves to obtain a precise
calculation of hypertriton production.

V. CONCLUSIONS AND OUTLOOK

We have investigated the photo- and electroproduction of
the hypertriton on the 3He nucleus by utilizing the modern
nuclear wave functions obtained as a solution of the Faddeev

equations and the elementary operator KAON-MAID. It has
been shown that the proper treatment of the Fermi motion is
essential in this process. Although the average momentum
approximation 〈k1〉 = − 1

3 Q can partly simulate the Fermi
motion, the “frozen nucleon” assumption yields very different
results, especially at lower energies. This indicates that the
effect of nonlocalities generated by Fermi motion is important
in the electromagnetic production of the hypertriton. However,
although the exited meson is a positive kaon, the Coulomb
effect induced by its interaction with the hypertriton is found
to be negligible. The influence of higher partial waves is also
found to be small, in contrast to the finding in the previous
work. The off-shell assumption is found to be more important
in the case of electroproduction than in photoproduction. Our
finding indicates that the available experimental data favor the
assumption that the initial nucleon is off-shell, whereas the
final hyperon is on-shell. This seems to be reasonable, since
the hyperon in the hypertriton is less bound than the nucleon
in the initial 3He nucleus. The longitudinal cross sections
are dominant in the electroproduction process. This origi-
nates from the longitudinal terms of the missing resonance
D13(1895) in the elementary operator. Nevertheless, the
influence of various off-shell assumptions on the longitudinal
cross sections is not affected by the exclusion of this resonance.
Experimental measurements are strongly required, especially
in the case of photoproduction, where we can partly settle
the problems of the elementary operator owing to the lack of
data consistency and knowledge of the nucleon resonances as
well as hadronic coupling constants. For this case, W ≈ 4.04
and forward directions represent the recommended kinematics,
for which the effects of nonlocalities, missing resonance
D13(1895), and various off-shell assumptions are found to
be quite significant. Further measurements of hypertriton
electroproduction are obviously useful, especially if we want
to explore the role of the longitudinal terms in the elementary
operator and to recheck the trend of the angular distribution of
the differential cross sections.
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APPENDIX A: THE ELEMENTARY AMPLITUDES Fi

Here we list the elementary amplitudes F1–F20 defined by
Eq. (14):

F1 = k0A1 + k · qKA3

+{2P · k − k0(mN + mY )}A4 − k2A6, (A1)
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F2 = −A1 − EKA3 − (EN + EY − mN − mY )A4

+ k0A6, (A2)

F3 = A3 − A6, (A3)

F4 = A3 + A4, (A4)

F5 = −A3 + A4, (A5)

F6 = 1

EN + mN

[{
2P · k (EN − EY ) +

(
1

2
k2 − k · qK

)

× (EN + EY ) + P · kk0

}
A2 + (k0EK − k · qK )A3

+{k0(EN + EY ) − 2P · k}A4

− (k0k · qK − k2EK )A5 + (
k2 − k2

0

)
A6

]
, (A6)

F7 = 1

EN + mN

[A1 − P · kA2 − k0A3 − (mN + mY )A4

− (k2 − k · qK )A5 + k0A6], (A7)

F8 = 1

EN + mN

[
−

(
2P · k + 1

2
k2 − k · qK

)
A2

− k0(A3 + A4) − k2A5

]
, (A8)

F9 = 1

EN + mN

[(
2P · k − 1

2
k2 + k · qK

)
A2

+ k0(A3 − A4) + k2A5

]
, (A9)

F10 = 1

EY + mY

[
−

{
2P · k(EN − EY )

+
(

1

2
k2 − k · qK

)
(EN + EY ) + P · kk0

}
A2

+ (k0EK − k · qK )A3 + {k0(EN + EY ) − 2P · k}A4

+ (k0k · qK − k2EK )A5 + (
k2 − k2

0

)
A6

]
, (A10)

F11 = 1

EY + mY

[−A1 + P · kA2 − k0A3 + (mN + mY )A4

+ (k2 − k · qK )A5 + k0A6], (A11)

F12 = 1

EY + mY

[ (
2P · k + 1

2
k2 − k · qK

)
A2

− k0(A3 + A4) + k2A5

]
, (A12)

F13 = 1

EY + mY

[
−

(
2P · k + k · qK − 1

2
k2

)
A2

+ k0(A3 − A4) − k2A5

]
, (A13)

F14 = 1

EN + mN

[−A1 + (mN + mY )A4], (A14)

F15 = 1

EY + mY

[A1 − (mN + mY )A4], (A15)

F16 = 1

(EN + mN )(EY + mY )
[−k0A1 + k · qKA3

+{2P · k + k0(mN + mY )}A4 − k2A6], (A16)

F17 = 1

(EN + mN )(EY + mY )
[A1 − EKA3

− (EN + EY + mN + mY )A4 + k0A6], (A17)

F18 = 1

(EN + mN )(EY + mY )
[A3 − A6], (A18)

F19 = 1

(EN + mN )(EY + mY )
[A3 + A4], (A19)

F20 = 1

(EN + mN )(EY + mY )
[−A3 + A4]. (A20)

Note that all energies and three-momenta are given in the γ -N
c.m. or laboratory system.

APPENDIX B: NORMALIZATION OF THE THREE-BODY
WAVE FUNCTIONS

In the γ + 3He → π+ + 3H system the initial and final
nuclear wave functions are antisymmetrized. Therefore, in this
case it is sufficient to evaluate the elementary production on
one of the nucleons and the nuclear amplitude is multiplied
with an antisymmetry factor 3 [39]. In the hypertriton
productions [see Eqs. (2) and (3)], the final nucleus consists
of two nucleons and one hyperon. As a consequence, a proper
normalization is required, and the antisymmetry factor has to
be recalculated. To this end, we will make use of the method
of second quantization, that is,

{N †(x), N(y)} = δx,y, (B1)

{N †(x),�(y)} = 0. (B2)

We can show that the normalized 3He and hypertriton wave
functions can be written as

|3He〉 = 1√
3!

∫
dx dy dzN †(x)N †(y)N †(z) |0〉

×�NNN (x, y, z), (B3)

|3�H〉 = 1√
2!

∫
dx dy dz N †(x)N †(y)�†(z) |0〉

×�NN�(x, y, z), (B4)

where N †(x) [�†(z)] represents the nucleon [�] creation
operator at the point x [z], and �NNN and �NN� denote the
spatial 3He and hypertriton wave functions, respectively.

To create a � hyperon from a nucleon we need the one-body
operator

O(x) =
∫

dx�†(x) h(x) N (x), (B5)

where h(x) indicates the elementary operator, which can
be sandwiched between the 3He and the hypertriton wave
functions to give〈3

�
H

∣∣O(x)|3He〉

= 1√
12

∫
dx dy dz{�∗

NN�(y, z, x) h(x) �NNN (x, y, z)

−�∗
NN�(z, y, x) h(x) �NNN (x, y, z)

−�∗
NN�(x, z, y) h(y) �NNN (x, y, z)
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+�∗
NN�(z, x, y) h(y) �NNN (x, y, z)

+�∗
NN�(x, y, z) h(z) �NNN (x, y, z)

−�∗
NN�(y, x, z) h(z) �NNN (x, y, z)}. (B6)

Note that every term in Eq. (B6) is integrated over x, y,
and z. By making use of the antisymmetric behavior of
�NNN (x, y, z), we can recast Eq. (B6) as〈3

�H
∣∣O(x)|3He〉

= 1√
12

∫
dx dydz{�∗

NN�(y, z, x) h(x) �NNN (y, z, x)

+�∗
NN�(z, y, x) h(x) �NNN (z, y, x)

+�∗
NN�(x, z, y) h(y) �NNN (x, z, y)

+�∗
NN�(z, x, y) h(y) �NNN (z, x, y)

+�∗
NN�(x, y, z) h(z) �NNN (x, y, z)

+�∗
NN�(y, x, z) h(z) �NNN (y, x, z)}

=
√

3
∫

dx dy dz �∗
NN�(x, y, z) h(z) �NNN (x, y, z),

(B7)

which shows that the required antisymmetry factor for the
hypertriton production off 3He is

√
3. If we used this prescrip-

tion to calculate the amplitude of pion photoproduction on
3He, where the one-body operator in this case may be written
as

O(x) =
∫

dx N †(x) h(x) N (x), (B8)

we would obtain

〈3H|O(x)|3He〉
= 3

∫
dx dy dz �∗

NNN (x, y, z) h(z) �NNN (x, y, z), (B9)

which is consistent with previous work [39].

APPENDIX C: COMPONENTS OF THE ELEMENTARY
OPERATOR MATRIX

Here we give the individual components of the matrix [j ],
defined in Eq. (23) through the relation Jµ = [σ ] [j ], which
are useful for the numerical calculation of the observables:

j00 = iNF17 pN · ( pY × k), (C1)

j�0 = iN [F14 pN × k + F15 pY × k − F16 pN × pY

− pN · pY × k(F18k + F19 pN + F20 pY )]l , (C2)

j0m = N{(F2 − pN · pY F17) km + (F6 + pY · k F17) pN,m

+ (F10 + pN · k F17) pY,m}, (C3)

j�m = Aδ�m + B� km + C� pN,m + D� pY,m, (C4)

where �,m = x, y, z, and

A = −N [F1 + F14 pN · k − F15 pY · k − F16 pN · pY ],

(C5)

B = −N [(F3 − pN · pY F18) k

+ (F4 − F14 − pN · pY F19) pN

+ (F5 + F15 − pN · pY F20) pY ], (C6)

C = −N [(F7 + F14 + pY · k F18) k

+ (F8 + pY · k F19) pN

+ (F9 + F16 + pY · k F20) pY ], (C7)

D = −N [(F11 + F15 + pN · k F18) k

+ (F12 + F16 + pN · k F19) pN

+ (F13 + pN · k F20) pY ]. (C8)

APPENDIX D: USEFUL KINEMATICAL RELATIONS IN
THE NUCLEAR SYSTEM

In the γ -3He laboratory system the energy and momentum
of the virtual photon are obtained from

k0 = (
W 2 − M2

He − k2)/(2MHe), |k| = (
k2

0 − k2)1/2
,

(D1)

where we denote the total c.m. energy by W . The energy and
momentum of the kaon in the c.m. frame are given by

Ec.m.
K = (

W 2 − m2
� + m2

K

) /
(2W ),

(D2)
|qc.m.

K | = {(
Ec.m.

K

)2 − m2
K

}1/2
.

The corresponding energy and momentum in the laboratory
frame are obtained from the following transformation:

EK = γ
(
Ec.m.

K + v
∣∣qc.m.

K

∣∣ cos θc.m.

)
,

(D3)
|qK | = (

E2
K − m2

K

)1/2
,

whereas the kaon scattering angle in the laboratory frame is
given by

cos θ = γ
(∣∣qc.m.

K

∣∣ cos θc.m. + vEc.m.
K

)
, (D4)

where

γ = (k0 + MHe)/W, v = k/(k0 + MHe). (D5)

The formulas that follow are derived according to Fig. 17 in
the laboratory system with Jacobi coordinates. These relations
have been used in the numerical calculations. We choose the
kaon scattering plane as the xz plane, whereas the direction of
virtual photon three-momentum defines the z direction, that is,

k = kez. (D6)

Consequently, the initial momentum of the first nucleon and
the momentum of the kaon are given by

k1 = k1(sin θ1 cos φ1ex + sin θ1 sin φ1ey + cos θ1ez),

(D7)

qK = qK (sin θK ex + cos θK ez), (D8)

and the momentum of the produced hyperon is given by

k′
1 = k1 + 2

3 (k − qK )

= (
k1 sin θ1 cos φ1 − 2

3qK sin θK

)
ex + (k1 sin θ1 sin φ1) ey

+ (
k1 cos θ1 + 2

3k − 2
3qK cos θK

)
ez

≡ k′
1(sin θ ′

1 cos φ′
1 ex + sin θ ′

1 sin φ′
1 ey + cos θ ′

1 ez). (D9)
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FIG. 17. (Color online) Kinematics of the hypertriton electropro-
duction on 3He. Note that the x − z plane is defined as the γv − K

production plane.

From this we can derive the following expressions for vector
and scalar products of the photon (k), nucleon (k1), kaon (qK ),

and hyperon (k′
1) momenta:

qK · k = qKk cos θK, (D10)

k1 · k = k1k cos θ1, (D11)

qK · k1 = qKk1(sin θK sin θ1 cos φ1 + cos θK cos θ1),

(D12)

k1 · (k − qK ) = k1k cos θ1 − k1qK (sin θK sin θ1 cos φ1

+ cos θK cos θ1), (D13)

qK × k1 = qKk1[− sin θ1 sin φ1 cos θK ex

+ (sin θ1 cos φ1 cos θK − sin θK cos θ1)ey

+ sin θ1 sin φ1 sin θK ez], (D14)

k × qK = kqK sin θK ey, (D15)

k1 × k = k1k sin θ1(sin φ1ex − cos φ1ey), (D16)

k′
1 × k1 = 2

3 (k × k1 − qK × k1), (D17)

k′
1 = {

k2
1 + 4

3 (k1 · k − k1 · qK )

+ 4
9

(
k2 + q2

K − 2k · qK

)}1/2
, (D18)

θ ′
1 = cos−1 [{

k1 cos θ1 + 2
3 (k − qK cos θK )

}/
k′

1

]
,

(D19)

φ′
1 = sin−1{(k1 sin θ1 sin φ1)/(k′

1 sin θ ′
1)}. (D20)
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