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Redundancy in the parity-violating 2-nucleon contact Lagrangian
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It is shown that the number of independent operators in the nucleon-nucleon parity violating contact Lagrangian
at the leading order in the low-momentum expansion can be reduced to five by using Fierz rearrangements of the
nucleon fields.
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Recent interest in the study of hadronic parity violation
has been triggered by the planning of new experiments
involving few-body systems, like NPDGamma at LANSCE [1]
or neutron spin rotation on 4He at NIST [2], in conjunction
with the enormous progress in the theoretical control on
ab initio calculations on such systems [3]. The traditional
theoretical framework for such studies was set by Desplanques,
Donoghue, and Holstein in Ref. [4], in the form of a
meson exchange model, generally known as the DDH model.
More recently an effective field theory description of nuclear
parity violation has been proposed in Refs. [5,6], in which
nucleons and pions interact according to the dictates of chiral
symmetry (see Ref. [7] for a comprehensive review). At
sufficiently low energies, pions can be integrated out and their
contribution (as well as the ones from higher-mass particles)
is subsumed in the values of the coupling constants of the
contact interactions among nucleons (“pionless effective field
theory”). In either case the Lagrangian containing the nucleon
contact interactions appears as a crucial ingredient in the
effective field theory.

In the heavy baryon formalism the most general Lagrangian
yields redundant operators, which have to be eliminated
by imposing reparametrization invariance [8]. Alternatively,
one can start from the relativistic theory and perform
the non-relativistic reduction afterwards, as was done in
Ref. [5].

The two-nucleon contact interactions can be classified
according to their transformation properties under the chiral
symmetry [9]. The possible flavor structures that can arise
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One can easily list all possible Lorentz invariant four-
nucleon operators which violate P and conserve CP . Those
containing up to one space-time derivative are listed below
(i = 1, . . . , 5 henceforth),
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Õ
(4)
i = Fi ⊗ ψ̄γµψψ̄

↔
∂ ν σµνγ5ψ, Õ
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Some of these operators are related by the field equa-
tions of motion. Using the field equations of motion
to reduce the number of independent operators corre-
sponds to the freedom of redefining the interpolating fields
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of the effective theory. One can establish the following
relations:
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Õ
(4)
i = −2mO

(1)
i , (7)

Õ
(5)
6 = Õ
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the set identified in Appendix A of Ref. [5]. Based on the above
set of operators, a non-relativistic Lagrangian containing 11
operators was introduced (cf. Eq. (71) of Ref. [5]), and used
to derive a potential containing ten operators (cf. Eq. (5) of
Ref. [5] or Eq. (9) of Ref. [6]).

This set of operators is complete but redundant, as can
be shown by using Fierz rearrangements. Let us start with the
flavor structures. By interchanging the indices j and l, the
following relations hold:

2F
il,kj

1 = F
ij,kl

1 + F
ij,kl

3 , (11)

F
il,kj

2 = F
ij,kl

2 , (12)

F
il,kj

4 = F
ij,kl

6 , (13)

F
il,kj

5 = F
ij,kl

5 . (14)

For the spinor structures of interest, the relevant Fierz
identities [10] are conveniently written as
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where “(”, “)”, “[” and “]” are shorthands for ψ̄1, ψ2, ψ̄3, and
ψ4, respectively, and an overall minus sign should be included
due do the anticommuting nature of the fermion fields.
Combining the flavor and spinor indices rearrangements, we
have the operator identities
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Thus the number of independent operators is reduced to six.
In the leading order of the nonrelativistic reduction, the

following relations hold:

O
(1)
i = 1

2m

[
−N

(1)
i + siN

(2)
i − siN

(3)
i

]
, (27)

O
(2)
6 = 1

2m
N

(1)
6 , (28)

Õ
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with the non-relativistic operators defined by
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One can then make use of the fact that the operators O
(2)
6

and Õ
(6)
6 give rise to the same non-relativistic structure,

as already observed in Ref. [5]. Therefore, the number of
independent operators can be further reduced to five up to
order O(Q), and the minimal PV two-nucleon nonrelativistic

067001-2



BRIEF REPORTS PHYSICAL REVIEW C 77, 067001 (2008)

contact Lagrangian may be taken to assume the form
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where the notations for the coupling constants have been
chosen so as to conform to Ref. [5] except for C2 which
replaces C2 + C4. Thus, for instance, in the notations of
Ref. [5], the term

N †τ aNN †τ a �σ · i �D−N − N †τ ai �D−N · N †τ a �σN,
(39)

[N †iDµ
±N ≡ (iDµN )†N ∓ N †(iDµN )],

in the nonrelativistic reduction of the Lagrangian can be
omitted, in as much the same way as a term

N †τ a �σN · N †τ a �σN (40)

can be omitted in the parity-conserving sector [11].
It is worth noting that the reduction of the number of inde-

pendent operators down to five has no practical consequences
at the present stage of phenomenological analyses since only
five combinations of low-energy constants are relevant at
low energies. This was already noticed in Refs. [5,6] on
the basis of the observation that, since only S- and P -wave
amplitudes are important in this regime, several operators give
rise to identical matrix elements (see also the discussion in
Ref. [12]). Nevertheless, in view of a description of nuclear
parity violation with the chiral effective theory, it is important
to use a truly minimal set of operators, and have a one-to-one
correspondence between physical observables and low-energy
constants of the effective Lagrangian.
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