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Neutrino emission due to Cooper-pair recombination in neutron stars reexamined
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Neutrino emission in processes of breaking and formation of neutron and proton Cooper pairs is calculated
within the Larkin-Migdal-Leggett approach for a superfluid Fermi liquid. We demonstrate explicitly that the
Fermi-liquid renormalization respects the Ward identity and ensures the weak vector-current conservation. The
systematic expansion of the emissivities for small temperatures and nucleon Fermi velocity vF,i , i = n, p, is
performed. Both neutron and proton processes are mainly controlled by the axial-vector current contributions,
which are not strongly changed in the superfluid matter. Thus, compared to earlier calculations, the total emissivity
of processes on neutrons paired in the 1S0 state is suppressed by a factor of � (0.9–1.2)v2

F,n. A similar suppression
factor (∼v2

F,p) arises for processes on protons.
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I. INTRODUCTION

In minutes or hours after its birth, a neutron star cools
down to a temperature T ∼ MeV via neutrino transport
to the surface and then becomes transparent for neutrinos.
Thereafter, for ∼ 105 yr, the cooling is determined by the
emissivity of neutrinos produced in direct reactions [1–6]. For
such temperatures, neutrons and protons in the neutron star
interior are highly degenerate. Therefore, the rate of neutrino
production is suppressed by the reaction phase space; the
greater the number of nucleons involved, the smaller the phase
space.

The most efficient are one-nucleon processes, e.g., n →
peν̄, called direct URCA (DU) reactions. Their emissivity
is εDU ∼ 1027 × T 6

9 (n/n0)2/3θ (n − nDU
c ) erg

cm3s (see Ref. [7]),
where T9 = T/(109K), and n is the nucleon density measured
in units of the nuclear matter saturation density n0. The DU
processes are operative only when the proton fraction exceeds a
critical value of 11–14%. Equations of state constructed from
realistic nucleon-nucleon interactions, like Urbana-Argonne
one [8], show that this condition is fulfilled only at very high
densities. This implies that the DU processes may occur only
in the most heavy neutron stars, e.g., with masses ∼ 2 M� for
the equation of state [8], where M� = 2 × 1033 g is the solar
mass. At n ∼ n0 the proton fraction is typically about 3–5%,
cf. Fig. 2 in Ref. [9].

In the absence of DU processes, the most efficient
ones become the two-nucleon reactions, e.g., nn → npeν̄,
called modified URCA (MU) processes with the emissiv-
ity εMU ∼ 1021 × T 8

9 (n/n0)2/3 erg
cm3s , cf. Ref. [10]. Note the

smaller numerical prefactor and the higher power of the
temperature for the emissivity of the two-nucleon processes
compared with the DU emissivity. In-medium change of
the nucleon-nucleon interaction in the spin-isospin particle-
hole channel due to pion softening may strongly increase
the two-nucleon reaction rates, which, nevertheless, in all

relevant cases, remain significantly smaller than that for the
DU processes [2,11]. The nucleon bremsstrahlung reactions,
such as nn → nnνν̄ (nB), np → npνν̄ (npB) and pp → ppνν̄

(pB), have an order of magnitude smaller emissivity than MU
processes.

At low temperatures, the nucleon matter is expected to
undergo a phase transition into a state with paired nucleons
[12]. The neutron superfluidity and/or proton superconduc-
tivity take place below some critical temperatures Tc,n and
Tc,p, respectively, which depend on the density. At densities
n < (1–2) n0 neutrons are paired in the 1S0 state and in the 3P2

state at higher densities. Protons are paired in the1S0 state for
densities n <∼ (2–4)n0. Pairing gaps, �i , are typically ∼0.1–
1 MeV and depend crucially on details of the interaction in the
particle-particle channel, see Fig. 5 in Ref. [13].

The gap in the energy spectrum significantly reduces
the phase space of the nucleon processes roughly by the
factor exp(−�/T ) for the one-nucleon DU process and
exp(−2�/T ) for two-nucleon processes. However, even with
inclusion of the nucleon pairing effects, the DU rate is large
enough that the occurrence of these processes would lead to
an unacceptably fast cooling of a neutron star in disagreement
with modern observational soft x-ray data [9,13,14]. This
statement has been tested with gaps varying in a broad band
allowed by different microscopic calculations. Certainly, DU
processes could be less efficient if one kept gaps finite also
at high densities. Microscopic calculations do not support
this possibility. Thus, according to recent analysis, the DU
processes most probably will not occur in typical neutron stars
with masses in the range of 1.0–1.5M�, based on the cooling
and population syntheses scenarios [13–15].

Superfluidity allows for a new mechanism of neutrino
production associated with Cooper pair breaking or formation
(PBF), e.g., the reaction n → nνν̄ and p → pν ν̄, where one
of the nucleons is paired. For 1S0 neutron pairing, the PBF
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emissivity was evaluated first in Ref. [16] in the Bogoliubov
ψ-operator technique and then in Refs. [17,18] within the
Fermi-liquid approach.

The proton PBF emissivity was estimated in Ref. [17] which
accounted for in-medium renormalization of the nucleon
weak-interaction vertex due to strong interactions. Mixing of
electromagnetic and weak interactions through the electron–
electron-hole loop can additionally change the proton vertex
[19,20]. There are also relativistic corrections to the axial-
vector coupling vertices of the order v2

F,i ; vF,i are neutron
and proton Fermi velocities, with i = n, p, [21]. These three
effects together resulted in a one or two orders of magnitude
enhancement of the proton PBF emissivity over that evaluated
with the free vector-current vertex. Thus, one concludes that
neutron PBF and proton PBF emissivities can be equally
important for neutron star cooling, depending on the parameter
choice and, especially, on the relation between gaps �p and
�n. The PBF emissivity for the 3P2 neutron pairing has been
analyzed in Ref. [22].

Following Refs. [2,17,18], the emissivities of the neu-
tron and proton PBF processes were estimated as εiPFB ∼
1028 × (�i/MeV)7(T/�i)1/2(ni/n0)1/3e−2�i/T erg

cm3s for T �
�i and i = n, p. Having a large numerical prefactor and
very moderate temperature dependence of the preexponent,
these reactions significantly contribute to the neutron star
cooling provided gaps are not too small. These processes
have been included in the cooling code rather recently [23].
Since then, the PBF reactions have been the main part
of any cooling scenario together with the MU processes
[13,14,24,25]. Uncertainties in the pairing gaps are large.
Therefore, surface temperatures of neutron stars computed in
different approaches vary significantly.

Kundu and Reddy [26] and Leinson and Perez [27] made an
important observation: all previous calculations of the neutrino
reactions in superfluid matter disrespect the Ward identity and,
as a consequence, the conservation of the electroweak vector
current.

The Ward or in the general case Ward-Takahashi iden-
tities impose nontrivial relations between vertex functions
and Green’s functions, which synchronize any modification
of Green’s function with a corresponding change in the
vertex function. Satisfying these relations ensures that the
symmetry properties of the initial theory are preserved in
actual calculations. For instance, we start with the theory
of weak interactions with a conserved vector current. The
current would remain trivially conserved in calculations with
only bare vertices and bare Green’s functions. In strongly
interacting systems, Green’s functions change necessarily; but
for quasiparticle Green’s functions, the current conservation is
easily restored by a proper inclusion of short-range correlations
in the vertices, cf. development of the Fermi-liquid theory
by Migdal [15,28,29]. Following these two simplest cases,
Refs. [16,21,22] did not incorporate any medium effects,
whereas Ref. [17] used dressed quasiparticle Green’s functions
together with dressed normal vertices. For the superfluid
system, the situation is more peculiar. Since in the superfluid
system the nucleon Green’s function notoriously differs from
the free one, the vector-current vertex must get corrections
even if no other interaction between quasiparticles is included.

Additional anomalous vector-current vertices disregarded in
previous calculations must be properly accounted for. These
corrections cancel exactly the vector-current contributions
to the neutrino emissivity for zero neutrino momenta, cf.
Ref. [27].

Assuming that the axial-vector current contributes only
little to the PBF emissivity, Ref. [27] claimed that the PBF
emissivity calculated in Refs. [16,17,22] is to be suppressed
by a factor of ∼v4

F,n/20 ∼ 10−3 for n∼n0 for neutrons and by
∼10−7 for protons in the case of 1S0 pairing. Such a severe
reduction of the neutron and proton PBF emissivities could
significantly affect previous results on the neutron star cooling
dynamics. Reference [30] revises the results of Ref. [27] by
applying expansion in the �q 2 parameter and putting vF,n = 0.
Ref. [30] claims that the suppression factor for the neutron
PBF emissivity is ∼T/m∗, where m∗ is the nucleon effective
mass. This would reduce the neutron PBF emissivity by a
factor of ∼5 × 10−3 for temperatures T ∼ 0.5Tc,n, cf. Fig. 5
in Ref. [30].

References [27,30] used the convenient Nambu-Gorkov
matrix formalism developed to describe metallic supercon-
ductors [31,32]. The price paid for that convenience is
that the formalism does not distinguish interactions in the
particle-particle and particle-hole channels. Such an approach
is, generally speaking, not applicable to the strongly in-
teracting matter present in neutron stars. In nucleon mat-
ter at low temperatures, the nn and pp nucleon-nucleon
interactions in the particle-particle channel are attractive,
whereas in relevant particle-hole channels they are repulsive
[17,29,33]. The adequate formalism was developed by Larkin
and Migdal for Fermi liquids with pairing at T = 0 in
Ref. [34] and generalized then by Leggett for T �= 0 in
Ref. [35].

In the present paper, using the Larkin-Migdal-Leggett
formalism, we analytically calculate neutrino emissivity from
the superfluid neutron star matter with the 1S0 neutron-neutron
and proton-proton pairing. Both normal and anomalous vertex
corrections are included. We explicitly demonstrate that the
Fermi-liquid renormalization [34] respects the Ward identity
and vector-current conservation. Our final estimations of
neutron and proton PBF emissivities differ from those in Refs.
[27,30]. We find that the main term in the emissivity ∼ v2

F,i

follows from the axial-vector current, whereas the leading term
in the emissivity from the vector current appears only at the
v4

F,i order, as in Ref. [27].
In the next section, we present the general expression for

the emissivity of the neutron PBF processes formulated in
terms of the imaginary part of the current-current correlator
for weak processes on neutral currents. Then within the
Fermi-liquid approach to a superfluid, we introduce Green’s
functions and the gap equation. In Sec. III we formulate
and solve Larkin-Migdal equations for vertices and apply
them to calculating the imaginary part of the current-current
correlator. The neutrino emissivities of the neutron and proton
PBF processes are calculated in Secs. IV and V, respectively.
Conclusions are formulated in Sec. VI. The values of Landau-
Migdal parameters are shortly reviewed in Appendix A. In
Appendix B, we compare our results with those of previous
works.
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II. GENERAL EXPRESSIONS: EMISSIVITY, GREEN’S
FUNCTIONS, AND PAIRING GAPS

A. Neutrino emissivity

The weak neutrino-neutron and neutrino-proton interac-
tions on neutral currents are described by the effective low-
energy Lagrangian

L = G

2
√

2

∑
i=n,p

(
V

µ

i − A
µ

i

)
lµ, (1)

where lµ = ν̄γµ(1 − γ5)ν is the lepton current, and V
µ

i =
g

(i)
V �̄i γ

µ�i and A
µ

i = g
(i)
A �̄i γ

µγ5�i stand for nucleon (neu-
tron or proton) vector and axial-vector currents with nu-
cleon bispinors �i . The coupling constants are g

(n)
V = gV =

−1, g
(p)
V = cV = 1 − 4 sin2 θW � 0.04 and g

(p)
A = −g

(n)
A =

gA = 1.26. The Fermi constant is G ≈ 1.2 × 10−5 GeV−2.
For the nonrelativistic nucleons, V

µ

i ≈ ψ
†
i (p′) (1, ( �p ′ +

�p )/2 m) ψi(p) and Aµ ≈ ψ
†
i (p′) (�σ ( �p ′ + �p )/2 m, �σ )ψi(p),

where �σ = (σ1, σ2, σ3), are the Pauli matrices acting on
nucleon spinors ψi , and �p ′ and �p are outgoing and in-
coming momenta, and m is the mass of the free nucleon,
cf. Ref. [36].

Neutrino emissivity for one neutrino species can be calcu-
lated as

ενν̄ = G2

8

∫
d3q1

(2π )3 2ω1

d3q2

(2π )3 2ω2
ω fB(ω) 2�

∑
χ (q), (2)

where q = (ω, �q ) = q1 + q2, q1,2 = (ω1,2, �q1,2) are four-
momenta of the outgoing neutrino and antineutrino, fB(ω) =
1/(exp(ω/T ) − 1) are Bose occupations, and �χ is the
imaginary part of the susceptibility of the nucleon matter to
weak interactions, i.e., the Fourier transform of the current-
current correlator 〈(Vµ(x)lµ(x) − Aµ(x)lµ(x))(V ν(y)l†ν(y) −
Aν(y)l†ν(y))〉, for weak processes. The sum in Eq. (2) is taken
over the lepton spins.

According to the optical theorem, �χ can be expressed as
a sum of squared matrix elements of all available reactions
with all possible intermediate states,

∑ |M|2. A particular
contribution to

∑ |M|2 can be also calculated within the
Bogoliubov ψ-operator approach for a given form of
the nucleon-nucleon interaction, as it has been done in
Refs. [16,22]. In this approach, however, an account of
further in-medium modifications of nucleon propagators and
interaction vertices is obscured by the danger of double
counting. The Green’s function technique for Fermi liquid
[29,33] is more suitable for such extensions, as demonstrated
in Refs. [11,17]. We will follow the Green’s function approach
for superfluid Fermi liquids [29,34]. As a simplification,
we will focus on the low-temperature limit T � �. The
temperature dependence enters through nucleon occupation
factors ∝ e−�/T (1 + O(T 2/�2)) and also as 1 + O(T 2/ε2

F)
corrections in the low-temperature expansion of standard
Fermi integrals, when the high-energy region ε � � is
dominating in the integrals. Since the boson occupation factor

fB in Eq. (2) generates already the leading exponent e−2�/T ,

we can evaluate �χ for T = 0; see also discussion below.

B. Nucleon Green’s functions and pairing gaps

The nucleon Green’s function for the interacting system
in a normal state (n.s.), i.e. without pairing, is given by
the Schwinger-Dyson equation, which in the momentum
representation reads

Ĝn.s.(p) = Ĝ0(p) + Ĝ0(p)̂n.s.(p) Ĝn.s.(p),

with Ĝ0(p) = G0(ε, �p)1̂ = 1̂/(ε − εp + i0 sgnε), where 1̂ is
the unity matrix in the spin space. All information on the
interaction is incorporated in the nucleon self-energy ̂n.s.,
being a functional of the Green’s function Ĝn.s.. In absence
of the spin-orbit interaction, the full Green’s function is also
diagonal in the spin space, i.e., Ĝn.s. = Gn.s.1̂. For strongly
interacting systems, such as dense nucleon matter, the exact
calculation of Gn.s. is an extremely difficult task. However, for
strongly degenerate nucleon systems at temperatures T much
less than the neutron and proton Fermi energies εF,i , i = n, p,
fermions are only slightly excited above the Fermi sea. So, the
full Green’s function of the normal state is given by the sum
of the pole term and a regular part:

Gn.s.(p) = a

ε − εp + i0 sgnε
+ Greg(p), (3)

where the excitation energy is counted from the nucleon chem-
ical potential µ, εp = p2/(2 m∗) − µ, µ � εF = p2

F/(2m∗) for
the low temperatures under consideration, and pF is the Fermi
momentum. The effective mass and the nontrivial pole residue
are determined by the real part of the self-energy, as a−1 = 1 −
(∂�n.s./∂ε)F and 1/m∗ = a(1/m + 2∂�n.s./∂p

2)F. The
subscript F indicates that the corresponding quantities are
evaluated at the Fermi surface (ε, εp → 0). According to
Ref. [29], only the pole part of Gn.s. is relevant to the descrip-
tion of processes happening in a weakly excited Fermi system.
The regular part can be absorbed by the renormalization of
the particle-particle and particle-hole interactions at the Fermi
surface. The quantities m∗ and a can be expressed through
the Landau-Migdal parameters characterizing the fermion
interaction at the Fermi surface at zero energy-momentum
transfer. The imaginary part of the self-energy, �n.s., can
be omitted in the pole term of Green’s function (3) in the
low-temperature limit (quasiparticle approximation).

In a system with pairing, a new kind of process such as
transition of a particle into a hole and a condensate pair and vice
versa becomes possible. The one-particle–one-hole irreducible
amplitudes of such processes can be depicted [34] as in Fig. 1.
Besides the normal Green’s functions for quasi-particles iĜ

−i∆(1) = ∆(1) −i∆(2) = ∆(2)

i G = Gh =
iF (1) = F (2) =

,

, i

i,

FIG. 1. Diagrams depicting the amplitudes of transition of a
particle into a hole and a condensate pair and vice versa and normal
and anomalous Green’s functions.
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and holes iĜh, one introduces anomalous Green’s functions
iF̂ (1) and iF̂ (2); their diagrammatic notations are given in
Fig. 1. The full normal and anomalous Green’s functions are
related by the Gor’kov equations

Ĝ(p) = Ĝn.s.(p) + Ĝn.s.(p)�̂(1)(p)F̂ (2)(p),
(4)

F̂ (2)(p) = Ĝh
n.s.(p)�̂(2)(p)Ĝ(p).

The second equation involves the normal-state Green’s func-
tion of the hole (superscript h), which in the absence of a
spin-orbit interaction is simply iĜh

n.s.(p) = iĜn.s.(−p). In the
case of the 1S0 pairing, the spin structures of the anomalous
Green’s functions and the transition amplitudes are simple:
�̂(1) = �̂(2) = �i σ2 and F̂ (1) = F̂ (2) = Fiσ2. Equations (4)
are to be completed by the equation for the amplitude �̂(1)(p),

[�̂(1)]ab =
∫

d4p′

(2π )4i
[V̂ (p, p′)]ac

bd

× [
Ĝ(p′)�̂(1)(p′)Ĝh

n.s.(p
′)
]d

c
, (5)

where V̂ stands for a two-particle irreducible potential, which
determines the full in-medium particle-particle scattering
amplitude. The potential V̂ can be separated in the scalar and
spin-spin interactions defined as

[V̂ ]ac
bd = V0 (iσ2)ab(iσ2)cd + V1(iσ2 �σ )ab(�σ iσ2)cd .

Solution of the Gor’kov equations (4) is straightforward. The
relevant pole parts of Green’s functions are

G(p) = a (ε + εp)

ε2 − E2
p + i0 sgnε

, F (p) = −a�

ε2 − E2
p + i0 sgnε

,

(6)

where E2
p = ε2

p + �2. Integrations over the internal momenta
in fermion loops, e.g., over p′ in Eq. (5), involve energies far off
the Fermi surface. One may renormalize [29,33] the interaction
(V̂ → �̂ξ ) in such a manner that integrations go over the
region near the Fermi surface and only the quasiparticle (pole)
term in Green’s function (6) is operative. The advantage
of the Fermi-liquid approach is that all expressions enter
renormalized amplitudes rather than the bare potentials. For
| �p | � pF � | �p ′|, the effective interaction amplitude is a
function of only the angle between �p and �p ′. The amplitude
in the particle-particle channel is parametrized as

[�̂ξ ]ac
bd = �

ξ

0 (�n, �n′)(iσ2)ab(iσ2)cd + �
ξ

1 (�n, �n′)(iσ2 �σ )ab(�σ iσ2)cd ,

and the interaction in the particle-hole channel is

[�̂ω]ac
bd = �ω

0 (�n, �n′)δa
b δc

d + �ω
1 (�n, �n′)(�σ )ab(�σ )cd .

Here and below, �n = �p/| �p | and �n′ = �p′/| �p′ |. Superscript
ω indicates that the amplitude is taken for | �q �v F| � ω and
ω � εF, where ω and �q are transferred energy and momentum.
Amplitudes �

ξ,ω

0 , �
ξ,ω

1 are expanded in the Legendre polyno-
mials.

Integrating over the internal momenta in loops, we can sep-
arate the part accumulated in the vicinity of the Fermi surface∫ 2 d4p

(2π)4 i
� ∫ d� �p

4π

∫
d�p with

∫
d�p = ρ

∫ +∞
−∞

dε
2π i

∫ +∞
−∞ dεp,

where ρ = m∗ pF

π2 is the density of states at the Fermi surface.

After the Fermi-liquid renormalization, Eq. (5) reduces to

�(�n) = −A0
〈
�

ξ

0 (�n, �n′)�(�n′)
〉
�n′ ,

(7)
A0 =

∫
d�pGn.s.(p)Gh

n.s.(p)θ (ξ − εp) ≈ a2ρ ln(2ξ/�),

where we denoted 〈. . .〉�n = ∫
d��n
4π

(. . .) and ξ ∼ εF. One usu-
ally determines the gap supposing ξ = εF.

III. CURRENT-CURRENT CORRELATOR, EQUATIONS
FOR VERTICES, AND VECTOR-CURRENT

CONSERVATION

A. Current-current correlator

Applying the theory of Fermi liquids with pairing [29,34],
we can present contributions to the susceptibility χ in terms
of the diagram shown in Fig. 2. Here the dashed line relates
to the Z boson coupled to the neutral lepton currents; vertices
on the left are the bare vertices following from the Lagrangian
(1). The right-hand-side vertices τ̂ , τ̂ h, τ̂ (1), and τ̂ (2) are the
full vertices determined by the diagrams shown in Fig. 3.
The blocks in Fig. 3 correspond to the two-particle irreducible
interaction in the particle-particle channel, �ξ , and the particle-
hole irreducible interaction in the particle-hole channel, �ω.
We emphasize that only chains of bubble diagrams are summed
up in this particular formulation. Thus, the imaginary part
of χ accounts only for one-nucleon processes. To include
two-nucleon processes within a quasiparticle approximation,
one should add diagrams with self-energy insertions to Green’s
functions and iterate the Landau-Migdal amplitudes �ω,ξ

in Fig. 3 in the horizontal channel [17,37]. In the general
case for particles with widths, the interpretation of different
processes contributing to �χ is more peculiar and needs
another resummation scheme [37].

Taking the imaginary part of χ, we cut a diagram through
two fermion lines. Cuts of neutron lines correspond to neutron
PBF processes, and those of proton lines correspond to proton
PBF processes. Since the neutron density in a neutron star is
much higher than the proton density, we can drop all diagrams
where proton lines are uncut from the set of the bubble chains
included in Fig. 2.

References [16,21,22] considered only the first two dia-
grams in Fig. 2 with bare vertices. References [2,17] treated
those two diagrams with full vertices on the right, whereas one
must consider all four diagrams with the full vertices.

Vector and axial-vector currents contribute to χ separately,
i.e., χ = χV + χA, where

χa = Tr
∫

d4p

(2π )4i
τ̂ ω
a

{
Ĝ+τ̂ †

a Ĝ− + F̂
(1)
+ τ̂ h†

a F̂
(2)
−

+ Ĝ+τ̂ (1)†
a F̂

(2)
− + F̂

(1)
+ τ̂ (2)†

a Ĝ−
}
, a = V,A. (8)

−i χ = τ + τh + τ(1) + τ(2) .

FIG. 2. Diagrams of contributions to the susceptibility χ in Eq. (2).
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τ = +

τ

Γω
+

τh

Γω
+

τ(1)

Γω
+

τ(2)

Γω

, τ(1) =

τ(1)

Γξ
+

τ(2)

Γξ
+

τ

Γξ
+

τh

Γξ
,

τh = +

τh

Γω
+

τ

Γω
+

τ(1)

Γω
+

τ(2)

Γω

, τ(2) =

τ(2)

Γξ
+

τ(1)

Γξ
+

τ

Γξ
+

τh

Γξ

FIG. 3. Graphical representation of dressed vertices in Fig. 2.

Here and below, we use the short-hand notations G± =
G(p ± q/2) and the analogous one for the F± Green’s
functions. All left vertices in Fig. 2 are the “bare” vertices
τω
a ; after the Fermi-liquid renormalization [29,33], τω

a = [1 +
�ω

0 (G+G−)ω]τ 0
a , which involves the particle-hole effective

interaction �ω
0 , integrated with off-pole parts of Green’s

functions (G+G−)ω = lim�q→0
∫ 2d4p

(2π)4i
G+G−, and τ 0

a follows

from Eq. (1). The difference between τ 0
a and τω

a can be cast [29]
in terms of a local charge of the quasiparticle ea = aτω

a /τ 0
a .

Then

τ̂ ω
V = gV

(
τω
V,0l0 − �τω

V,1
�l ), τω

V,0 = eV

a
, �τω

V,1 = eV

a
�v,

(9)
τ̂ ω
A = −gA

(�τω
A,1 �σ l0 − τω

A,0 �σ �l), τω
A,0 = eA

a
, �τω

A,1 = eA

a
�v.

For the vector current, eV = 1 and the vertices τω
V and

�τω
V satisfy the Ward identity ωτω

V,0 − �q �τω
V,1 = G

(pole),−1
n.s. (p +

q/2) − G
(pole),−1
n.s. (p − q/2), with the pole part of the normal-

state Green’s function G
(pole)
n.s. = Gn.s. − Greg. The local charge

for the axial-vector current differs from the unity varying
in different parametrizations as eA � 0.8–0.95, as it follows
from studies of the Gamow-Teller transitions in nuclei; see
Refs. [29,38,39] and references therein.

B. Larkin-Migdal equations for full vertices

Consider first one sort of nucleons, e.g., neutron. At the
Fermi surface, the full vertices τ̂ , τ̂ h, τ̂ (1), and τ̂ (2) can be
treated as functions of out-going momentum �q and the nucleon
Fermi velocity �v = vF�n, �n = �p/p. Their general structures are

τV = gV

(
τV,0l0 − �τV,1�l

)
, τ h

V = gV

(
τV,0l0 + �τV,1�l

)
,

τ
(1)
V = −τ

(2)
V = −gV

(̃
τV,0l0 − �̃τV,1�l

)
iσ2,

τA = −gA

(�τA,1 �σ l0 − τA,0 �σ �l),
(10)

τh
A = −gA

( − �τA,1 �σ Tl0 − τA,0 �σ T�l),
τ

(1)
A = +gA

(�̃τA,1 �σ l0 − τ̃A,0 �σ �l)iσ2,

τ
(2)
A = −gAiσ2

(�̃τA,1 �σ l0 − τ̃A,0 �σ �l).
Superscript T denotes matrix transposition.

As follows from the diagrammatic representation
of Fig. 3, the full vertices obey the Larkin-Migdal

equations [34]:

τa,0(�n, q)

= τω
a,0(�n, q) + 〈

�ω
a (�n, �n′) [L( �n′, q; Pa,0)τa,0( �n′, q)

+M( �n′, q )̃τa,0( �n′, q)]
〉
�n′ ,

τ̃a,0(�n, q)

= −〈
�ξ

a (�n, �n′) [(N ( �n′, q) + A0)̃τa,0( �n′, q)

+O( �n′, q; Pa,0)τa,0( �n′, q)]
〉
�n′ ,

(11)�τa,1(�n, q)

= �τω
a,1(�n, q) + 〈

�ω
a (�n, �n′) [L( �n′, q; Pa,1)�τa,1( �n′, q)

+M( �n′, q)�̃τ a,1( �n′, q)]
〉
�n′ ,

�̃τ a,1(�n, q)

= −〈
�ξ

a (�n, �n′) [(N ( �n′, q) + A0)�̃τ a,1( �n′, q)

+O( �n′, q; Pa,1) �τa,1( �n′, q)]
〉
�n′ ,

where a = V,A and PV,0 = −PV,1 = −PA,0 = PA,1 = 1. To
write the one set of equations for both vector and axial-vector
weak currents, we introduced new notation for the effective
interaction �

ω,ξ
a = �

ω,ξ

0 , if a = V , and �
ω,ξ
a = �

ω,ξ

1 , if a = A.
Functions L,M,N , and O are defined as

L(�n, q; P ) =
∫

d�p[G+G− − (G+G−)ω − F+F−P ]

= a2ρ

[ �q �v
ω − �q �v (1 − g(z)) − g(z)(1 + P )

/
2

]
,

M(�n, q) =
∫

d�p[G+F− − F+G−]

= −a2ρ
ω + �q �v

2�
g(z),

N (�n, q) =
∫

d�p

[
G+Gh

− − (
GpGh

p

)
θ (ξ − εp) + F+F−

]
= a2ρ

ω2 − (�q �v)2

4�2
g(z),

O(�n, q; P ) = −
∫

d�p[G+F− + F+Gh
−P ]

= a2ρ

[
ω + �q �v

4�
+ ω − �q �v

4�
P

]
g(z), (12)
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g(z2) =
+1/2∫

−1/2

dx

4z2x2 − z2 + 1 + i 0

= −arcsinh
√

z2 − 1

z
√

z2 − 1
− iπθ (z2 − 1)

2z
√

z2 − 1
, (13)

z2 = ω2 − (�q �v)2

4�2
> 1, �v = vF�n.

Expressions (12) and (13) are derived for T = 0. For finite
temperatures, T < Tc, all expressions in Eq. (12), except for
L, hold as well, but with g(z2) → g(z2, T ) and � → �(T ).
Generalization of the expression for L requires the introduction
of one more temperature-dependent integral besides g. Such
expressions were derived by Leggett in Ref. [35]. As follows
from these expressions, there arises an essential simplification
in the limit of low temperatures, T � �. We exploit the
fact that to calculate the PBF emissivity, we need only the
imaginary part of the current-current correlator �χ . Since ω >

2� for the PBF kinematics, the emissivity is exponentially
suppressed by e−2�/T stemming from the Bose occupation
factor fB(ω) in Eq. (2). Therefore, we may take �χ ∝ �g(T =
0), since it is already multiplied by the term vanishing for
T → 0. The not accounted for temperature corrections in �χ

prove to be ∼ 1 + O(e−�/T (1 + T 2/�2)) + O(T 2/ε2
F). The

latter term follows from the expansion of Fermi integrals when
the integration goes over energy regions far from the Fermi
surface. Such corrections are small in the limit T � � and we
omit them.

Using vertices (9) and (10) in Eq. (8), the correlators χV

and χA can be expressed as

χV (q) = g2
V 〈(l0 − �v�l) (l†0χV,0(�n, q) − �χV,1(�n, q)�l †)〉�n,

χA(q) = g2
A〈(l0�v − �l)(l†0 �χA,1(�n, q) − χA,0(�n, q)�l †)〉�n,

χa,0(�n, q) = L(�n, q; Pa,0) τa,0(�n, q) + M(�n, q) τ̃a,0(�n, q),

�χa,1(�n, q) = L(�n, q; Pa,1) �τa,1(�n, q) + M(�n, q) �̃τ a,1(�n, q).

C. Solution for vector and axial-vector parts of the
current-current correlator

It is natural to expect that first and higher Legendre
harmonics of �

ω,ξ

0,1 (�n, �n′) are smaller than the zero-th ones
because of the centrifugal factor [29]. This allows us to retain
only zero harmonics �

ω,ξ

0,1 (�n, �n′) = �
ω,ξ

0,1 = const., expressed
through dimensionless Landau-Migdal parameters as [29]

�
ω,ξ

0 = f ω,ξ

a2ρ(n0)
, �

ω,ξ

1 = gω,ξ

a2ρ(n0)
. (14)

In isospin asymmetric matter, f ω and gω are different for
interactions between two neutrons (f ω

nn, g
ω
nn), two protons

(f ω
pp, gω

pp), and a neutron and proton (f ω
np, gω

np). Note that
values f ω

nn, f
ω
pp are necessarily positive, the requirement of the

stability of the nucleon matter, whereas corresponding values
in the particle-particle channel f ξ

nn, f
ξ
pp are negative, otherwise

there would be no 1S0 pairing. In this respect, our derivations
differ from those that do not distinguish interactions in particle-
hole and particle-particle channels and use Nambu-Gorkov

formulations with one bare potential (V < 0 in our case).
Empirical constraints on the values of the Landau-Migdal
parameters are given in Appendix A.

For the angular-independent amplitudes (only zero-th har-
monics are included) the Larkin-Migdal equations (11) get
simple solutions:

τa,0(q) = γa(q; Pa,0)τω
a,0,

γ −1
a (q; P ) = 1 − �ω

a 〈L(�n, q; P )〉�n,
(15)

L(�n, q; P ) = L(�n, q; P ) − 〈O(�n, q; P )〉�n
〈N (�n, q)〉�n

M(�n, q),

τ̃a,0(q) = −〈O(�n, q; Pa,0)〉�n
〈N (�n, q)〉�n

τa,0(q),

where �
ω,ξ
a are given in Eq. (14). We have exploited here the

relation 1 = −�
ξ

0 〈A0〉 following from the gap equation (7).
Although integrals in Eq. (11) do not produce terms ∝ �v for
constant �

ω,ξ
a , the vector vertices �τa,1 and �̃τ a,1 gain new terms

proportional to �q; thus, �τa,1(�n, q) = �τ ω
a,1(�n, q) + �nqτ

(q)
a,1(q)

and �̃τ a,1(�n, q) = �nq τ̃
(q)
a,1(q), where �nq = �q/|�q | and

τ
(q)
a,1(q) = γa(q; Pa,1)�ω

a 〈L̃(�n, q; Pa,1)(�n�nq)〉�n,

τ̃
(q)
a,1(q) = −〈O(�n, q; Pa,1)〉

〈N (�n, q)〉�n
τ

(q)
a,1 − 〈O(�n, q; Pa,1)(�n�nq)〉�n

〈N (�n, q)〉�n
,

(16)

L̃(�n, q; P ) = L(�n, q; P ) − 〈M(�n, q)〉�n
〈N (�n, q)〉�n

O(�n, q; P ).

Note that g(z) ∝ z−2 → 0 for |z2| → ∞, as follows from
Eq. (13) and g(z) being zero in case of a nonsuper-
fluid medium (� = 0). Then anomalous vertices vanish,
and the factors γV and γA acquire the standard form
for the normal Fermi liquid [29]γ −1

V = 1 + ρ

ρ(n0) f ω�(ω, �q )

and γ −1
A = 1 + ρ

ρ(n0) gω�(ω, �q ) with the Lindhard function
�(ω, �q ) = 〈�q �v/(�q �v − ω)〉�n having customary asymptotics
�(ω � |�q �v |) � −�q 2 �v 2

/(3ω2),�(ω � |�q �v |) � 1.
With Eqs. (9), (15), and (16), we cast χ

µ
a = (χa,0, �χa,1) as

χa,0(�n, q) = γa(q; Pa,0)L(�n, q; Pa,0),

�χa,1(�n, q) = �vγa(q; Pa,1)L(�n, q; Pa,1) + δ �χa,1(�n, q),

δ �χa,1(�n, q) = M(�n, q)

〈N ( �n′, q)〉 �n′
〈O( �n′, q; Pa,1)(�v − �v ′)〉 �n′ (17)

+L(�n, q; Pa,1)γa(q; Pa,1)

×�ω
a 〈L̃( �n′, q; Pa,1)(�v ′ − �v )〉 �n′ .

Here γa are precisely those nucleon-nucleon correlation factors
that were introduced in Ref. [17]. They depend on Landau-
Migdal parameters in the particle-hole reaction channels.

D. Vector-current conservation

Now we are in the position to verify that the correlator of
the vector current χ

µ

V supports the current conservation. First
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we note that there are convenient relations〈
L(�n, q; P ) − L̃(�n, q; P )

〉
�n

= 0,

〈ωL(�n, q; ±1) − L̃(�n, q; ∓1) (�q �v )〉�n
= 0,

(18)〈�q �χa,1(�n, q)〉�n
= γa(Pa,1)

〈
(�q �v )L̃(�n, q; Pa,1)

〉
�n ,

〈(�q �v ) [ωL(�n, q; +1) − (�q �v )L(�n, q; −1)

−�qδ �χV,1(�n, q, �ω = 0)]〉�n
= �q 2a2n/m∗.

These relations help us establish important properties of the
vector-current correlators (17):

〈ω χV,0 − �q �χV,1〉�n
= γV (q; +1)γV (q; −1)ω�ω

V 〈L(�n, q; +1)〉(〈L(�n, q; −1)〉
− 〈L(�n, q; +1)〉) = O

(
f ω g �q 6

v6
F/ω

6
)
,

(19)�〈(�q �v )(ω χV,0 − �q �χV,1)〉�n
= ω�ω

V 〈L(�n, q; +1)〉〈(�q �v )[γV (q; +1)L(�n, q; +1)

− γV (q; −1)L(�n, q; −1)]〉
= O

(
f ω g �q 6

v6
F/ω

6
)
.

Here we use the expansion of L and L̃ in the series for
|�q|vF/ω � 1:

L(�n, q; +1) = yx

1 − yx
+ gy2

(
1
3 − x2

)
× [

1 + yx + y2
(

1
3 + x2

)] + O(gy5),

L(�n, q; −1) = yx

1 − yx
− gyx(1 + yx + y2x2 + y3x3)

+O(gy5),

L̃(�n, q; +1) = yx

1 − yx
− gyx(1 + y2x2) (20)

− gy2
(

1
3 − x2

)[
1 − y2

(
1
3 + x2

)] + O(gy5),

L̃(�n, q; −1) = yx

1 − yx
− gy2x2(1 + y2x2)

− gxy3( 1
3 − x2) + O(gy6),

y = qvF/ω, x = (�q �v )/|�q|vF,

g = g

[
ω2

�2
(1 − y2x2)

]
.

Relations (19) demonstrate that the imaginary part of the
vector-current correlator calculated with full vertices (15) and
(16) is transverse,

�〈
τω
µ χν

V

〉
�nqν = O

(
f ωg�q6v6

F/ω
6), (21)

at least up to terms of the higher order than f ω(|�q| vF/ω)5g,
which are beyond the Fermi-liquid approximation for Green’s
functions (3) and (6). This ensures conservation of the
vector current. Note that for �ω = 0 or g = 0, we have
�〈τω

µ χν
V 〉�nqν ≡ 0, and then the vector current is conserved

exactly. Since g ∝ �(T ) and � = 0 for T > Tc, we have

proven in passing that the vector current is conserved exactly
above Tc.

To prove the transversality of the real part of the vector-
current correlator, it would be necessary to include the tadpole
diagram contribution where the coupling originates from the
“gauging” of the kinetic term, ψ �∇2ψ/2m∗, of an effective
nonrelativistic nucleon Hamiltonian.

Some comments on the approximations done in previous
works would be here appropriate. In all previous works,
the vector-current contribution was considered as the dom-
inant term for the case of 1S0 pairing. Expressions for
the PBF emissivity in Refs. [16,21,22] can be recovered
if we put �χV,0(�n, q) = �L(�n, q; +1) and � �χV,1 = 0. The
result of Refs. [2,17] is obtained by taking �χV,0(�n, q) =
�L(�n, q; +1)/[1 + �ω

0 �L(�n, q; +1)]2 and also � �χV,1 = 0.
Setting �ω = 0 in the limit ω � � and �q = 0, we reproduce
the expressions of Ref. [27].

Note that relations (18) do not hold with L replaced by L

and, hence, the transversality relation (21) is spoiled if one
ignores the anomalous vertex terms.

IV. NEUTRINO EMISSION VIA NEUTRON PBF

After correlators (17) are established, it remains to take the
sum over the lepton spins and integrate over the leptonic phase
space in Eq. (2). The latter can be easily done with the help of
the Lenard integral [40]

∫
d3q1

(2π )3 2ω1

d3q2

(2π )3 2ω2

∑
{lµl†ν}δ(4)(q1 + q2 − q)

= 1

48π5
(qµqν − gµνq2)θ (ω)θ (ω2 − �q 2). (22)

Now the neutrino emissivity (2) can be cast as

ενν = ενν,V + ενν,A,

ενν,a = G2

8
g∗ 2

a

∫ ∞

0
dωωfB(ω)

∫ ω

0

d|�q| �q 2

6π4

κa

a2

= G2 g∗ 2
a

240π4

∫ ∞

0
dω ω6fB(ω) Qa(ω), (23)

Qa(ω) = 5

ω5

ω∫
0

d|�q| �q 2 κa

a2
, (24)

κa =
∫

d3q1

2ω1

d3q2

2ω2
δ(4)(q1 + q2 − q)

× 3

4π
�

∑
χa(q). (25)

In κa the sum is taken over the lepton spins. Shortening
notations we introduced in Eq. (23), effective couplings
g∗

a = ea ga . The particular normalization of the quantity Qa

is chosen so that for Qa(ω) = Q0(ω) with

Q(0)(ω) = −ρ�g(ω2/4�2), (26)
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we obtain the expression for the neutron PBF emissivity

ε(0n)
νν = 4ρn G2�7

n

15 π3
I

(
�n

T

)
, I (z) =

∞∫
1

dyy5√
y2 − 1

e−2zy,

(27)

which coincides with the old result [16,17] after the re-
placement e−2zy → 1

(ezy+1)2 . From now on we restore, when
necessary, subscripts n or p to distinguish neutron and proton
PBF processes, respectively.

A. Emissivity on vector current

For the vector current, we have

κV = �[ �q 2 〈χV,0(�n, q)〉�n + 〈(�q �v)�q �χV,1(�n, q)〉�n
+ (ω2 − �q 2)〈�v �χV,1(�n, q)〉�n − ω 〈(�q �v ) χV,0(�n, q)〉�n
−ω〈�q �χV,1(�n, q)〉�n]. (28)

Using relations (17) and (19), we can simplify Eq. (28) as

κV = ( �q 2 − ω2) �〈χV,0(�n, q) − �v �χV,1(�n, q)〉�n. (29)

Both scalar and vector components in Eq. (29) are of the order
v4

F,

�〈χV,0(�n, q)〉 ≈ −4 �q 4
v4

F

45ω4
a2ρ�g

(
ω2

4�2

)
> 0,

�〈�v �χV,1(�n, q)〉 ≈ −2 �q 2
v4

F

9ω2
a2ρ�g

(
ω2

4�2

)
> 0.

We have put γV → 1 since γV � 1 + O(f ω
nnv

2
F).

Note that the first term in Eq. (29), ∝ �χV,0, would give
a negative contribution to QV . The full expression for the
reaction probability becomes positive only because of the
presence of the vector component of the vertex [second term in
Eq. (29)]. This is because we used Ward identities, which
impose relations between zero-th and vector components.
However, if one keeps in Eq. (28) only the first term related
to the zero-th component of the vertex and drops other terms,
as was done in early works, the expression for the reaction
probability would be also positive.

Then in terms of QV we get

Qn
V � 4

81v4
F,nQ

(0n)(ω). (30)

Finally for the neutron PBF emissivity on the vector current,
we obtain (for one neutrino flavor)

εnPFB
νν,V � ε(0n)

νν g2
V

4
81v4

F,n. (31)

Note that even though Ref. [27] used the approximation
ω � �n, which is not fulfilled in the PBF case, our expression
(31) deviates only slightly from the corresponding result
obtained in Ref. [27].

The authors of Ref. [30] calculated the susceptibility
χV including only the zero-th component, χV,0, for vF = 0,
performing an expansion for small �q . They found the leading
term ∝ �q 2

/2m. However, it has the opposite sign [see Eq. (48)
in Ref. [30]] to the second term, ∝ IB [in Eq. (40) of Ref. [30]],
which would yield the reaction probability if bare vertices

were used. Note also that the key equations (35) and (38)–(45)
in Ref. [30] differ from the Larkin-Migdal equations (12) (for
T � � as supposed in Ref. [34], and for vF = 0 as assumed in
Ref. [30]). As follows from Eqs. (12) and (15), our expression
for 〈L(�n, q,+1)〉�n ∝ q4v2

F,n vanishes if vF,n → 0, although
�q 2/m∗ terms were present in the original loop integrals.

Further comparison of our results with the results of other
works is relegated to Appendix B.

B. Emissivity on axial-vector current

Now we focus on the process on the axial-vector current.
Then

κA = �[ �q 2〈�v �χA,1(�n, q)〉�n + (3ω2 − 2 �q 2)〈χA,0(�n, q)〉�n
−ω〈�q �χA,1(�n, q)〉�n − ω 〈(�q �v ) χA,0(�n, q)〉�n]. (32)

The last two crossing terms in the squared brackets cannot be
eliminated. Keeping only terms ∝ v2

F, we cast Eq. (32) as

κA = �[ �q 2
v2

F〈L(�n, q; +1)〉�n + (3ω2 − 2 �q 2)〈L(�n, q; −1)〉�n

−ω2〈L(�n, q; −1)〉�n − ω〈(�q �v )L(�n, q; −1)〉�n
]

(33)

≈ −a2ρ v2
F �q 2

[
1 +

(
1 − 2

3

�q 2

ω2

)
− 2

3

]
�g

(
ω2

4�2

)
.

As in the case with the vector current, by simplifying we could
put γA = 1, since γA � 1 + O

(
gω

nnv
2
F

)
.

The contribution of the axial-vector current to the neutrino
emissivity is determined by

Qn
A(ω) �

(
1 + 11

21
− 2

3

)
v2

F,n Q(0n)(ω). (34)

The second term in round brackets of Eq. (34) has been men-
tioned already in Ref. [16] and then recovered in Ref. [22]. Our
coefficient (11/21) is twice as large as that presented in those
works. We notice that the integral Is/2 = (u′v − v′u)2, where
u and v are coefficients of the Bogoliubov transformation, is
in Ref. [22] twice as large as that in Ref. [16]. In agreement
with the former evaluation, we arrive at the coefficient 11/21
rather than at 11/42, as presented in Refs. [16,22]. The first
term in Eq. (34) (for m∗ = m) is the same as in Ref. [22],
which calculated this relativistic correction for the first time.
The factor (m∗/m)2 does not arise in our calculations,
since the mass renormalization is performed everywhere,
including the vertices. Otherwise, the Ward identity would
not hold for the renormalized “bare” vertex τω

µ . The third
term related to the time-space component product was not
considered before.

Finally for the neutron PBF emissivity on the axial-vector
current, we obtain (for one neutrino flavor)

εnPBF
νν,A � 6

7g∗ 2
A v2

F,nε
(0n)
νν . (35)

The resulting emissivity is the sum of contributions (31) and
(35),

εnPBF
νν = εnPBF

νν,V + εnPBF
νν,A � εnPBF

νν,A . (36)

The axial-vector term, being ∝ v2
F, is now the dominating

contribution. Thus, the ratio of the emissivity of the neutron

065808-8



NEUTRINO EMISSION DUE TO COOPER-PAIR . . . PHYSICAL REVIEW C 77, 065808 (2008)

PFB obtained here to the emissivity calculated in Refs. [16,22],
where the main contribution was due to the vector current, is

R(nPFB) = εnPBF
νν

ε
(0n)
νν

� 6

7
g∗ 2

A v2
F,n = Fn v2

F,n.

For n = n0 = 0.17fm−3,m∗ = 0.8m, we estimate Fn �
0.9–1.2, vF,n � 0.36, and R � 0.12–0.15. For n = 2n0,m

∗ =
0.7m,R increases up to 0.24–0.32. This is in drastic contrast
with estimations R(nPFB) ∼ 10−3 in Ref. [27] (being actually
valid only for the rate of the partial vector-current contribu-
tions, rather than for the full emissivities) and R(nPFB) �
5 × 10−3 obtained in Ref. [30].

V. NEUTRINO EMISSION VIA PROTON PBF

Now we turn to the proton PBF processes. If pro-
tons were the only particles in the neutron star medium,
we could use the results obtained above for the neutron
PBF and just replace g

(n)
V → g

(p)
V = cV , vF,n → vF,p, fnn →

fpp, gnn → gpp, and en
a → e

p
a .

A. Emissivity on vector current

Since the bare vertex now yields (g(p)
V )2 = c2

V � 0.002
rather than (g(n)

V )2 = 1 as in the neutron case, one could
naively think that the emissivity of the proton PBF pro-
cess on the vector current is suppressed by a factor of
∼ 10−3(�p/�n)13/2 e2(�p−�n)/T compared to the emissivity of
the neutron PBF process. For imaginary purely proton matter,
we would find in the vector channel,

ενν,V � ε(0p)
νν c2

V

4

8
v4

F,p, (37)

ε(0p)
νν = 4ρp G2�7

p

15 π3
I

(
�p

T

)
. (38)

In addition to the fact that the emissivity is already
suppressed in the vector channel by the factor 1

20v4
F,p, Leinson

and Perez [27] found extra suppression. They included the
interaction of protons via photons. This produces new contri-
butions to the susceptibility χ of the type shown in Fig. 4(a).

p

p

τ +

p

p
γ

p

p

τ τ + . . .(a)

p p
−→

p p
+

p

n

p

n

fω
pn +

p

e e

p

γ
+ . . .  .(b)

p p
−→

p p
+

p

n

p

n

gωpn + . . .  .(c)

FIG. 4. (a) Contributions to proton PBF due to a photon exchange;
(b) in-medium modification of the proton vector current; (c) in-
medium modification of the proton axial current.

Dots assume infinite summation of the bubble chains with all
four types of the vertices shown in Fig. 2. The wavy line is the
dressed photon Green’s function. Simplifying, Ref. [27] used
the static Coulomb potential instead. To elucidate the origin
of differences in our estimations from those in Ref. [27], we
will use the same approximations. Effectively, the summation
leads to the replacement [27]

τV,0 → τV,0

εC(q)
, (39)

where εC(q) � 1 + ω2
pl/ω

2 is the dielectric constant, ω2
pl =

4π e2np/m∗ is the proton plasma frequency with e2 = 1/137.
Setting m∗ = m,ω � 2�p, [ω � 2� + O(T ) for the PFB
processes], � � 1.76Tc and Tc ∼ 1 MeV for xp = np/n ∼
0.03 at n = n0, cf. Fig. 2 of Ref. [9], we obtain εC(q) �
1 + 0.3 ∼ 1. This result is disagrees with the estimation of
Ref. [27], where applying their result to the neutron star
matter, the authors put np = n0 and ω � Tc, which resulted
in the estimation εC(q) ∼ 102. Thus, the suppression factor of
< 10−6 of the emissivity of the proton PBF process quoted in
Ref. [27] is misleading. Note that correction of the vertex in
Eq. (40) affects only the process on the vector current, since
the photon is the vector particle.

For neutron star matter, the replacement (39) is not
sufficient, since protons are embedded into an electron liquid
of the same concentration and into a much more dense neutron
liquid. Renormalization of the weak vector interaction of
protons in this case can be taken into account, if we replace the
bare coupling τω

V as shown in Fig. 4(b). Dots stand for other
graphs not shown explicitly, such as the �(1232)n-loop term.
Simplifying, we ignore these rather small correction terms.
The second graph has been incorporated in Refs. [2,17], which
results in the shift

cV → cV − f ω
npρ−1(n0)�Lnnγ

(
f ω

nn

)
,

where γ −1(f ω
nn) = 1 − f ω

nnρ
−1(n0)�Lnn and Lnn = 〈L(�n, q;

g = 0)〉�n/a2 = ρ〈 �q �v/(ω − �q �v)〉�n is the Lindhard function.
This correction (although ∝ v2

F) leads to the strong en-
hancement of the tiny bare vertex. A numerically larger
correction comes from the electron–electron-hole polarization
term (the third graph). Such a possibility has been discussed
in Ref. [19] for the process of a possible massive photon
decay, and then it was taken into account in the proton PBF
emissivity in Ref. [20]. Altogether these corrections can be
incorporated into the resulting expression for the emissivity
of the proton PBF process with the help of the replacement,
cf. Ref. [4],

c2
V → Fp � ε−2

C (q)

[
f ω

np

ρ(n0)
�Lnnγ (f ω

nn) + 0.8Cve

]2

. (40)

Here Cve = 1 is the electron weak vector coupling. Thus we
find

ε
pPBF
νν,V � ε(0p)

νν Fp
4

81v4
F,p, (41)

where the prefactor Fp ∼ 1. Finally we obtain an estimate

RV [p/n] = ε
pPBF
νν,V

εnPBF
νν,V

∼ x4/3
p

(
�p

�n

)13/2

e2(�n−�p)/T . (42)
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The ratio RV [p/n] is sensitive to the values of the proton
and neutron gaps as functions of density �n,p(n), the proton
fraction xp, and the temperature T .

B. Emissivity on axial-vector current

Now we consider the axial-vector channel. Photon ex-
change does not contribute in this channel. The main correction
to the vertex comes from the iteration of the nn loops, see Fig.
4(c). Simplifying, we will suppress correlation factors such as
γ 2(gω

nn) � 1 + O(gω
nnv

2
F,n). Thus we obtain

ε
pPBF
νν,A � ε(0p)

νν
6
7g∗ 2

A v2
F,p. (43)

Comparison with Ref. [22] can be done quite similar to that
performed above for neutrons.

We conclude that

εpPBF
νν = ε

pPBF
νν,V + ε

pPBF
νν,A � ε

pPBF
νν,A . (44)

For the ratio R[p/n] we find

R[p/n] = ε
pPBF
νν

εnPBF
νν

� ε
pPBF
νν,A

εnPBF
νν,A

∼ x4/3
p

(
�p

�n

)13/2

e(�n−�p)/T . (45)

The ratio R[p/n] is sensitive to the choice of pairing gaps,
temperature, and proton fraction xp and can be both <∼ 1 and
>∼ 1.

VI. CONCLUSIONS

In this paper, we recalculated neutrino emissivity via
neutron and proton pair breaking and formation processes.
We used the Larkin-Migdal-Leggett Fermi-liquid approach
to strongly interacting systems with pairing. Compared to
the Nambu-Gorkov formalism, the Larkin-Migdal-Leggett
approach allows for different interactions in the particle-
particle and the particle-hole channels, as is the case for nuclear
matter.

To be specific, we focused our discussion on the 1S0

pairing. We support the statement of Ref. [27] that medium
effects essentially modify vector-current vertices. Only the
careful account of these effects allows one to fulfill the Ward
identity and to protect conservation of the vector current.
Compared with the emissivity calculated in Ref. [16], the
partial contribution to the emissivity on the neutron vector
current proved to be dramatically suppressed, roughly by
a factor of ∼0.1 × v4

F,n, where vF,n is the neutron Fermi
velocity, cf. Ref. [27]. A similar suppression factor arises
for the partial contribution to the emissivity on the proton
vector current, provided one replaces the neutron Fermi
velocity by the proton Fermi velocity. Electron–electron-hole
and neutron–neutron-hole polarization effects play a crucial
role in the latter estimation. Proton–proton-hole polarization
effects are suppressed (these statements are at variance with
the estimations in Ref. [27]).

We have to note that the observed cancellation of v0
F terms in

the vector-current vertices is required by the gauge invariance,
whereas cancellation of v2

F terms in the vector current vertices

is rather accidental. Therefore, it is not excluded that in some
particular situations, a cancellation of the v2

F terms in the
vector-current vertices will be lifted. For example, such a
situation could happen in the case of pairing in a complex
multicomponent system. Also it could occur when fermions
of one species are involved in the pairing with two different
gaps, e.g., see the case discussed in Ref. [41].

The dominating contribution to the neutron and proton
pair breaking and formation emissivity comes from the weak
axial-vector current. Finally, the neutron pair breaking and
formation emissivity proves to be suppressed compared to that
of Ref. [16] by a factor of ∼0.12–0.15 at nuclear saturation
density and ∼0.24–0.32 at twice nuclear saturation density.
For the proton pair breaking and formation, the emissivity
deviates only by a factor close to unity from the expression
used previously in Ref. [22]. Our findings differ from those
in Refs. [27,30], in which the authors concluded that the
neutron and proton pair breaking and formation emissivities
are dramatically suppressed. The modifications of the neutron
and proton pair breaking and formation reaction rates that we
found are probably not strong enough to essentially influence
the previously computed values of surface temperatures of
neutron stars.

One may raise the question of how much the emissivity
of other relevant neutrino processes might be changed if the
medium effects in the presence of nucleon pairing are correctly
included. Although we did not perform the corresponding
cumbersome calculations, let us formulate our conjectures as
follows.

In the reactions with charged currents, as the direct URCA
and the modified URCA processes, the transferred neutrino
energy is ω � µe = pF,p � 2�. Therefore the anomalous
Green’s functions are taken in the limit ω � 2�. In this limit,
the g function tends to zero [as follows from the corresponding
asymptotic in Eq. (13)]. The effects of normal correlations and
pion softening were evaluated in Refs. [2,4,11,17], resulting
in significant enhancement of two-nucleon reaction rates.
Specifics of the superfluid matter manifest themselves in
reactions with charged currents mainly through the phase-
space suppression factors.

The two-nucleon bremsstrahlung processes induced by the
neutral currents are similar to the pair breaking and formation
reactions. In a normal phase, the emissivities are governed by
the axial-vector current [10]. For axial-vector vertices, there
are no contributions from the anomalous vertices. Therefore,
we do not expect a strong suppression of these rates in a
superfluid phase (the amplitude remains of the order v0

F) except
the natural phase-space suppression estimated in previous
works. As in the case of the two-nucleon reactions induced
by the charged currents, nucleon short-range correlations and
pion softening significantly influence the reaction rates, cf.
Refs. [2,11].

Our findings are relevant also for calculations of the
quark-pair breaking and formation processes and other quark
propagation processes in the color-superconducting medium,
which use bare-loop results, e.g., see Refs. [42,43]. Note
that since the pairing gaps in the color superconductors can
be rather large, 2� > µe, both reaction rates on neutral and
charged currents (URCA) might be affected. Reference [26]
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considered neutrino scattering off breaking pairs in a color-
flavor-locked medium within the Nambu-Gorkov formalism.
However, they included only the zero-th component of the
vertex, and their expressions for the current-current correlator
in the nonrelativistic limit do not coincide with the Larkin-
Migdal-Leggett expressions that we have reproduced above.

An interesting observation was made recently in Ref. [44].
A natural explanation of the superburst ignition would require
a strong suppression of the neutron pair breaking and formation
emissivity for low baryon densities. For n ∼ 1012 g/cm3 we
estimate a suppression factor of ∼ 0.1(n/n0)2/3 ∼ 0.003.

Another relevant issue is related to absorption and scattering
processes of low-energy (ω <∼ few MeV) neutrinos and
antineutrinos on nuclei. In absence of the electron Fermi sea,
the correlation effects may manifest themselves in reactions on
both neutral and charged currents. There are different sources
for neutrinos of such energies, e.g., reactor neutrinos are
good candidates. The Sun and supernova neutrinos also have
pronounced low-energy tails. The observation of supernova
neutrinos might provide us with unique information on the
core collapse and on the compact star formation and cooling
[45]. Geoneutrinos and antineutrinos from the progenies of
U, Th, and 40K decays inside the Earth reveal information
about the whole planet’s content of radioactive elements [46].
Finally, verifying the existence of the relic neutrino sea with
temperature Tν/Tγ = (4/11)1/3 represents one of the main
challenges of the modern cosmology [47].

From a general point of view, our results strongly support
the conclusion of Refs. [2,4,11,48] about the essential role
played by different medium effects in the neutrino evolution
of neutron stars, as was demonstrated in the framework of
the “nuclear-medium cooling scenario” [13,14,23]. Without
the proper inclusion of medium effects, it is difficult to reach
sound conclusions. Further investigations in this direction are
required.
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APPENDIX A: VALUES OF LANDAU-MIGDAL
PARAMETERS

The isospin symmetry of strong interactions imposes
the following relations between different Landau-Migdal
parameters: fnn = fpp = f + f ′, gnn = gpp = g + g′, fnp =
fpn = f − f ′, and gnp = gpn = g − g′. By definition, the
parameters depend only on the directions of nucleon momenta
before and after collision and can be written in terms of the
Legendre polynomials, e.g., f (�n, �n′) = ∑

l flPl(cos θ�n�n′) and
analogously for f ′, g, and g′. Values of fl, f

′
l , gl, g

′
l should

be extracted from an analysis of atomic nucleus data or they
should be calculated. The situation is simplified by the fact

that physical quantities depend only on the values of the first
two harmonics.

Unfortunately, the extracted values vary from work to
work in rather broad limits because of attempts by authors
to obtain the best description of the experiment they study by
modifying parametrizations of the NN interaction. Therefore,
it is difficult to compare directly the results of different studies
and to extract the unique information about all Landau-Migdal
parameters. In some approximations, these parameters can
be calculated using different representations of a microscopic
nucleon-nucleon interaction [49,50], but results depend on the
choice of the interaction. Thus, most of the Landau-Migdal
parameters are poorly known up to now.

In Ref. [29], the following values of the parameters are
quoted: f ω

0 � 0.25, f ′ω
0 � 1, gω

0 � 0.5, g′ω
0 � 1. Calculations

in Ref. [51] give the values f ω
0 � 0, f ′ω

0 � 0.5–0.6, gω
0 �

0.05 ± 0.1, and g′ω
0 � 1.1 ± 0.1. In Ref. [52], the value gω

pp

was fixed from the data on the two-neutrino double β decays
and single β decays, as gω

0,pp � 1, in favor of the choice of

Ref. [51]. Ref. [30] calculated f
ξ

0 � −0.47 and g
ξ

0 � +0.46
using Cogny DSI forces, whereas Ref. [39] extracted a
different value f

ξ

0 � −(0.25–0.33) from the analysis of the
atomic nucleus data. First Legendre harmonics f ω

1 , f ′ω
1 are

related to the value of the effective nucleon mass [29]. Values
gω

1,pp = −gω
1,pn � −0.11 are estimated from the analysis of

decay energies, and the Gamow-Teller strength distributions
in neutron-rich short-lived nuclides [53].

APPENDIX B: CALCULATION WITH BARE VERTICES
IN THE LOOP

Let us now comment on results of previous calculations of
the neutron PBF emissivity. If, as in previous calculations [16,
22], one neglects contributions from the anomalous vertices
τ̃ , i.e., M → 0 and L → L in Eq. (17), and puts γa = 1, one
may recover the results of calculations with bare vertices (b.v.).
Expression (28) for κV becomes

κb.v.
V = �[ �q 2〈L(�n, q; +1)〉�n + v2

F 〈(ω2 + (�q �n)2 − �q 2)

×L(�n, q; −1)〉�n − ω〈(�q �v )

× (L(�n, q; +1) + L(�n, q; −1))〉�n
]
. (B1)

In the axial-vector channel, the corresponding quantity is
κb.v.

A ∝ v2
F. Therefore we will also keep the v2

F corrections in
Eq. (B1). In the calculations of Refs. [16,22], such terms were
dropped. The second term in Eq. (B1) can be indeed neglected,
as being ∝ v4

F, since 〈L(�n, q; −1)〉�n ∝ v2
F. The third crossing

term of the order v2
F disregarded in previous calculations can

be dropped only if conditions (19) hold; that is not the case for
the bare vector current-current correlator. We keep this term
here. For | �q |vF � ω (i.e. for vF � 1 since | �q | <∼ ω) we get

κb.v.
V

a2ρ
≈ −�q 2�g

(
ω2 − (�v �q )2

4�2

)
− �q 4

v2
F

3ω2
�g

(
ω2

4�2

)

+ 2

3
�q 2

v2
F �g

(
ω2

4�2

)
. (B2)
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The first line in Eq. (B2) comes from the expansion of the first
term in Eq. (B1). The first term in the second line follows from
the crossing term in Eq. (B1). Using (B2) we calculate

Qb.v.
V =

(
1 + 5

21
v2

F − 2

3
v2

F

)
Q(0)(ω).

Dropping the v2
F corrections and using expression (26) for

Q
(0)
V one may reproduce the vector current contribution to the

emissivity obtained in Refs. [16,22] (and Refs. [2,17], provided
one sets there γV = 1).

The expression for the emissivity of neutron PBF on
the axial-vector current calculated with the bare vertices in
the loop does not deviate from that in Eq. (34) derived
above with the full vertices. Note, however, that second and
third terms in Eq. (34) differ from those used in previous
calculations.
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