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Magnetization of a neutron plasma with Skyrme and Gogny forces in the presence of a strong
magnetic field
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Some thermodynamical magnitudes of interest in a pure neutron plasma are studied within the framework of the
nonrelativistic Hartree-Fock approximation at finite density and temperature. We use Skyrme and Gogny forces to
describe such a neutron plasma and study the main differences that arise in these two effective parametrizations
of the nuclear interaction when a strong magnetic field induces a permanent magnetization in the gas. The
existence of a nonzero permanent spin polarization in a neutron plasma is explored in the density-temperature
parameter space. We find that for moderate temperatures and in the low-density range up to densities ≈0.5ρ0 both
parametrizations predict that as density decreases an increasingly strong magnetization is allowed. In the range
0.5ρ0 <∼ ρ <∼ 3ρ0 there is an approximately constant polarization that can be as big as ≈12% for the maximum
allowed interior magnetic field B ≈ 1018 G. For higher densities there is a dramatic difference in the polarization
trend followed by Skyrme an Gogny forces. Although the former predict a ferromagnetic phase transition, the
Gogny forces prevent it keeping the magnetization below 5%.
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I. INTRODUCTION

The presence of magnetic fields in neutron stars and their
effect in the thermodynamics of plasmas in the inner regions
of neutron stars and in protoneutron stars has been a subject
of study for long time; see Ref. [1] and references therein.
Since the pioneering work of Woltjer [2], who predicted
very intense magnetic fields in neutron stars as a result of
flux conservation from the projenitor star, until the recent
experimental measurements of pulsar spin-down rates or x-ray
spectral lines from protons immersed in such intense magnetic
fields [3], much work has been done. Experimental insight
into the field has been obtained from meaurements ranging
from radio pulsars where magnetic fields are believed to be
in the range B ≈ 109 − 1012 G to the so-called magnetars
predicted to exist by Duncan and Thompson in 1992 [4] and
first detected in 1998 [5] where Bmagnetar ≈ 1014–1015 G. These
field strengths strongly decay in a relatively rapid time of
103–104 years. Two types of astronomical objects seem to be
golden candidates for magnetars: soft γ repeaters (SGRs) and
anomalous x-ray pulsars (AXPs). Experimental observations
confirm the idea that both are highly magnetized young neutron
stars and can be linked to their original supernova remnants
[6]. Magnetars are believed to be around 10% of the whole
population of neutron stars so they are relatively frequent
objects, although only a handful of both have been observed
[1]. Other unconfirmed indications of strong magnetic fields
include the possibility of an initial kick-off velocity due to an
anisotropic neutrino-pair emission as suggested in Refs. [7,8].

From a theoretical point of view, to study how matter
behaves in the presence of such strong magnetic fields some
works have dealt with the possibility that nuclear plasmas
may be partially magnetized [9–14]. It is widely known
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that Skyrme models have a characteristic pathology allowing
a ferromagnetic transition at high densities, even in the
absence of magnetic fields [15]. However, this transition is
not confirmed when simulations are performed using realistic
interactions [16]. In the outer shells of neutron stars one
should focus in the low-density limit of nuclear plasmas where
clustered phases may develop [17–20]. For a magnetized
system, thus we may have microscopic spin saturated spatial
structures similar to magnetic domains. If present, they may
largely enhance the axial response in the neutrino opacities
relevant to protoneutron star early cooling. Because neutrino
transport seems to be a crucial ingredient in the simulation of
supernova core collapse it is important to size the effect of
the existence of a strong magnetic field in the microphysics of
these plasmas.

The present work performs a comparative study of ther-
modynamical observables using Skyrme and Gogny effective
nuclear interactions and focus on the possible existence of per-
manent imanation in the neutron plasma at finite temperature.
The results show that, in the low-density region, it is possible
to have an increasingly stronger permanent polarization in the
plasma at moderate temperatures as magnetic field strengths,
higher than B ≈ 1016 G, exist. Below this strength the effects
are almost negligible. At intermediate densities there is a
plateau where both forces predict that the polarization remains
approximately constant with maximum values around 12%.
For higher densities, up to the limit where the nucleonic
scenario holds, there is a dramatic difference in the behavior
predicted by these two forces. Whereas Skyrme forces allow
a ferromagnetic transition, Gogny forces prevent it. The
structure of the article is as follows. In Sec. II, we describe
the different nuclear potentials used in the description of
the nucleon-nucleon (NN ) interaction, namely the Skyrme
and Gogny forces. Later in this section we discuss the
thermodynamical observables involved in the description of
a nuclear plasma in the presence of a magnetic field. Results
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will be presented in Sec. III, and summary and conclusions
will be given in Sec. IV.

II. THERMODYNAMICAL POTENTIALS AND NUCLEAR
INTERACTION MODELS

We will start by describing the system we want to study.
We consider a pure homogeneous neutron plasma that is
composed of particles with spin projection on the z axis,
σ . It can be either σ = +1 for spins aligned parallel to a
uniform magnetic field that will be taken along the z direction,
B = Bk, or σ = −1 for antiparallel spins. For a more complete
description additional components in the hadronic and leptonic
sector should be considered when β equilibrium is imposed;
however, for simplicity, we have restricted ourselves to the
pure one-component neutron plasma in this work.

The neutron plasma density, ρ, is composed of up(+) and
down(−) spin aligned particles

ρ = ρ+ + ρ−, (1)

where

ρσ =
∫

d3k

(2π )3
fσ (k) (2)

and the fσ (k) is the Fermi distribution function for the
fermion component with spin projection σ at temperature
T = 1/β(kB = 1)

fσ (k) = 1

1 + eβ[εσ (k)−µ]
, (3)

The single-particle energy εσ (k) will be specified for each
interaction model that will be used in this work, see below.
The magnetization in the neutron plasma is defined as

M = µn�ρ, (4)

where µn = −1.9130427(5)µN is the neutron magnetic mo-
ment in units of the nuclear magneton [21] and � is the spin
excess or polarization of the system

� = ρ+ − ρ−
ρ

. (5)

A. Skyrme force

We have considered, in first place, the phenomenological
Skyrme interaction that appears in the literature under a rather
general form [22]

V
Skyrme
NN (r1, r2) = t0(1 + x0P

σ )δ(r)

+ 1
2 t1(1 + x1P

σ )[k′2δ(r) + δ(r)k2]

+ t2(1 + x2P
σ )k′ · δ(r)k

+ 1
6 t3(1 + x3P

σ )ρα(R)δ(r), (6)

where r = r1 − r2 and R = (r1 + r2)/2, k = (∇1 − ∇2)/2i

the relative momentum acting on the right and k′ its conjugate
acting on the left. P σ is the spin exchange operator. Note that
we have omitted terms not relevant for homogeneous systems.
As widely known, this potential allows for a good reproduction
of finite nuclei and their excited states and also bulk matter
relevant to neutron stars [23–26].

To study the neutron plasma we must consider the partition
function, Z , of the available configuration space, 
. The one
that must be used for our system with Hamiltonian H is that
of the grand canonical ensemble under the influence of an
external magnetic field.

Z(
) = e−βFM (
) = T r[e−βH(
)] (7)

The thermodynamical potential relevant for the description
of a plasma at temperature T and external magnetic field H is
the Helmholtz free energy, FM , defined as [27]

FM = E − T S − MH. (8)

Note that previously we have used B to designate the
magnetic field strength; however, one should have in mind
that apart from the external currents providing the external field
H , the magnetization may contribute to the internal magnetic
field [28]

B = H + 4πM. (9)

A self-consistent calculation would require considering the
contribution of the magnetization to the total magnetic field B;
however, we expect M to be much less than the external field,
so we will consider that the ratio |H/B| will always be close
to unity [12]. In what follows we will keep the notation using
B to designate the total magnetic field strength. In addition we
will use capital letters for any extensive magnitude, A, and,
for its associated intensive magnitude (per particle), the same
letter in lowercase, a = A/N .

Using the nonrelativistic Hartree-Fock approximation, the
single-particle energy for a neutron with momentum k and spin
projection σ in presence of a magnetic field B can be written
as

εσ (k) = h̄2k2

2m
+ Uσ (k) + µnσB, (10)

where Uσ (k) is the single-particle potential [14]. For the
Skyrme interaction it has a quadratic k dependence that can
be included into an effective mass plus a k-independent term,
Uσ , as

εσ = h̄2k2

2m∗
σ

+ Uσ + µnσB, (11)

where the effective mass is given explicitly by

m∗
σ

m
= 1

1 + 2m
(h̄c)2

{
1
4 [t1(1 − x1) + t2(1 + x2)]ρ−σ + 2t2(1 + x2)ρσ

} (12)
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that in this approach is independent of temperature. It is
useful at this point, to calculate the thermodynamical quantities
of interest in the magnetized plasma, to define an effective
neutron chemical potential into the following form

νef σ = µ − Uσ − µnσB. (13)

Then, the Fermi distribution reads like that of a free Fermi
gas with effective mass m∗

σ and chemical potential νef σ .

fσ (k) = 1

1 + e
β( h̄2k2

2m∗
σ

−νef σ )
. (14)

However, the single-particle potential will be in general a
function of k,Uσ (k), as, i.e., when using the Gogny force. See
later in this section.

In the plasma the total energy per particle, for a given
interaction model, can be obtained from averaging the kinetic,
potential, and field contributions

e = 1

ρ

∑
σ

∫
d3k

(2π )3

h̄2k2

2m
fσ (k)

+ 1

ρ

∑
σ,σ ′

∫
d3kd3k′

(2π )6
〈VNN 〉Afσ (k)fσ ′(k′) + B2

8πρ
. (15)

For the Skyrme interaction it can be cast into the following
form:

eSkyrme = 1

ρ

h̄2

2m∗+
τ+ + 1

ρ

h̄2

2m∗−
τ−

+ 1

ρ

[
t0(1 − x0) + 1

6
t3(1 − x3)ρα

]
ρ+ρ− + B2

8πρ
,

(16)

where τσ can be expressed as

τσ =
∫

d3k

(2π )3
k2fσ (k). (17)

We have considered in this work two Skyrme parametrizations
given by the Lyon group, namely we have chosen the SLy4 and
SLy7 parametrizations [23,24], as they are the most commonly
used in the literature. These provide good values for binding
of nuclei and neutron matter equation of state (EOS), giving
values of maximum neutron star masses around 1.5M�. In
Table I we summarize the values of some observables: satura-
tion density, ρ0, binding energy for symmetric nuclear matter,
av , symmetry energy, as , and incompressibility modulus, K∞,
for the effective interaction models used in this work.

TABLE I. Values of some observables with the Skyrme and
Gogny forces considered in this work [23,24,33,35].

Model ρ0(f m−3) K∞ (MeV) av (MeV) as (MeV)

SLy4 0.160 230.9 −15.97 32.00
SLy7 0.158 229.7 −15.89 31.99
D1S 0.1625 203 −16.01 31.13
D1P 0.1737 266 −16.19 34.09

B. Gogny force

The Gogny force has been extensively used in the literature
not only for describing finite nuclei but for the EOS of pure
neutron matter [29–32]. The interaction potential is given by
the contribution of finite range terms and zero-range terms:

V
Gogny
NN (r1, r2) =

2∑
i=1

[(Wi + BiP
σ − HiP

τ

−MiP
σ P τ )e−|r1−r2|2/µ2

i

+ t3i(1 + x3P
σ )ραi δ(r)], (18)

where P σ and P τ are the spin and isospin exchange operators.
The values of some observables for the two parametrizations
considered in this work for the Gogny force appear in Table I.
The D1S parametrization was originally introduced to describe
the pairing properties and surface effects in finite nuclei [33],
whereas the D1P aims at reproducing the EOS of neutron
matter obtained using realistic interactions [35].

In this model the expression for the single-particle potential
felt by a neutron of momentum k and spin projection σ is given
by

UGogny
σ (k) =

2∑
i=1

[t3i(1 − x0)ραi ρ−σ + αit3iρ
αi−1]

+π3/2
2∑

i=1

µ3
i [(Wi − Hi)ρ + (Bi − Mi)ρσ

− (Wi + Bi − Hi − Mi)I
σ
i (k, T )

− (Bi − Mi)I
−σ
i (k, T )], (19)

where the value of the I σ
i integral is

I σ
i (k, T ) =

∫
d3k′

(2π )3
fσ (k′)e− µ2

i
4 |k−k′|2 . (20)

The integral I−σ
i in Eq. (19) must be calculated using the

oppositely polarized particle distribution f−σ . For the Gogny
force we must note that the single-particle energy entering the
distribution function fσ is given by

εσ (k) = h̄2k2

2m
+ UGogny

σ (k) + µnσB. (21)

Recent works [36] have shown that nucleon effective
masses in plasmas described with Gogny forces have a weak
temperature dependence, thus, as an approximation, the most
physically relevant interactions may be considered to take
place around the Fermi surfaces with momentum kF σ . Then,
we will consider here a quadratic approximation in k space
to the full single-particle potential because it proves to be a
good approximation at least for k up to values around k ≈ kF σ

as shown in Ref. [34]. In this way the quadratic momentum
approximation for the single-particle potential can be written
as

UGogny
σ (k) ≈ UGogny

σ (k = 0) +
[

1

2k

dU
Gogny
σ (k)

dk

]
k=kF σ

k2

(22)
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and an effective mass can be defined as

m∗
σ

m
=

[
1 + m

h̄2k′
dU

Gogny
σ (k′)
dk′

]−1

k′=k

. (23)

To obtain the thermodynamical variables of interest once
temperature, density, magnetic field strength, and immanation
are fixed, we must solve self-consistently the set of equations
given by

m∗
σ

m
=

[
1 + m

h̄2k

dU
Gogny
σ (ρ, k′, T , B)

dk′

]−1

k′=kFσ

(24)

ρ = ρ+ + ρ− (25)

�ρ = ρ+ − ρ−. (26)

Above, Eq. (24) represents the mean field felt by the up
(down) particles in the plasma, whereas Eq. (25) must be
solved to fix neutron number conservation and Eq. (26) relates
to the immanation constraints in the plasma. When analyzing
the case of the Skyrme force the expression of the effective
mass is analytical and Eq. (24) must be substituted by Eq. (12).

Once this set of equations is solved, we must evaluate other
thermodynamical quantities on the hypersurface �(ρ, T , B).
The energy per particle is given by

eGogny = 1

ρ

h̄2

2m
(τ+ + τ−) +

2∑
i=1

1

ρ
t0i(1 − x0)ραi−1ρ+ρ−

+π3/2µ3
i

{
(Wi − Hi)

ρ

2
+ ρ2

+ + ρ2
−

2ρ
(Bi − Mi)

− (Wi + Bi − Hi − Mi)
1

2ρ
[G(+,+)

i (ρ, T )

+G
(−,−)
i (ρ, T )] − (Bi − Mi)

1

2ρ
[G(+,−)

i (ρ, T )

+G
(−,+)
i (ρ, T )]

}
+ B2

8πρ
, (27)

where the value of the Gi integral is

G
(σ,σ ′)
i (ρ, T ) =

∫
d3k

(2π )3
fσ (k, T )I σ ′

i (k, T ). (28)

The entropy per particle can be written then as

s = −1

ρ

∑
σ=−,+

∫
d3k

(2π )3
fσ (k)ln[fσ (k)]

− [1 − fσ (k)]ln[1 − fσ (k)]. (29)

To extract the energetically favored spin polarization in
this ensamble the free energy per particle, fM , has to reach
a minimum, �min, on the hypersurface at a given density,
temperature, and magnetic field strength(

∂fM

∂�

)
ρ,T ,B

= 0. (30)
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FIG. 1. Free energy per particle in absence of magnetic field for
different values of density and T = 2 MeV with the Skyrme SLy4
model as a function of the polarization.

III. RESULTS

In this section we present the results. We have consid-
ered magnetic fields up to a maximum value according to
the scalar virial theorem. For a neutron star of radius
R the maximum allowed stored magnetic energy is given

by the relation 4πR3

3
B2

max
8π

≈ GM2

R
; then, for a typical neutron

star with M = 1.5M� and R = 10−5R�, this yields an interior
maximum value of the magnetic field Bmax ≈ 1018 G. Recent
observations report surface values up to B ≈ 1015 G as
deduced from hydrogen spectral lines [3] but even higher
magnetic field strengths have been speculated [37].

Skyrme models show a pathology, a ferromagnetic transi-
tion in the range [1 − 4]ρ0, that is due to the appearance of
a spontaneous polarization in the system even if no magnetic
fields are present. To illustrate this we show in Fig. 1 the
development of a nonzero value of polarization �, where
the free energy per particle achieves a minimum until a
ferromagnetic transition occurs around ≈4ρ0 for the SLy4
model at a temperature T = 2 MeV and vanishing magnetic
field strength.

In Fig. 2 we show the free energy per particle for a plasma
at ρ = 0.5ρ0 for a typical temperature in a protoneutron star,
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FIG. 2. Free energy per particle at a density ρ = 0.5ρ0 for
different values of magnetic field at T = 10 MeV with the Skyrme
SLy4 model as a function of the polarization.
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FIG. 3. Free energy per particle for different values of the density
at T = 10 MeV with the Skyrme SLy4 model and B = 1018 G as a
function of the polarization.

T = 10 MeV, and three different values of the magnetic field
strength as calculated with the SLy4 parametrization. We can
see that for fields below B ≈ 1017 G the effects introduced by
the presence of a magnetic field are almost negligible. Then,
when including the magnetic field, the polarization symmetry
is broken and no longer appear two minima.

In the low-density region the free energy is an increasing
function of the density but the minimun of the polarization
shifts to higher values as can be seen in Fig. 3 for T =
10 MeV and B = 1018 G using the SLy4 model. At densities
below 0.5ρ0 a wide range of models for β-equilibrated systems
show the development of a frustrated state of matter that is
known with the name of pasta [17–20]. Different simulations
performed without the presence of a magnetic field show a
variety of spatial shapes that form in neutron-rich matter. In the
present model, where only pure neutron matter is considered,
there is no mechanical instability due to the lack of Coulomb
long-range interactions. This scenario even if unrealistic has
been also considered as a first approximation to the low-density
spin-polarized neutron crust in other works [38]. In this same
way works such as those of Bombaci et al. deal with Brueckner
calculations for a set of polarization asymmetries [39] and
study the equation of state of the neutron plasma. Other
approaches, including lattice calculations in pionless effective
field theory for low-density neutron matter [40], offer some
insight into the equation of state of dilute neutron matter below
one-fifth of saturation density. Then the present work must
be considered as a first step into the more complex problem
of determining the properties of the β-equilibrated magnetic
pasta and its connection to the neutrino response of the system
that could largely impact neutrino opacities in the protoneutron
star early cooling stage [41]. This issue has not been properly
considered in the microphysics input of modern calculations
and remains largely unexplored.

In Fig. 4 we show the polarization, in percentage (%), that
minimizes the free energy at T = 5 MeV resulting from a
calculation with the SLy7 model as a function of density for
ρ � 4ρ0. For higher densities a nucleon-quark transition is
allowed by phenomenological models, see, for example [42],
so we will restrict our nonrelativistic analysis to this range.
We can see that there are three differentiated polarization
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FIG. 4. Permanent polarization for different values of the mag-
netic field strength at T = 5 MeV with the Skyrme SLy7 model as a
function of density.

regions. At densities increasingly smaller below ≈0.5ρ0, the
polarization rises with increasing magnetic field strength.
It is worth mentioning that we have assumed that even at
these low densities the gas picture still holds. However, the
formation of fully spin saturated microscopic nuclear regions
or “domains” should be explicitly explored in the future [43].
For densities in the range 0.5ρ0 <∼ ρ <∼ 3ρ0 a stable permanent
imanation of the neutron plasma is allowed, if a magnetic
field is present, giving a maximun polarization around 12%
for the maximun B considered in this work. For densities
larger than 3ρ0, again, there is a very rapid increase of the
spin polarization that achieves full saturation and therefore a
ferromagnetic transition occurs at around 4ρ0 for this particular
parametrization.

The robustness of the above-mentioned findings can be seen
in Fig. 5 where a comparison of Skyrme (SLy4 and Sly7) and
Gogny models (D1S and D1P) is shown for the case with
ρ = ρ0 at T = 10 MeV and B = 1018 G. We can see that they
all predict the same value of the minimun around �min ≈ 12%.
The detail of the robustness at low densities with respect to the
Skyrme (SLy7) and Gogny (D1P) parametrizations is shown
in Fig. 6 for a density ρ = 0.5ρ0 at a T = 5 MeV, where the
permanent polarization is plot versus the logarithm (base 10)
of B. Below B = 1016 G the effect is negligible but it largely
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FIG. 5. Free energy per particle at a density ρ = ρ0, T = 10 MeV
and B = 1018 G with different Skyrme and Gogny models as a
function of the polarization.
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FIG. 6. Polarization at a density ρ = 0.5ρ0 and T = 5 MeV with
the Skyrme SLy7 and Gogny D1P model as a function of the logarithm
(base 10) of the magnetic field strength.

increases up to a value of ≈12% for the Bmax. We can see that
the increase of magnetization for sufficiently high magnetic
field grows more rapidly than in the very low density and
moderate magnetic field strengths regime where Curie’s linear
law M ≈ B/T is expected to hold.

In Fig. 7 we show the plasma polarization at T = 5 MeV
and B = 5 × 1017 G with the Skyrme SLy7 (solid line) and
Gogny D1P (dashed line) models as a function of the density. It
is clearly observed the general feature of enhanced polarization
at low densities and a plateau at intermediate densities. How-
ever, at high densities there is a dramatic difference because in
the Skyrme model there is a ferromagnetic transition at ≈4ρ0,
whereas it is forbidden with the D1P model in agreement
with realistic simulations [16]. In the case of the Gogny force
there is a plateau with permanent residual polarization of about
2%. These results agree with those previously obtained with
calculations performed in a relativistic scenario in the context
of a mean-field approximation where they estimate a maximum
magnetization smaller than 4% [12].

To size the magnitude of the spin instabilities in the
development of a nonzero magnetization in a neutron plasma
we show in Fig. 8 the spin symmetry energy as a function
of density at zero temperature for the SLy4 (dashed line) and
D1P model (solid line). This quantity can be defined in analogy
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FIG. 7. Permanent polarization at T = 5 MeV and B = 5 ×
1017 G with the Skyrme SLy7 and Gogny D1P model as a function
of the density.
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FIG. 8. Spin symmetry energy at zero temperature with the
Skyrme SLy4 and Gogny D1P model as a function of the density.

with the isospin symmetry energy for a given Hamiltonian,HS ,
describing a system with a given spin asymmetry � as,

HS/ρ = H/ρ + ES
sym�2 + O(�2), (31)

where ES
sym = 1

2
∂2(HS/ρ)

∂�2 |�=0 is the spin symmetry energy.
This term can be related to the Landau parameter G0 [44]
using the relation ES

sym = ρ

2N0
(1 + G0), where N0 = m∗kF

π2 .
We can see that for the Skyrme force SLy4 the system
undergoes a ferromagnetic transition instability for densities
bigger than ≈3.5ρ0 and becomes largely spin polarized due
to the attractive character of the spin symmetry energy.
However, a dramatic different trend arises with the Gogny
force D1P where this quantity largely increases for the density
range considered preventing the appearance of ferromagnetic
transitions. Temperature effects remain moderate for both
interactions and do not alter significatively the mentioned
results.

The effects of temperature on other thermodynamical
quantities of interest can be seen in Fig. 9, Fig. 10, and Fig. 11
where the energy, entropy, and free energy per particle,
respectively, are shown for a density ρ = ρ0 at B = 1017 G
at several temperatures for the D1S Gogny force. The typical
range of temperatures relevant to protoneutron stars goes up to
values around T = 40 MeV. We can see that there is a moderate
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FIG. 9. Energy per particle at a density ρ = ρ0 for different values
of temperature and B = 1017 G with the Gogny D1S model as a
function of the polarization.
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FIG. 10. Entropy per particle, same thermodynamical conditions
as in Fig. 9.

dependence of the energy per particle, e, with temperature. In
the case of the entropy we can see the familiar decreasing
behavior [45] with increasing order of the system, having a
maximum around vanishing polarization. At high temperatures
where correlations are greatly diminished one should recover
the Sackur-Tetrode formula limit s ≈ 2.5 [45].

In Fig. 12 we show the entropy per particle as a function
of the polarization for two different densities. The solid line
corresponds to a density ρ = 0.5ρ0 and the dashed line to
ρ = ρ0 at T = 10 MeV with the Gogny D1P model. For this
plot we have taken the upper limiting case B = 1018 G. We can
see that as density decreases in-medium effects become less
important and allow the system more available configurations
thus entropy increases.

The effective mass for up- and down-polarized neutrons is
shown in Fig. 13 for densities ρ = 0.5ρ0 (solid line) and ρ =
ρ0 (dashed line) at T = 10 MeV with the Gogny D1P model.
As polarization increases, the ascendent (descendent) curves
for each density correspond to up- (down-) polarized neutrons.
As shown, in-medium effects decrease the effective neutron
mass as density increases. In Fig. 14 we show the effective
neutron masses at a density ρ = ρ0 with the D1S model (solid
line) and with the D1P model (dashed line) at T = 10 MeV as
a function of the polarization. We can see that the effects due to
the parametrization or in-medium correlations are much more
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FIG. 11. Free energy per particle, with the same conditions as in
Fig. 9.
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FIG. 12. Entropy per particle for ρ = 0.5ρ0 (solid line) and ρ =
ρ0 (dashed line) at B = 1018 G and T = 10 MeV with the Gogny
D1P model.

important than those related to the polarization because for the
maximum B considered in this work induces a �min ≈ 12%
that relates to a mass shift of an amount of δm∗ ≈ 5 MeV with
respect to the unpolarized case and δm∗ ≈ 10 MeV for the
ρ = 0.5ρ0 case.

The composition of the polarized plasma can be obtained
by solving the set of Eqs. (24), (25), and (26). In Fig. 15
we show the polarized effective neutron chemical potential at
densities ρ = 0.5ρ0 (solid line) and ρ = ρ0 (dashed line) at
T = 10 MeV and B = 1017 G with the Gogny D1P model as
a function of the polarization. For each density as polarization
grows the ascendent (descendent) lines show the up- (down-)
polarized particle effective chemical potential. As the system
is populated with more particles aligned (antialigned) with the
magnetic field the energetic cost of aligning a new particle is
bigger (smaller). As density increases this cost is also bigger
due to nuclear correlations as extracted from the figure.

To compare Skyrme and Gogny polarized population
yields, in Fig. 16 we show the polarized effective chemical
potential at a density ρ = 0.5ρ0 for the SLy7 (solid line) and
D1P (dashed line) models with B = 5 × 1017 G as a function
of the temperature. Up (down) effective neutron chemical
potentials are depicted for each model as the upper (lower)
curves. As the system is heated the permanent polarization
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FIG. 13. Neutron effective mass for ρ = 0.5ρ0 (solid line) and
ρ = ρ0 (dashed line) at T = 10 MeV with the Gogny D1P model. The
ascendent (descedent) curves are for up- (down-) polarized particles.
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10 MeV as a function of the polarization. The ascendent (descent)
curves are for up- (down-) polarized particles.
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FIG. 16. Polarized effective chemical potential at a density ρ =
0.5ρ0 with the SLy7 model (solid line) and the D1P model (dashed
line) and B = 5 × 1017 G as a function of the temperature.
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FIG. 17. Polarized effective chemical potential at densities ρ =
0.5ρ0 (a) and ρ = ρ0 (b) with the SLy7 model (solid line) and the D1P
model (dashed line) at T = 20 MeV as a function of the logarithm
(base 10) of the magnetic field strength. For each model upper (lower)
curves correspond to up- (down-) polarized particles.

stays rather constant; however, the correlations are diminished
and the overall energetic cost is smaller.

In Fig. 17 we show the polarized effective chemical
potential densities ρ = 0.5ρ0 (a) and ρ = ρ0 (b) with the
SLy7 model (solid line) and the D1P model (dashed line)
at T = 20 MeV as a function of the logarithm (base 10)
of the magnetic field strength. For each calculation model
upper (lower) curves correspond to up- (down-) polarized
particles. We can see how the effect of magnetic field strengths
smaller than B ≈ 1016 play almost no role in the plasma
polarized neutron population. As B increases there is a gradual
enhancement (decrease) of the up- (down-) polarized neutron
sector. However, the parametrization used plays an important
role and Skyrme models predict systematically bigger effective
neutron chemical potentials than the Gogny forces. From
the comparison of upper and lower panels we can see that
in-medium effects largely increase the effective chemical
potentials.

IV. SUMMARY AND CONCLUSIONS

We have studied the effect of a strong magnetic field
on some thermodynamical observables in a pure neutron
gas within the framework of the nonrelativistic Hartree-Fock
approximation. We have considered magnetic field strengths
up to the maximum value energetically allowed by the scalar
virial theorem Bmax ≈ 1018 G. We have found that for magnetic
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field strength values smaller than B ≈ 1016 G and due to
the characteristic tiny value of nucleon magnetic moment
the effect on plasma polarization is almost negligible. We
performed a comparative study of the plasma observables
using effective Skyrme and Gogny nuclear interaction forces in
the density, temperature, and magnetic field strength parameter
space. With these effective interaction models we find that
in the low-density limit increasingly large spin polarizations
are allowed as density decreases from an upper bound of
≈0.5ρ0 robustly for both models. Then, for intermediate
densities, there is a rather constant polarization plateau where
a permanent immanation saturates to a value of up to 12%
for the maximum B considered in this work and moderate
temperatures. In the high-density region, up to where the
meaningful hadronic picture holds, Skyrme and Gogny forces
behave very differently. Although the Skyrme interaction
allows a ferromagnetic transition in the high-density limit, the
Gogny force prevents it. Temperature effects on magnetization
remain moderate in the explored range of temperatures, up

to about T = 40 MeV relevant to protoneutron stars. The
influence of a strong magnetic field should be considered
increasingly relevant as density decreases, that is, in the
description of the outer shells of protoneutron stars below
≈0.5ρ0 where a more detailed analysis must be performed
to see ther role played by frustration. For bulk matter in
the intermediate and high-density range a relatively small
polarization is allowed that only affects moderately the
thermodynamics. β equilibrium should also be appropiately
treated because the appearance of electrically charged particles
may affect the onset densities of enhanced polarization in the
plasma.
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(2005).
[15] J. Margueron, J. Navarro, and N. V. Giai, Phys. Rev. C 66,

014303 (2002).
[16] S. Fantoni, A. Sarsa, and K. E. Schmidt, Phys. Rev. Lett. 87,

181101 (2001).
[17] D. G. Ravenhall, C. J. Pethick, and J. R. Wilson, Phys. Rev. Lett.

50, 2066 (1983).
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