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3Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles-CP226, B-1050 Brussels, Belgium
(Received 22 December 2007; published 23 June 2008; publisher error corrected 13 November 2008)

An approach to the equation of state for the inner crust of neutron stars based on Skyrme-type forces is presented.
Working within the Wigner-Seitz picture, the energy is calculated by the TETF (temperature-dependent extended
Thomas-Fermi) method, with proton shell corrections added self-consistently by the Strutinsky-integral method.
Using a Skyrme force that has been fitted to both neutron matter and to essentially all the nuclear mass data,
we find strong proton shell effects: proton numbers Z = 50, 40, and 20 are the only values possible in the inner
crust, assuming that nuclear equilibrium is maintained in the cooling neutron star right down to the ambient
temperature. Convergence problems with the TETF expansion for the entropy, and our way of handling them,
are discussed. Full TETF expressions for the specific heat of inhomogeneous nuclear matter are presented. Our
treatment of the electron gas, including its specific heat, is essentially exact, and is described in detail.
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I. INTRODUCTION

We are concerned with the application of Skyrme-type
effective nuclear interactions to the determination of the
equation of state (EOS) of the inhomogeneous nuclear matter
encountered at nuclear and subnuclear densities in core-
collapse supernovas and in the inner crust of neutron stars. In
our first paper on this topic [1] we adopted a Wigner-Seitz (WS)
model of the inhomogeneous nuclear medium, and used the
fourth-order semi-classical temperature-dependent extended
Thomas-Fermi (TETF) method to calculate the kinetic energy
and entropy. That paper dealt primarily with the conditions
prevailing in core-collapse supernovas. The present paper
relates rather to the inner crust of neutron stars, describing
in particular some modifications to the earlier model, made
necessary by two problems that emerge at the much lower
temperatures T that are involved: (i) the TETF expansion
(in powers of h̄2) for the entropy converges badly at low T ;
(ii) proton shell effects are not negligible at low T .

This last point is especially important if one is interested
in the neutron-star crust as a possible alternative site for
the synthesis of the so-called r-process elements [2–5]. The
usual model of the r-process of nucleosynthesis is associated
with the birth of a neutron star in a core-collapse supernova,
during which “seed” nuclei are exposed to an intense flux of
neutrons. Rapid (“r”) capture of neutrons alternating with beta
decay leads to the formation of a string of highly neutron-rich
isotopes of a wide range of elements, which, once the source
of neutrons is removed, will beta-decay back to the most
neutron-rich stable isobar for the given mass number A (see
Ref. [6] for a recent review). The alternative picture, of interest
here, is associated rather with the death of a neutron star,
or at least with its partial disruption. Because of the very
large densities, the matter in a neutron star is highly neutron
rich, and the closer to the center the more neutron-rich it will
be. But if for one reason or another matter is ejected from
the neutron star it will rapidly decompress, and so will be

able to undergo a chain of beta decays, the end product of
which will again be r-process nuclei. Ejection of matter from
a neutron star is usually supposed to result from the merger
of one neutron star with another, or with a black hole [4,7],
but other scenarios have been envisaged, e.g., volcanoes [8],
magnetars [9], quark stars [10], and explosions resulting from
the mass of the neutron star falling below the minimal critical
value [11]. However, the precise ejection mechanism is of no
concern to us in this paper.

It is convenient at this point to recall that at least three
distinct regions can be recognized in a neutron star: a
central, locally homogeneous, core, and two concentric shells
characterized by different inhomogeneous phases [12]. The
outermost of these shells, the “outer crust”, consists of an
electrically neutral lattice of nuclei and electrons. At the
surface of the star only nuclei that are stable under natural
terrestrial conditions are found (in fact, nuclear equilibrium,
discussed below, implies that only 56Fe will be found), but on
moving toward the interior the increasing density leads to the
appearance of nuclei that are more and more neutron rich, until
at a mean local density ρ̄ of around 2.4 ×10−4 nucleons/fm−3

(4.0 × 1011 g/cm−3) neutron drip sets in. This marks the transi-
tion to the “inner crust", which at least up to a mean density of
ρ̄ = 0.06 nucleons/fm−3 consists of neutron-proton clusters,
or droplets, immersed in a neutron gas, with the neutralizing
electron gas being essentially uniform (we neglect screening
effects in this paper). It is equally well established that by
the point where the mean density has risen to around ρ̄ =
0.10 nucleons/fm−3, i.e., about 2/3 of the density ρ0 of sym-
metric infinite nuclear matter (INM) at equilibrium, the droplet
phase no longer exists and has been replaced by the homoge-
neous phase of the core, which consists primarily of neutrons,
with a small admixture of proton-electron pairs, and possibly
other particles, including free quarks, closer to the center.

What happens in the transition region over the range
0.06 � ρ̄ � 0.10 nucleons/fm−3, close to the inside edge of

0556-2813/2008/77(6)/065805(15) 065805-1 ©2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.77.065805


ONSI, DUTTA, CHATRI, GORIELY, CHAMEL, AND PEARSON PHYSICAL REVIEW C 77, 065805 (2008)

the inner crust, is far less clear. The question cannot be settled
by observation at the present time, and theoretical predictions
are sensitive to the details of the calculations, in particular to
the choice of the effective interaction. For some interactions
the transition from the droplet phase to the homogeneous
phase is indirect and complex, with a whole sequence of
different inhomogeneous phases being formed. At the interface
with the homogeneous core these calculations find a “bubble”
phase, this taking the form of bubbles of neutron gas in a
denser liquid of neutrons and protons, the droplet phase having
effectively been turned inside out. Furthermore, at slightly
lower densities, between the bubble and droplet phases, several
so-called “pasta” phases are predicted to put in an appearance,
these being characterized by exotic, nonspherical shapes [12].
On the other hand, it has been shown that for other effective
interactions the situation is much simpler, with no bubble
or pasta phases being formed (at least at the assumed zero
temperature of a stable neutron star): at a mean density of
around ρ̄ = 0.075 nucleons/fm−3 the droplet phase undergoes
a transition directly to the homogeneous phase (see Ref. [13],
and references cited therein; also Ref. [14]). In the present
paper we will avoid these ambiguities by limiting ourselves to
values of ρ̄ less than 0.06 nucleons/fm−3, which means that
we would not be able to deal with ejection mechanisms that
reached even deeper into the star.

Since neutron stars are formed at temperatures of the order
of 10 MeV (1011 K) and rapidly cool to around 0.1 MeV
[12], it is usually assumed that the final composition of the
stable star corresponds to nuclear and beta equilibrium at a
temperature of T = 0, the configuration of so-called “cold
catalyzed matter”; we shall later examine the validity of this
assumption. Determining the composition of the outer crust
in this picture is straightforward (see, for example, Ref. [15]):
the equilibrating nucleus at each given density (or pressure) is
found from the known nuclear masses, as given by experiment
or, where mass data are unavailable, a mass model such as
the FRDM [16] or HFB-14 [17] (see also Refs. [18,19] for
reviews). We shall therefore not consider the outer crust any
further here.

As for the composition of the inner crust of the stable
neutron star, the relevant question at a given mean density
ρ̄ is to determine the total number of neutrons N , including
those of the vapor, and protons Z per cluster. For this one needs
the total Helmholtz free energy per nucleon f (including the
electronic contribution) at the ambient temperature (usually
taken to be zero), as a function of the density and the
composition X ≡ (Z,A = Z + N ); one then minimizes f

with respect to N and Z at constant ρ̄. (Alternatively, to
determine the composition at a given pressureP one minimizes
the Gibbs free energy per nucleon g with respect to N and Z at
constant P . It follows from the easily proven thermodynamical
relation (

∂g

∂X

)
P,T

=
(

∂f

∂X

)
ρ̄,T

(1.1)

that the two procedures are completely equivalent. We never-
theless find it more convenient to work with the Helmholtz
free energy f at given values of ρ̄: see, for example,
Section II of Ref. [20].)

The pressure in a layer of the crust of density ρ̄ can then be
found by numerical differentiation from the identity

P = ρ̄2

(
∂f

∂ρ̄

)
T ,X

; (1.2)

note particularly that f is a mean quantity, averaged over
inhomogeneities, and not a local quantity. With the pressure
P determined as a function of the mean density ρ̄, the values
of P and ρ̄ in any layer of the neutron star, along with the
local composition, can be determined through solution of the
Tolman-Oppenheimer-Volkoff equation [21,22].

When, for one reason or another, decompression of crustal
material begins, the temperature may start to rise. To follow the
evolution of this process we shall require the EOS for nonzero
values of T , and also the specific heat per nucleon at constant
volume, cv , given in terms of the entropy per nucleon, s, by

cv = T

(
∂s

∂T

)
ρ̄,X

. (1.3)

The entropy itself is given in terms of the Helmholtz free
energy by

s = −
(

∂f

∂T

)
ρ̄,X

. (1.4)

Thus all quantities of interest here can be derived from a
calculation of f as a function of ρ̄ and T . Note that s and
cv , like f , are mean quantities.

A popular EOS that has been extensively applied to
supernova explosions is that of Lattimer and Swesty [23].
However, the applicability of this EOS to neutron-star crusts is
limited by the fact that it is based on the so-called compressible
liquid-drop model without any shell corrections, which at the
prevailing low temperatures can be expected to be significant.
Actually, both Refs. [2] and [3] attempt to take account of shell
effects, although in a rather rudimentary way, by making use of
the algebraic bunching technique of Myers and Swiatecki [24].

In the present paper, as in Ref. [1], we model the
inhomogeneous nuclear medium by a single spherical WS cell,
and attempt to incorporate shell effects into this framework
microscopically and self-consistently, thereby permitting some
measure of continuity of treatment across the interface between
the inner and outer crusts. The most obvious way to do this
is through the Hartree-Fock (HF) method, as has already
been done, for example, by Bonche and Vautherin [25]
at finite temperature and by Negele and Vautherin [26] at
zero temperature, using the WS approximation. However,
we abandoned this approach for the following reason. While
protons are strongly bound in the inner crust because of the
large neutron excess, and thus show strong shell effects, for
neutrons, by the very definition of the inner crust, there will
be a continuous spectrum of unbound single-particle (s.p.)
neutron states that are occupied. Thus any neutron added to
the system must in reality go into this continuum, whence
it follows that we should not expect any neutron shell effects.
Actually, this conclusion will hold only if the dripped neutrons
form a uniform liquid, and in reality scattering of unbound
neutrons on the inhomogeneities of the crust may give rise
to so-called Casimir or band effects [27–29], whose exact
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evaluation requires the application of the band theory of solids
(see Ref. [30] and references quoted therein). Nevertheless,
these neutron shell effects are much smaller than the proton
ones [31] and have therefore a negligible impact on the EOS
and the equilibrium composition of the inner crust, although
they are known to be significant for transport properties
[32]. However, in practice any HF calculation in the WS
approximation involves discretization, giving rise to shell
effects for both protons and neutrons. But, as we have argued
above, these neutron shell effects must be spurious, and in
the HF calculation of Ref. [26] special steps had to be taken
to smooth them (see also Refs. [30,33]). We conclude that
as far as neutrons are concerned the semiclassical extended
Thomas-Fermi method is better adapted to a WS approach
than is the HF method.

The solution we adopt here to the problem of including
the appropriate proton shell corrections without introducing
spurious neutron shell corrections is to use the ETFSI
(extended Thomas-Fermi plus Strutinsky integral) high-speed
approximation to the HF method [34–38]. We have already
made an exploratory study of the applicability of this method
to a WS picture of the EOS, and found that proton shell effects
are indeed important [39], but here, in addition to making
much more extensive calculations of the EOS, we improve the
T > 0 results by taking account of possible shell effects in
the entropy, which will manifest themselves in the free energy
through the relation

f = e − T s, (1.5)

where e is the energy per nucleon.
A further development of considerable significance is that

the TETFSI method, as we shall refer to this temperature-
dependent ETFSI method, is no longer limited to forces whose
effective nucleon mass M∗ is equal to the real mass M . This
permits us to use more realistic effective forces with smaller
values of the effective mass. Thus in the present calculations
the effective interaction that we use is the Skyrme force
BSk14, for which the effective mass in symmetric INM at
the equilibrium density ρ0 (0.159 nucleons/fm−3) is 0.800M ,
which is to be compared with the value of 0.825M found
in extended Brueckner-Hartree-Fock calculations that include
three-nucleon forces [40]. This is the force that underlies the
Hartree-Fock-Bogoliubov (HFB) mass model HFB-14 [17], a
force that is eminently suitable for calculating the properties of
neutron-star crustal matter, since on the one hand it has been
fitted to the properties of neutron matter, as determined by
calculations with realistic two- and three-nucleon forces [41],
and on the other hand it gives an excellent fit to essentially
all the available mass data (σrms = 0.729 MeV). Given that
the neutron-star crust is both inhomogeneous and contains
some protons, the high quality of the mass fit is especially
relevant, since it means a) that inhomogeneities in nuclear
matter (surface effects in droplet-model language) are well
modeled, and b) that neutron-proton interactions are well
represented. (However, no Skyrme force should be used for
the highly supernuclear densities encountered deep within the
core of a neutron star.) We stress that in this paper we neglect
pairing, as in Refs. [25,26].

In Sec. II we discuss our parametrization of the WS cell.
Section III describes our adaptation of the ETFSI method to the
problem of the EOS of the neutron-star inner crust at nonzero
temperatures, with particular attention to the convergence
properties of the ETF expansion of the entropy. Our formalism
is applied in Sec. IV to the properties of the inner crust of a
neutron star (we do not examine in this paper the important
question of the rapid decompression of neutron-star matter).
The existence of strong proton-shell effects in the inner
crust is discussed in this same section. Our conclusions are
summarized in Sec. V. Some important material is to be found
in the appendices, notably the TETF expansion of the specific
heat (Appendix A) and a proof of the Strutinsky-integral
theorem (Appendix C).

II. THE WIGNER-SEITZ CELL

Since we do not consider depths greater than that for which
the mean density is ρ̄ = 0.06 nucleons/fm−3 only the droplet
phase of nucleons has to be considered, and we shall assume
that the WS cell associated with this phase is spherical, radius
Rc. This cell is entirely representative of the macroscopically
sized volume element being considered, in the sense that all the
nucleons of this volume element are imagined to be grouped
into identical such cells, there being one cell for each droplet.
The average neutron and proton densities over the locally
representative cell must thus each be equal to the local values
of the corresponding macroscopic densities, ρ̄n and ρ̄p, given
respectively by

ρ̄n = ρ̄(1 − Ye) (2.1a)

and

ρ̄p = ρ̄Ye, (2.1b)

where Ye is the fraction of nucleons that are protons. The
neutron and proton density distribution functions within the
cell, ρn(r) and ρp(r), are then constrained by∫

cell ρq(r) d3r∫
cell d3r

= ρ̄q = 3

R3
c

∫ Rc

0
ρq(r)r2 dr, (2.2)

where q denotes n or p, as the case may be, and the second
equality holds in the case of spherical symmetry, assumed
here. The total number of nucleons of each type in the cell is

Nq = 4π

3
R3

c ρ̄q (2.3)

(Nn = N,Np = Z).
For the neutron and proton density distribution functions

we adopt a modified version of the simple Fermi form that we
used in Ref. [1]: limiting ourselves to the spherical case and
writing

ρq(r) = ρBq + ρ0qfq(r), (2.4)

in which ρBq is the usual constant background term, we now
take

fq(r) = 1

1 + 1
e

exp
(Cq−Rc

r−Rc

)2
exp

( r−Cq

aq

) . (2.5)
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Here the denominator of the radially varying term contains an
extra factor 1

e
exp(Cq−Rc

r−Rc
)2, the presence of which guarantees

that the density gradient now vanishes at the surface of the
cell, thereby ensuring that the droplets merge smoothly with
the homogeneous neutron vapor within the WS cell (in addition
to being physically realistic, this condition is also required for
the validity of the semi-classical part of the TETFSI method
used here to calculate the nuclear kinetic energy and entropy).
Also, again because of the extra factor, fq(r) itself vanishes
on the surface of the WS cell, when

ρq(Rc) = ρBq. (2.6)

The factor 1/e ensures that the radially varying factor takes
the value ρ0q/2 at r = Cq , as usual. Finally, we note that fq(r)
varies monotonically over the cell.

The two background constants ρBq are not independent of
the other parameters, but rather are fixed by

ρBq = ρ̄q − 3

R3
c

Iqρ0q, (2.7)

where

Iq =
∫ Rc

0
fq(r)r2 dr. (2.8)

For given ρ̄ the WS cell is thus characterized by seven
geometrical parameters, ρ0q, Cq, aq(q = n, p), and Rc, in
addition to the composition parameter Ye. In the most general
case all eight of these parameters correspond to degrees of
freedom, but either or both of the last two might be constrained
to fixed values, according to the physical situation being
described. In particular, for specified Z and N , the given value
of ρ̄ determines Rc.

But in all cases the complete set of parameters is subject
to the additional constraint that the densities ρq(r) must be
positive at all points in the cell. We handle this problem as
described in Sec. II of Ref. [1], the modified radial distribution
leading to the simplified condition

ρ̄q(
3Iq/R3

c

) − fq(r = 0)
< ρ0q <

R3
c ρ̄q

3Iq

, (2.9)

given that fq(r) varies monotonically over the cell. The lower
limit is seen from the mean-value theorem to be essentially
negative, and since negative values of ρ0q correspond to
bubbles we shall be interested here only in the restricted range

0 < ρ0q <
R3

c ρ̄q

3Iq

. (2.10)

Although this is of no concern for the present paper,
it is convenient to note here that once decompression and
beta decay have begun, it will be necessary to constrain the
background parameters ρBq to given values, since different
(Z,A) configurations will be present simultaneously. Thus,
with Eq. (2.7) still holding, the two degrees of freedom
corresponding to the parameters ρ0q will be lost. Rather, they
will be determined uniquely according to

ρ0q = R3
c

3Iq

(ρ̄q − ρBq), (2.11)

positive values still corresponding to droplets and negative
to bubbles. The condition that the densities be everywhere
positive then leads to constraints on the range of values that
are possible for ρBq :

0 < ρBq <
ρ̄q

1 − 3Iq

/{
R3

c fq(r = 0)
} , (2.12)

in which the upper limit is essentially larger than ρ̄q , but only
the restricted range

0 < ρBq < ρ̄q (2.13)

corresponds to droplets.

III. THE TETFSI METHOD

For a given set of the geometrical cell parameters we first
write the total density of the Helmholtz free energy at a given
point in the cell as

F ′ = Fnuc + Fe + Ec + (ρ̄nMn + ρ̄pMp + nem)c2, (3.1)

where Fnuc is the specifically nuclear free-energy density
(discussed below), Fe is the density of the electron free
energy (calculated essentially exactly), and Ec is the Coulomb
energy. (Strictly speaking, in this equation ρ̄n and ρ̄p should
be replaced by ρn and ρp, respectively, but the differences
vanish on integrating over the cell.) Since ρ̄p = ne, electrical
neutrality holding globally over the WS cell, we can now write

(ρ̄nMn + ρ̄pMp + nem)c2

= ρ̄{(1 − Ye)Mn + Ye(Mp + m)}c2 = ρ̄Mnc
2 − ρ̄YeQn,β,

(3.2)

where Qn,β is the beta-decay energy of the neutron
(0.782 MeV). But the term ρ̄Mnc

2 makes a constant contribu-
tion to the free energy per nucleon and can thus be discarded.
Thus in place of Eq. (3.1) we write

F = Fnuc + Fe + Ec − ρ̄YeQn,β . (3.3)

The total Coulomb energy density, direct and exchange, is
given in general by

Ec(r) = e2

2
{ρp(r) − ne}

∫
ρp(r′) − ne

|r − r′| d3r′

− 3e2

4

(
3

π

)1/3 (
ρ4/3

p + n4/3
e

)
, (3.4)

where for the exchange term we have used the usual Kohn-
Sham variant [42] of the Slater approximation. The last
equation reduces in the case of spherical symmetry to

Ec = 2πe2(ρp − ne)

{∫ r

0
ρp(r ′)

(
r ′2

r
− r ′

)
dr ′ + ne

r2

6

}
−3e2

4

(
3

π

)1/3 (
ρ4/3

p + n4/3
e

)
. (3.5)

The mean free energy per nucleon in the entire system is
given by the corresponding quantity averaged over just one
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cell,

f = 1

A

∫
F(r)d3r, (3.6)

where A = N + Z is the total number of nucleons in the cell.
We shall likewise calculate the total entropy, the density of
which at a given point can be written as

σ = σnuc + σe = σn + σp + σe, (3.7)

then for the mean total entropy per nucleon we have

s = 1

A

∫
σ (r)d3r. (3.8)

The Skyrme force BSk14 [17] for which we calculate the
densities Fnuc and σnuc has the usual form

vij = t0(1 + x0Pσ )δ(rij ) + t1(1 + x1Pσ )
1

2h̄2

{
p2

ij δ(rij ) + h.c.
}

+ t2(1 + x2Pσ )
1

h̄2 pij · δ(rij )pij + 1

6
t3(1 + x3Pσ )ραδ(rij )

+ i

h̄2 W0(σ i + σj ) · pij × δ(rij )pij . (3.9)

The total nuclear energy density at any point can now be
written as

Enuc =
∑

q

(
h̄2

2M∗
q

τq

)
+ V, (3.10)

where τq gives the kinetic-energy density of nucleons q as
h̄2

2Mq
τq [the first term of Eq. ({3.10}) is the kinetic-energy

density multiplied by Mq/M
∗
q ], the effective mass M∗

q is given
by

h̄2

2M∗
q

= h̄2

2Mq

+ 1

8
{t1(2 + x1) + t2(2 + x2)}ρ

+ 1

8
{t2(1 + 2x2) − t1(1 + 2x1)}ρq, (3.11)

and the static part of the potential energy by

V = 1

4
t0

{
(2 + x0)ρ2 − (1 + 2x0)

∑
q

ρ2
q

}
+ 1

32
{3t1(2 + x1) − t2(2 + x2)}(∇ρ)2

− 1

32
{3t1(1 + 2x1) + t2(1 + 2x2)}

∑
q

(∇ρq)2

+ 1

24
t3

{
(2 + x3)ρ2 − (1 + 2x3)

∑
q

ρ2
q

}
ρα

+ 1

2
W0

∑
q

Jq · ∇(ρ + ρq), (3.12)

in which Jq is the spin-current density, and we have now set
the “quadratic current” term VJJ of Eq. (A4c) of Ref. [1] equal
to 0 throughout the calculation (our treatment of this term in
Ref. [1] was inconsistent). For the nuclear free-energy density

at any point we then have

Fnuc =
∑

q

Kq + V, (3.13)

where

Kq = h̄2

2M∗
q

τq − T σq. (3.14)

The first stage of the full TETFSI method that we adopt in
this paper for a given temperature T , mean density ρ̄, and fixed
values of N and Z consists in approximating the exact HF value
of the nuclear free-energy density Fnuc for the given Skyrme
force by the full fourth-order TETF method of BBD [43]: see,
for example, our paper [1], the Appendix of which contains
a convenient summary of the formalism, as we have used
it here. We do not repeat this formalism here, although in
Appendix A we present the TETF expansion for the specific
heat, which appears not to have previously been published.
Moreover, we remark here that the TETF expression for σq

given by BBD [43] assumes that

σ = −
(

∂F
∂T

)
ρ,X

, (3.15)

where it is to be noted that it is the local density ρ, and not the
mean density ρ̄, that is held constant. We show in Appendix B
that Eq. (3.15) follows from Eq. (1.4) only if equilibrium holds
(this condition is made necessary by virtue of the temperature
dependence of the density distribution itself).

The essence of the TETF method is to express τq, Jq and
σq in terms of an assumed density distribution, which here
we take to have the form given in Eqs. (2.4) and (2.5). The
value that we obtain for the total free energy per nucleon f , as
given by Eqs. (3.3) and (3.6), is minimized with respect to the
six geometrical parameters ρ0q, Cq, aq of the parametrized
nucleon distribution. (In looking for full nuclear and beta
equilibrium we minimize with respect to N and Z also.)
The resulting nucleon distributions are denoted by ρ̃q , and the
corresponding approximations to τq, Jq, σq and f by τ̃q , J̃q, σ̃q

and fTETF, respectively. The value of all these approximations
to the exact HF values vary smoothly with respect to N and Z:
it is a characteristic of the TETF method that shell corrections
are lost. In the second stage we use the Strutinsky-integral
method to correct fTETF perturbatively for proton shell effects,
as follows.

At zero temperature, where fTETF = eET F , the corrected
value of e takes the form

e = eET F + 1

A
Esc

p , (3.16)

where, according to the Strutinsky-integral theorem,

Esc
p =

∑
i

ni ε̃i,p −
∫

d3r

(
h̄2

2M̃∗
p

τ̃p + ρ̃pŨp + J̃p · W̃p

)
.

(3.17)

Here the integral goes over the volume of the WS cell, while
the sum goes over all the occupied s.p. proton states, with the
s.p. energies ε̃i,p being the eigenvalues of the s.p. Schrödinger
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equation{
−∇ h̄2

2M̃∗
p(r)

· ∇+Ũp(r)−iW̃p(r) · ∇ × σ

}
φi,p = ε̃i,pφi,p,

(3.18)

and ni the occupancy of s.p. state i (= 0 or 1 for T = 0 and no
pairing). In these last two equations the effective mass M̃∗

p is
given by Eq. (3.11) with the smooth ETF densities ρ̃q replacing
the exact HF densities ρq . Likewise Ũp and W̃p are the central
and spin-orbit proton fields, respectively, given by the usual
HF expressions for these fields (see, for example, Eqs. (7)
and (9) of Ref. [44]), with ρ̃q replacing ρq (note that here Ũp

contains the Coulomb field).
All three of these fields involve a folding of the Skyrme

force over the nucleon distribution ρ̃q that emerges from the
minimisation of eET F in the ETF part of the calculation.
The fact that the same Skyrme force underlies also the ETF
part of the calculation implies a high degree of consistency
between the two parts, which probably accounts for the close
agreement found in comparisons with exact self-consistent
HF calculations [34,35] (note that these tests were limited to
the case of bound nuclei at T = 0 and with M∗

q = Mq). This
theorem seems to have been stated for the first time in Ref. [45].
A derivation, limited, however, to the case M∗

q = Mq , was
sketched in Ref. [38]. A more complete proof, applicable to
arbitrary effective mass, is presented in Appendix C.

As for T > 0, in Ref. [39] we replaced Eq. (3.16) by

f = fTETF + 1

A
Esc

p , (3.19)

where the proton shell correction is still given by Eq. (3.17),
with

ni = 1

1 + exp{(ε̃i,p − µp)/T } , (3.20)

µp being the chemical potential for protons. However, this
does not take account of possible proton shell effects in the
entropy, so here we will write rather

fTETFSI = fTETF + 1

A
Esc

p − T
(
ss.p.
p − sTETF

p

)
, (3.21)

where s
s.p.
p is the usual s.p. expression for the proton entropy,

ss.p.
p = −

∑
i

{ni ln ni + (1 − ni) ln(1 − ni)}, (3.22)

in which the sum goes over all proton states.
To determine the eigenvalues ε̃i,p we expand the eigensolu-

tions φi,p to Eq. (3.18) in the basis defined by spherical Bessel
functions jl(knr) with the kn chosen to satisfy homogeneous
boundary conditions (vanishing of the function or of its first
derivative) on the surface of the WS cell. This generates a
complete set of functions that are orthogonal over the cell, and
we diagonalize the associated matrix.

A. Interpolation schemes

In addition to its much greater simplicity and rapidity,
as compared to full-blown HF calculations, the (T)ETFSI

method has the advantage of lending itself to interpolation. The
point is that while the shell corrections are indeed fluctuating
quantities, the method expresses these quantities in terms
of quantities that themselves vary smoothly: the fluctuations
arise entirely in the summation indicated on the right-hand
side of Eq. (3.17). This feature was heavily exploited in the
construction of the ETFSI-1 mass table, the first mass table to
be based on microscopic forces [38], and we anticipate that it
could prove equally fruitful for the extensive tabulation of the
EOS described in this paper.

B. Specific heat

It is convenient to define a density of specific heat at
constant volume, Cv(r), at each point in the cell, according
to

cv = 1

A

∫
Cv(r)d3r, (3.23)

where cv is the specific heat per nucleon (1.3), and the
integration goes over the volume of the WS cell. It then follows,
provided equilibrium holds, that

Cv(r) = T

(
∂σ

∂T

)
ρ,X

(3.24)

(see Appendix B). This last result can then be used, starting
from the TETF expansion of σ [43], to derive the correspond-
ing expansion for Cv up to order h̄4. This expansion is presented
in Appendix A.

C. Convergence of the TETF expansions

Before applying the TETFSI method to the calculation
of the neutron-star crust we make extensive tests of the
convergence of the series expansion implicit in the TETF
method. For this it is convenient to define the quantity

φq = 4π

A

∫ Rc

0
Kq(r) r2 dr, (3.25)

which is just the “kinetic-thermal" part of the nuclear free
energy per nucleon.

We consider two densities, ρ̄ = 0.06 and 3 ×
10−4 nucleons/fm−3, which lie close to the upper and
lower limits, respectively, of the density range encountered
in the inner crust. For the former we take a cell with
Z = 30, A = 1123, and for the latter Z = 40, A = 150, these
lying close to the equilibrium configuration (see Sec. IV).
The results are shown in Tables I and II, respectively, for
three temperatures, 0.1, 1.0, and 3.0 MeV. For each quantity,
φn and φp, we show in successive lines the Thomas-Fermi
(TF) approximation, the second-order correction in h̄, and the
fourth-order correction; the sum of these three contributions
is shown in the adjacent column. We also show in these tables
the corresponding expansion terms for sn, sp, cv,n, cv,p and
the proton entropy as calculated by the s.p. expression (3.22).

We see that the expansions for all the neutron quantities,
φn, φp, sn, and cv,n, converge well over the entire density and
temperature range. However, the expansions for the proton
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TABLE I. Convergence of the TETF expansion at ρ̄ = 0.06 nucleons/fm−3 for cell with Z = 30, A = 1123. Temperature
T in MeV.

T 0.1 1.0 3.0

0.1943E+02 0.1934E+02 0.1845E+02
φn −0.1027E−01 19.42 −0.9452E−02 19.33 −0.3529E−02 18.45

0.3566E−03 0.2959E−03 0.8834E−04

0.1818 0.1659E+00 −0.2328E−01
φp 0.3598E−02 0.1877 0.5124E−02 0.1724 0.2516E−02 −0.02054

0.2299E−02 0.1404E−02 0.2167E−03

0.1477E−01 0.1476E+00 0.4401E+00
sn −0.1387E−05 0.01477 −0.1318E−04 0.1476 −0.1879E−04 0.4401

−0.3124E−07 −0.2757E−06 −0.3389E−06

0.2110E−02 0.1695E−01 0.6378E−01
sp −0.1537E−02 −1.005E−03 −0.2133E−02 0.01516 −0.4283E−03 0.06337

−0.1578E−02 0.3437E−03 0.2441E−04

ss.p.
p 0.0036233 0.01646 0.06446

0.1477E−01 0.1473E+00 0.4316E+00
cv,n −0.1388E−05 0.01477 −0.1352E−04 0.1473 −0.2503E−04 0.4316

−0.3125E−07 −0.2880E−06 −0.5186E−06

0.1895E−02 0.1372E−01 0.3366E−01
cv,p −0.9657E−03 0.0075 0.4703E−03 0.01379 0.4400E−03 0.03410

0.6571E−02 −0.4022E−03 −0.2655E−05

TABLE II. Convergence of the TETF expansion at ρ̄ = 3 × 10−4 nucleons/fm−3 for cell with Z = 40, A = 150.
Temperature T in MeV.

T 0.1 1.0 3.0

0.1472E+02 0.1164E+02 −0.2114E+01
φn −0.2021E+00 14.57 −0.1824E+00 11.52 −0.5707E−01 −2.135

0.4855E−01 0.5564E−01 0.3647E−01

0.4465E+01 0.4699E+01 0.6777E+00
φp −0.3411E−01 4.496 −0.3642E−01 4.727 −0.1831E−01 0.6960

0.6509E−01 0.6379E−01 0.3655E−01

0.2082E+00 0.1026E+01 0.2923E+01
sn −0.8479E−02 0.1936 −0.2113E−01 1.006 −0.1382E−01 2.909

−0.6098E−02 0.1083E−02 0.1035E−03

0.7193E−02 0.6150E−01 0.8998E+00
sp −0.1315E−01 0.01024 −0.2234E−01 0.0405 −0.1353E−01 0.8864

0.1620E−01 0.1303E−02 0.1074E−03

ss.p.
p 0.1199E−03 0.06322 0.7088

0.1385E+00 0.3958E+00 0.8998E+00
cv,n −0.6991E−02 0.1410 −0.4233E−02 0.3905 0.1726E−02 0.9015

0.9451E−02 −0.1176E−02 −0.1625E−03

0.6965E−02 0.5660E−01 0.2593E+00
cv,p −0.4111E−02 −0.00867 −0.2989E−02 0.05094 0.2649E−02 0.2619

−0.1152E−01 −0.2666E−02 −0.3149E−04
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entropy sp and the related specific heat cv,p diverge badly at
low temperature, to the point of occasionally giving negative
entropies and specific heats. This proton-related problem is
seen to be worse at low densities, which suggests that the fact
that the neutron-related quantities converge so much better
might be related to the fact that our neutron densities are always
much higher than the proton densities. Indeed, we find that at an
outer-crust density of ρ̄ = 1 × 10−4 nucleons/fm−3 the TETF
expansion for the neutron entropy of 208Pb converges rather
poorly. The existence of a significant background term, which
gives no contribution to either the second- or fourth-order
terms, appears to be crucial in this respect. It is fortunate that
the lower density limit for good convergence of the TETF
expansion for the neutron entropy lies below our domain of
interest. In any case, it is quite clear that we cannot use the
TETF expansions for the proton entropy or specific heat.

For the proton entropy we therefore fall back instead on
the s.p. expression (3.22), which we require anyway for the
proton shell corrections. On the other hand, we recall that
we cannot use this s.p. expression for the neutron entropy
because of continuum problems: it was precisely for this reason
that we had to abandon the HF approach. As for the proton
specific heat, we could in principle calculate numerically the
temperature derivative of the proton entropy (3.22) and use
Eq. (1.3), but this is too time consuming, if done accurately.
We thus simply take the TF approximation for the proton
contribution to the specific heat. Since the neutron contribution
dominates the specific heat, the error thereby introduced will be
relatively small; in any case we see that at higher temperatures
the TF approximation to the entropy agrees approximately
with the entropy calculated by Eq. (3.22).

It is reasonable to ask why the TETF entropy expansion
diverges at low T. The second-order term contains a T −1 factor,
and the fourth-order term a T −2 factor (see Eqs. (A.25b–c) of
Ref. [1]), so that the corresponding numerators must likewise
vanish at low T . This suggests that a massive cancellation
within these numerators is leading to a significant loss of
precision. However, we derived the low-T (strong degeneracy)
limit of the TETF entropy expansion (see Appendix D), and
found essentially the same numerical results. We suggest that
the reason for the observed breakdown in the TETF expansions
of the entropy and specific heat lies with the fact that the
validity of Eqs. (3.15) and (3.24) requires that the system be
in equilibrium, which can never be exactly the case when the
density profiles are parametrized, as in Eqs. (2.4) and (2.5).

IV. EQUILIBRIUM PROPERTIES OF INNER CRUST

A. Pure TETF calculations

In calculating the equilibrium (nuclear and beta) composi-
tion of the inner crust, i.e., the number Z of protons and the
number N of neutrons per WS cell at any given mean density
ρ̄, we shall first neglect shell corrections. For this we simply
minimize fTETF, calculated at T = 0, with respect to N and
Z. The results for Z,A = Z + N , and Ye = Z/A are shown
in Figs. 1, 2, and 3, respectively. We stress that in this picture
Z and A vary continuously, and are not restricted to integral
values.

FIG. 1. Number of protons Z in WS cell given by ETF method
for nuclear and beta equilibrium at T = 0 as a function of density
(fm−3) for forces BSK14 and SLy4.

These figures also show the values of the same quantities
that we find for the force SLy4 [46], which has been widely
applied to neutron stars. Figure 2 for A shows that at a
given ρ̄ the WS cells tend to be bigger for force BSk14,
presumably because the value of the surface-energy coefficient
asf is slightly larger for the former (18.11 MeV as opposed to
17.6 MeV). However, since Ye runs slightly higher for SLy4
(see Fig. 3) there are generally somewhat more protons for this
latter force, as seen in Fig. 1. (The higher values of Ye found
for SLy4 can be traced to the fact that in homogeneous neutron
matter the energy per neutron is higher for SLy4 over the entire
density range considered here.) This sensitivity to the choice
of force will have implications both for transport properties
in the inner crust and for nucleosynthesis in decompressing
neutron-star matter.

Now the popular EOS of Ref. [47] is also based on the
SLy4 force, to the extent that the parameters of the underlying
compressible liquid-drop model are calculated for this force.
We compare the results of Ref. [47] for Z with our own in
Fig. 4, where it will be seen that the two models lead to

FIG. 2. Total number of nucleons A = Z + N in WS cell given by
ETF method for nuclear and beta equilibrium at T = 0 as a function
of density (fm−3) for forces BSK14 and SLy4.
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FIG. 3. Fraction Ye = Z/A of nucleons that are protons given by
ETF method for nuclear and beta equilibrium at T = 0 as a function
of density (fm−3) for forces BSK14 and SLy4.

appreciable differences even before taking shell effects into
account.

B. TETFSI calculations: Proton shell effects

When shell corrections are included Z and A must be
considered as integers, and thus change discontinuously: each
(Z,A) pair defines a phase. Since ρ̄ changes continuously
transitions between one phase and another will take place over
a finite range of ρ̄, in which the two phases coexist. We shall
neglect this feature (see, however, the comments below), but
our results will be valid over those considerable intervals of ρ̄

for which only a single phase exists.
The calculations proceed as outlined in Sec. III. Thus for

given values of T and ρ̄, and for a given (Z,A) pair, fTETF has
to be minimized with respect to the geometrical parameters
of the cell, and then shell-corrected according to Eq. (3.19)
[note that the (T)ETFSI method calculates shell corrections
perturbatively]. The equilibrium values of Z and A, i.e., the

FIG. 4. Comparison of ETF and CLD (compressible liquid drop)
calculations of equilibrium value of Z at T = 0 as a function of
density (fm−3) with SLy4 force.

TABLE III. TETFSI results for number of protons Z and total
number of nucleons A in WS cell for nuclear and beta equilibrium
at T = 0 as a function of ρ̄ for force BSK14. TETF results in
parentheses. Last two columns show TETFSI values of pressure P

and ( ∂P

∂T
)ρ̄ .

ρ̄ (fm−3) Z A P (MeV/fm−3) ( ∂P

∂T
)ρ̄ (fm−3)

0.0003 50(38) 200(146) 0.000940 0
0.001 50(39) 460(385) 0.00179 0
0.005 50(39) 1140(831) 0.00813 0
0.01 40(38) 1215(1115) 0.0185 0
0.02 40(35) 1485(1302) 0.0448 0
0.03 40(33) 1590(1303) 0.0784 0
0.04 40(31) 1610(1261) 0.121 0
0.05 20(30) 800(1171) 0.175 0
0.06 20(29) 780(1105) 0.243 0

values that minimize the TETFSI value of f for given values
of T and ρ̄, are shown as functions of ρ̄ for T = 0, 0.1, and
1.0 MeV in Tables III, IV, and V, respectively.

With the TETF values being shown in parentheses, we see
in Tables III and IV that at T = 0 and 0.1 MeV there are
strong proton shell effects, with Z = 50, 40, and 20 being
successively favored as the density increases; in fact, these are
the only values of Z that appear. The changes from Z = 50
at ρ̄ = 0.005 fm−3 to Z = 40 at 0.01 fm−3 and from Z =
40 at ρ̄ = 0.04 fm−3 to Z = 20 at 0.05 fm−3 appear to be
discontinuous. This situation can easily be understood from
Figs. 5 and 6, where we show f at T = 0.1 MeV as a function
of Z for ρ̄ = 0.005 and 0.04 fm−3, respectively, minimizing
with respect to A for each value of Z: relatively strong minima
occur for Z = 50, 40, and 20, and the system flips from one
to the next as the density increases. (Somewhat surprisingly,
although Z = 28 is consistently a strong local minimum it is
never an absolute minimum.) It is noteworthy that the value of
Z = 50 that we find here at the outside edge of the inner crust
agrees with what we find for an outer-crust calculation using
the HFB-14 mass model [17], i.e., a mass model based on the
BSk14 force used here.

It will be seen from Figs. 5 and 6 that the minima are
very close in energy, and numerical uncertainties in our
computation often make it impossible to affirm with certainty
which magic number prevails at a given density. Certainly,

TABLE IV. As for Table III but with T = 0.1 MeV.

ρ̄

(fm−3)
Z A P (MeV/fm−3) ( ∂P

∂T
)ρ̄

(fm−3)

0.0003 50(38) 200(147) 0.000946 0.0000423
0.001 50(39) 460(341) 0.00179 0.000140
0.005 50(38) 1130(842) 0.00816 0.000270
0.01 40(38) 1210(1107) 0.0185 0.000346
0.02 40(35) 1480(1294) 0.0448 0.000444
0.03 40(33) 1595(1303) 0.0784 0.000511
0.04 40(31) 1610(1242) 0.121 0.000568
0.05 20(30) 800(1190) 0.175 0.000617
0.06 20(29) 765(1116) 0.243 0.000662
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TABLE V. As for Table III but with T = 1.0 MeV.

ρ̄ (fm−3) Z A P

(MeV/fm−3)
( ∂P

∂T
)ρ̄

(fm−3)

0.0003 46(37) 310(234) 0.000633 0.000182
0.001 46(38) 520(450) 0.00192 0.000631
0.005 44(39) 1020(858) 0.00936 0.00233
0.01 42(37) 1280(1120) 0.0202 0.00329
0.02 40(36) 1480(1307) 0.04701 0.00434
0.03 38(33) 1505(1301) 0.0810 0.00502
0.04 36(31) 1450(1232) 0.124 0.00553
0.05 34(30) 1340(1165) 0.179 0.00568
0.06 26(29) 985(1082) 0.246 0.00445

changing the force could be expected to lead to changes in the
sequence of magic numbers. In fact, Negele and Vautherin [26]
report a quite difference sequence for the proton numbers 40
and 50 (and do not find Z = 20 at any density). At T =
0.1 MeV the energy fluctuations associated with the Boltz-
mann factor represent an uncertainty on the total cell energy,
and thus amount to 0.1/A MeV per nucleon. Reference to
Figs. 5 and 6 then shows that there will be negligible admixture
of other values of Z with the magic values, although there could
be significant admixture of A-values.

Tables III and IV reveal no essential difference between
T = 0 and T = 0.1 MeV. However, with the energy differ-
ences between adjacent magic numbers being so small it could
be that there are some intermediate densities for which the
composition changes as T varies between 0 and 0.1 MeV. This
is one sense in which caution might have to be exercised in
adopting the picture of “cold catalyzed matter”.

Table V shows that at T = 1 MeV shell effects have effec-
tively been wiped out, even though there are still significant
differences between the TETF and TETFSI values. This raises
the question of whether a nuclear equilibrium in the crust of
a cooling neutron star can be maintained right down to T =
0.1 MeV. If “freeze-out” were to occur at, or slightly below,
T = 1 MeV, i.e., if the complex rearrangement of nucleons

FIG. 5. Variation of fTETFSI with Z (always for optimal value of
A) at ρ̄ = 0.005 fm−3 and T = 0.1 MeV.

FIG. 6. Variation of fTETFSI with Z (always for optimal value of
A) at ρ̄ = 0.04 fm−3 and T = 0.1 MeV.

necessary to maintain nuclear equilibrium could no longer take
place over the lifetime of the neutron star, then the sharp shell
effects that we have predicted here would not be observed.
This is another, and probably more serious sense, in which
the picture of “cold catalyzed matter" has to be carefully
scrutinized.

C. Pressure

We extract P directly from the computed values of fTETFSI

using Eq. (1.2), numerically evaluating the derivative with a
three-point Savitzky-Golay filter (routine ‘savgol’ [48]). Our
results are shown in the penultimate columns of Tables III, IV,
and V; tests show that over this density range our results for
P are reliable to within about 1%.

Another quantity of astrophysical interest is the temperature
variation of the pressure ( ∂P

∂T
)ρ̄ ; using a well known Maxwell

relation we have (
∂P

∂T

)
ρ̄

= −ρ̄2

(
∂s

∂ρ̄

)
T

. (4.1)

This too requires a numerical differentiation, but only one:
without using the Maxwell relation we would have to per-
form two numerical differentiations, with consequent loss of
precision. Moreover, the derivative of s can be computed
simultaneously with the one of f that gives us P , with
negligible increase in computer time. The results are shown in
the last columns of Tables III, IV, and V.

D. Phase equilibrium

If we were to consider a quasicontinuum of values of ρ̄

our calculations might show unphysical discontinuities in the
pressure at the transition between the different (Z,A) phases.
This is a result of our neglect of the possibility of a thermal
equilibrium between the two phases in question, and in reality
the pressure remains continuous. The transition pressure P is
characterized by equality of the Gibbs free energy per nucleon
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in each phase,

g1 = g2, (4.2)

where

gi = fi + P

ρ̄i

. (4.3)

We stress that the equilibrium pressure satisfying this condition
can be determined by calculating fi as a function of ρ̄ for each
phase separately; in particular it is at no point necessary to
minimize the Gibbs function itself. Moreover, it can be shown
that the condition (4.2) follows from a minimization of the
total Helmholtz function [49].

V. CONCLUSIONS

We have developed here a high-speed approximation to the
HF method for calculating the EOS of the neutron-star inner
crust with Skyrme-type forces. Our method, which we refer to
as the TETFSI method, models the inner crust in terms of the
Wigner-Seitz cell, and consists essentially of a generalization
to finite temperatures (and arbitrary effective mass) of the
ETFSI method originally developed as a mass model [34–38].
An essential difference between our TETFSI method and a
full-scale HF calculation of the EOS is that, whereas the latter
method inevitably and automatically calculates both neutron
and proton shell effects, here we calculate only the latter,
since in reality shell effects are much weaker for neutrons
than for protons, and will have negligible impact on the
composition. In fact, if the HF method is used in a WS
picture, as in the classical work of Negele and Vautherin [26]
it will lead, because of discretization, to spuriously large
neutron shell effects [30]. As in Ref. [26], we have neglected
pairing in this paper, pending the determination of an effective
pairing interaction appropriate to the conditions pertaining in
neutron-star crusts. Nevertheless, it will be easy to include
pairing in the (T)ETFSI framework, as already done in the
ETFSI mass models [34–38].

It was found that the TETF expansion of the entropy
converges badly at low temperatures for densities typical of
inner-crust protons (there was no problem for neutrons). We
solved this difficulty by using the s.p. expression for the proton
entropy.

Our exploratory calculations of the EOS were performed
with the Skyrme-type force BSk14, a force that was fitted
to essentially all the nuclear-mass data, forming thereby
the basis of the HFB-14 mass model [17]. This force
is particularly suitable for calculating the properties of
neutron-star crustal matter, because it has been fitted to
the properties of homogeneous neutron matter while at
the same time the good fit to masses ensures that both
inhomogeneities and the neutron-proton interaction are well
represented.

The calculated composition of the WS cells representing
the clustering in the inner crust showed striking shell effects:
for T = 0 the proton number Z was limited to the magic values
of 50, 40, and 20, the value decreasing with increasing density
(at the interface with the outer crust we found continuity with

an outer-crust calculation based on the HFB-14 mass model).
Although essentially identical results are obtained for T =
0.1 MeV, all our calculated shell effects are wiped out at T =
1 MeV, which means that whether or not shell effects actually
exist in the cold crust depends very much on the “freeze-out”
temperature for nuclear equilibrium. On the other hand, we
have shown that even without taking shell effects into account
there are considerable differences between our predictions and
those of the compressible liquid-drop model on which the EOS
of Ref. [47] is based.

We intend to apply the method described here to a study of
the synthesis of r-process nuclei in decompressing neutron-star
crustal matter. To this end we present here, apparently for
the first time, the TETF expressions for the specific heat of
an inhomogeneous system of nucleons. In this same context
of extensive computations over a wide range of temperature,
density and composition, we point out that the (T)ETFSI
method lends itself admirably to interpolation, without any
loss of precision in the calculated shell effects, essentially
because these arise in the sums of quantities that themselves
vary smoothly [36].
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APPENDIX A: TETF EXPRESSIONS FOR THE
SPECIFIC-HEAT DENSITY Cv

We expand the specific-heat density Cv of Eq. (3.24)
according to

Cv = C(T F )
v + C(2)

v + C(4)
v + · · · , (A.1)

where the first term on the right-hand side represents the
Thomas-Fermi approximation, the second term the first-order
correction in h̄2, and the last term the second-order correction
in h̄2. Then

C(T F )
v,q = 3

2

{
σ (T F )

q + ηqρq − 3ρq

I1/2(ηq)

I−1/2(ηq)

}
, (A.2a)

C(2)
v,q = − σ (2)

q

16νq

(24x3 + 22x2 + 5x − 63xy − 33y + 45z),

(A.2b)

C(4)
v,q = −2σ (4)

q − 3

(
h̄2

2MT

)2
I1/2(ηq)

I−1/2(ηq)

∑
i=1,3

G
q

i

(
∂χi

∂ηq

)
T

.

(A.2c)
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In Eq. (A.2c) we have

G
q

1 = (∇2ρq)2

ρq

, (A.3a)

G
q

2 = del2ρq
(∇ρq

)2

ρ2
q

, (A.3b)

G
q

3 = (∇ρq)4

ρ3
q

, (A.3c)

and(
∂χ1

∂ηq

)
T

=
{

I−1/2(ηq)

I1/2(ηq)

}2 (
11

192
x3 − 11

60
xy − 109

320
x2y

+ 5

64
x4 + 25

64
xz + 5

576
x2 + 11

64
z − 1

64
y

+ 3

20
y2 − 21

64
w

)
, (A.4a)

(
∂χ2

∂ηq

)
T

=
{

I−1/2(ηq)

I1/2(ηq)

}2 (
85

288
x4 − 119

96
w + 1

6
z + 187

320
y2

+ 1

18
x3 − 161

80
x3y + 609

320
xy2 − 175

64
xw

+ 159

64
x2z − 117

64
yz − 629

480
x2y − 11

60
xy

+ 289

192
xz + 35

96
x5 + 63

32
v

)
, (A.4b)

(
∂χ3

∂ηq

)
T

=
{

I−1/2(ηq)

I1/2(ηq)

}2 (
− 77

256
w + 11

192
x4 + 33

256
y2

− 693

256
u − 391

240
x3y + 2047

1280
xy2 − 719

320
x4y

−161

64
xw + 97

32
x3z − 63

16
x2w + 1071

256
xv

+ 69

32
x2z − 207

128
yz + 315

128
yw − 11

40
x2y + 11

32
xz

+ 161

576
x5 + 483

256
v + 21

64
x6 + 4317

1280
x2y2

− 645

128
xyz − 801

1280
y3 + 135

128
z2

)
. (A.4c)

All quantities shown here are as defined in the Appendix of
Ref. [1] and Appendix B of Ref. [43], except for u, which we
define according to

u = (I1/2)6I−13/2

(I−1/2)7
. (A.5)

Note that Eq. (A.2c) for the fourth-order term is valid only for
an effective mass M∗

q = Mq (see Appendix of Ref. [1]).
As is the usual practice in expositions of the TETF

method [43], we have dropped terms here that vanish on
integrating over configuration space, which in the present case
corresponds to the WS cell. That is why we have required
the density gradients to vanish at the surface of the cell (see
Sec. II).

APPENDIX B: PROOF OF EQS. (3.15) AND (3.24)

The total free energy of the WS cell can be written as

F =
∫

F(ρ,∇ρ, T )d3r, (B.1)

where the integration goes over the volume of the cell. For the
entropy of the cell we have

S = −
(∂F

∂T

)
ρ̄

= −
∫ (∂F

∂T

)
ρ̄
d3r

= −
∫ {(

∂F
∂T

)
ρ

+
(

∂F
∂ρ

)
T

(
∂ρ

∂T

)
ρ̄

+
(

∂F
∂∇ρ

)
T

.

(
∂∇ρ

∂T

)
ρ̄

}
d3r. (B.2)

But, integrating by parts, we have∫ (
∂F
∂∇ρ

)
T

.

(
∂∇ρ

∂T

)
ρ̄

d3r

=
∫ (

∂F
∂∇ρ

)
T

.∇
(

∂ρ

∂T

)
ρ̄

d3r

= −
∫ (

∂ρ

∂T

)
ρ̄

∇.

(
∂F
∂∇ρ

)
T

d3r, (B.3)

where we are making use of the vanishing of (∂F/∂∇ρ)T on
the surface of the cell; this follows from the fact that F must
be at least quadratic in ∇ρ, which must vanish on the surface
of the cell for the TETF formalism to be valid. Then Eq. (B.2)
becomes

− S =
∫ (

∂F
∂T

)
ρ

d3r

+
∫ (

∂ρ

∂T

)
ρ̄

{(
∂F
∂ρ

)
T

−∇.

(
∂F
∂∇ρ

)
T

}
d3r. (B.4)

Now if equilibrium holds at each temperature F must be
a minimum with respect to variations in ρ(r), which must
therefore satisfy the Euler-Lagrange equation,(

∂F
∂ρ

)
T

− ∇.

(
∂F
∂∇ρ

)
T

= λ, (B.5)

where λ is a Lagrange multiplier. Thus Eq. (B.4) becomes

− S =
∫ (

∂F
∂T

)
ρ

d3r + λ

∫ (
∂ρ

∂T

)
ρ̄

d3r

=
∫ (

∂F
∂T

)
ρ

d3r + λ

(
∂

∂T

)
ρ̄

∫
ρ d3r. (B.6)

But the second integral here is just the total number of nucleons
in the cell (for simplicity we consider just one type of nucleon
here), and since this is temperature independent Eq. (B.6)
reduces to

S = −
∫ (

∂F
∂T

)
ρ

d3r. (B.7)

Equation (3.15) follows at once.
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Likewise, for the specific heat we have from Eqs. (1.3) and
(3.21)

Acv = T

(
∂S

∂T

)
ρ̄

= T

∫ (
∂σ

∂T

)
ρ̄

d3r. (B.8)

Then in exactly the same way as we have derived Eq. (B.4),
we find

Acv = T

∫ (
∂σ

∂T

)
ρ

d3r

+ T

∫ (
∂ρ

∂T

)
ρ̄

{(
∂σ

∂ρ

)
T

− ∇.

(
∂σ

∂∇ρ

)
T

}
d3r.

(B.9)

In the second term here we can write, using Eq. (3.15),(
∂σ

∂ρ

)
T

− ∇.

(
∂σ

∂∇ρ

)
T

= −
(

∂

∂T

)
ρ

{(
∂F
∂ρ

)
T

− ∇.

(
∂F
∂∇ρ

)
T

}
. (B.10)

But if we are at equilibrium Eq. (B.5) will hold, and both sides
of Eq. (B.10) will vanish, whence Eq. (B.9) reduces to

Acv = T

∫ (
∂σ

∂T

)
ρ

d3r. (B.11)

Equation (3.24) follows at once.

APPENDIX C: STRUTINSKY-INTEGRAL THEOREM

To derive Eqs. (3.16) and (3.17) we begin by noting that the
exact HF energy of any finite nuclear system (nucleus or WS
cell) for Skyrme forces and a Slater treatment of the Coulomb
exchange energy can be written in the local form

EHF ≡ EHF [ρ, τ, J] =
∫

E {ρ(r),∇ρ(r), τ (r), J(r)} d3r,

(C.1)

where in terms of the exact HF s.p. functions φHF
i (r) [not to

be confused with the eigensolutions φi(r) of Eq. (3.18)] we
have

ρ(r) =
∑

i

ni

∣∣φHF
i (r)

∣∣2
, (C.2a)

τ (r) =
∑

i

ni

∣∣∇φHF
i (r)

∣∣2
, (C.2b)

and

J(r) = −i
∑

i

niφ
HF∗
i (r)∇ × σφHF

i (r); (C.2c)

for simplicity we do not distinguish here between the two
charge states. For the exact HF quantities ρ(r), τ (r) and J(r)
let us now write

ρ = ρ̃ + δρ, (C.3a)

τ = τ̃ + δτ, (C.3b)

and

J = J̃ + δJ, (C.3c)

where ρ̃, τ̃ , and J̃ represent the smooth quantities emerging
from the (T)ETF calculation. Then to first order in δρ, δτ and
δJ we have

EHF =
∫

E
{
ρ̃(r),∇ρ̃(r), . . . , τ̃ (r), J̃(r)

}
d3r

+
∫ {(

δE
δρ

)
ρ̃,τ̃ ,J̃

δρ +
(

δE
δτ

)
ρ̃,τ̃ ,J̃

δτ

+
(

δE
δJ

)
ρ̃,τ̃ ,J̃

· δJ

}
d3r,

(C.4)

where for the functional derivatives appearing here we have(
δE
δρ

)
ρ̃,τ̃ ,J̃

= Ũ (r), (C.5a)(
δE
δτ

)
ρ̃,τ̃ ,J̃

= h̄2

2M̃∗(r)
, (C.5b)

and (
δE
δJ

)
ρ̃,τ̃ ,J̃

= W̃(r), (C.5c)

in which Ũ , h̄2/(2M̃∗) and W̃ are the smoothed ETF fields
appearing in Eq. (3.18). Thus Eq. (C.4) becomes

EHF = EET F +
∫ {

Ũ (r)δρ+ h̄2

2M̃∗(r)
δτ + W̃(r) · δJ

}
d3r.

(C.6)

Comparing with Eq. (3.16), we see that we now have to identify
the integral in this last equation with the shell correction Esc

of Eq. (3.17).
We next replace the exact HF s.p. functions φHF

i (r) in
Eqs. (C.2a), (C.2b), and (C.2c) by the eigensolutions φi(r)
to Eq. (3.18), and define thereby the quantities ρ ′, τ ′ and J′,
respectively; these quantities will certainly be fluctuating. We
can then write

δρ = (ρ ′ − ρ̃) + (ρ − ρ ′), (C.7)

and likewise for δτ and δJ. We recall now that ρ̃ is the
initial approximation (ETF) to the exact HF density ρ, while
ρ ′ represents our attempt to improve on this approximation.
Thus the first term on the right-hand side of Eq. (C.7) can be
regarded as the first-order estimate of the correction to ρ̃, while
the second term represents the residual error. Accepting, then,
that our method is essentially one of first-order perturbation
theory, we simply drop the second term of Eq. (C.7). Treating
δτ and δJ in the same way, Eq. (C.6) reduces to

EHF = EET F +
∫ {

Ũ (r)(ρ ′ − ρ̃) + h̄2

2M̃∗(r)
(τ ′ − τ̃ )

+ W̃(r) · (J′ − J̃)

}
d3r. (C.8)
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But it follows from Eq. (3.18) that∫ {
Ũ (r)ρ ′ + h̄2

2M̃∗(r)
τ ′ + W̃(r) · J′

}
d3r =

∑
i

ni ε̃i .

(C.9)

Then Eq. (C.8) reduces to

EHF = EET F +
∑

i

ni ε̃i

−
∫ {

Ũ (r)ρ̃ + h̄2

2M̃∗(r)
τ̃ + W̃(r) · J̃)

}
d3r.

(C.10)

This completes the proof that to first order the shell correction
is given by Eq. (3.17).

APPENDIX D: STRONG-DEGENERACY LIMIT OF THE
TETF EXPANSION FOR ENTROPY

In the limit of low temperature and high density the TETF
expansion of the entropy density σq is as follows. For the

Thomas-Fermi approximation we have

σ (T F )
q = π2 Mq

h̄2

1

(3π2ρq)2/3

ρq

fq

T + O(T 3). (D.1a)

The first-order correction in h̄2 to this is

σ (2)
q = −π2

27

Mq

h̄2

1

(3π2ρq)4/3

1

fq

×
{

(∇ρq)2

ρq

+ 9

4
ρq

(∇fq

fq

)2

+ 3

fq

∇ρq · ∇fq

}
T

+O(T 3), (D.1b)

while the second–order correction in h̄2 is

σ (4)
q = − π2

1620

Mq

h̄2

1

(3π2ρq)2

(
17G

q

1 − 413

12
G

q

2 + 47

3
G

q

3

)
T

+O(T 3). (D.1c)

In these equations we have defined fq = Mq/M
∗
q , while the

G
q

i are defined in Eqs. (A.3a), (A.3b), and (A.3c).
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