
PHYSICAL REVIEW C 77, 065504 (2008)

Neutron–mirror-neutron oscillations in a trap
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We calculate the rate of neutron–mirror-neutron oscillations for ultracold neutrons trapped in a storage vessel.
Recent experimental bounds on the oscillation time are discussed.
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I. INTRODUCTION

During the last couple of years we have been witnessing a
revival of interest in “mirror particles,” “mirror matter,” and
the “mirror world.” The idea of the existence of a hypothetical
hidden sector to compensate for mirror asymmetry was first
explicitly formulated in Ref. [1]. This subject has a rich
history—for a review, see Ref. [2]. The present wave of interest
in mirror particles has been to a great extent initiated by the
quest for neutron–mirror-neutron oscillations (n–n′). It has
been conjectured that n–n′ oscillations may play an important
role in the propagation of ultra-high-energy cosmic rays and
that the oscillation time τosc may be as small as τosc ∼ 1 s
[3]. Implications of mirror particles for cosmology and
astrophysics are discussed in a number of papers, e.g., Ref. [4].
Last year the first experimental data on n–n′ transitions were
published with the results τosc � 103 s [5] and τosc � 414 s [6].
Possible laboratory experiments to search for n–n′ oscillations
are discussed in Ref. [7].

Experimental results [5,6] were obtained using the ultracold
neutrons (UCN), i.e., neutrons with energy E < 10−7 eV
stored in a trap. Previously a similar experimental setup
was used in the search for neutron–antineutron oscillations
(see Ref. [8] and references therein). The crucial difference
between n–n′ and n–n̄ oscillations is that n′ freely escapes
from the trap while n̄ either annihilates on the trap walls
or gets reflected. Therefore the formalism developed for n–n̄

oscillations cannot be adjusted to treat n–n′ transitions. Still
the two processes have a common point. This is the problem
of a correct quantum mechanical description of the UCN wave
function. Most often it is assumed that the wave function of
the bottled UCN corresponds to a stationary state of a particle
inside a potential well [9,10]. Alternatively, other authors [11]
describe oscillations of the trapped neutrons on the basis of
the free plane waves. Both pictures do not correspond to the
physics of real experiments. The process proceeds in time in
three stages.

At the first stage the filling of the trap takes place, then
the neutrons are kept inside the trap during the storage time
(hundreds of seconds), and finally the neutrons leave the trap
to the detectors. Therefore the wave function undergoes a
complicated evolution that can hardly be described without
resorting to approximations. We first evaluate the neutron–
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mirror-neutron oscillations using a stationary wave function
as the initial state wave function. Then we do the same using
a wave packet instead of a stationary wave function.

The article is organized as follows. We start in Sec. II
with an analysis of the oscillations in the stationary wave
function approach. Transitions take place from one of the
trap eigenstates. In Sec. III transitions are considered in
the presence of a superimposed magnetic field. A general
equation for the transition rate is derived and the limits of
weak and strong fields are considered. Sec. IV is devoted
to the wave packet formalism. The evolution of the UCN
wave packet is encoded using the trap Green’s function. The
neutron–mirror-neutron transition rate is calculated. In Sec. V
the main conclusions are presented and open problems are
formulated. The Appendix contains a comparison between the
infinite and the finite well models.

II. STATIONARY WAVE FUNCTION APPROACH

The problem of neutron–mirror-neutron oscillations in free
space can be solved by diagonalization of the time-dependent
two-channel Schrodinger equation with the result [12]

|ψn′(t)|2 = 4ε2

ω2 + 4ε2
exp(−�βt) sin2

(
1

2

√
ω2 + 4ε2t

)
, (1)

where ω = En − En′ = |µn|B is the energy difference be-
tween the neutron and the mirror neutron due to the super-
imposed magnetic field (the mirror neutron does not interact
with “our” magnetic field), ε = τ−1

osc is the mixing parameter,
and �β is the neutron β-decay width. In arriving at Eq. (1) the
spatial part of the wave function was factored out making use
of the fact that in free space the wave functions of n and n′ are
of the same form. In the trap, however, the situation is different:
the neutron is confined while for the mirror neutron the trap
walls do not exist. As already mentioned in the Introduction,
the description of the trapped UCN is a nontrivial problem.
The naive guess would be that inside the trap the neutron wave
function corresponds to a discrete eigenstate. Here we assume
that the neutron wave function is that of a particle in a potential
well with the boundary conditions corresponding (in the first
approximation) to a complete reflection.

To make calculations tractable and transparent we consider
the following simple model of a trap. Let it be a one-
dimensional square well of width L = 1 m with walls at x = 0
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and x = L, i.e., the potential of the form

U (x) =



V, x < 0
0, 0 < x < L

V, x > L

. (2)

The height of the potential well depends on the material it
is made of with the typical value V = 2 · 10−7 eV, which is
used in the following calculations. For such a well the limit for
stored UCN velocity is 6.2 m/s. The number of discrete levels
in such a trap can be estimated as

M � L
√

2mV

π
� 108

π
. (3)

We choose the UCN energy to be E = 0.8 · 10−7 eV. This
energy corresponds to a level with quantum number j �
2 · 107. Positions and eigenfunctions of such highly excited
states in a finite-depth potential are very close to the same
quantities in the infinite well (except for the levels close to
the upper edge of the well; we do not consider such levels).
The finite-depth corrections are considered in the Appendix.
The eigenvalues and eigenfunctions for the infinite well are

Ej = π2j 2

2mL2
, kj = πj

L
, j = 1, 2, 3 · · · (4)

ϕj (x) =
√

2

L
sin kjx. (5)

Another important quantity characterizing highly excited
states is the classical frequency ωcl [11]

ωcl = π2

mL2
j = 2π

τcl
= δEj , (6)

where τcl is the time of the classical period and

δEj = Ej+1 − Ej � 0.8 · 10−14˜eV

is the level spacing. Levels with j � 1 are almost equidistant.
In the semiclassical limit we may also define the trap crossing
time τ,

τ = τcl

2
= mL

kj

� 0.26 s, (7)

for j = 2 · 107. Next we calculate the rate of (n–n′) oscillations
for the neutron at the j th discrete level. The neutron and mirror
neutron wave functions in a two-component basis are

ϕ̃j (x) =
√

2

L
sin kjx

(
1
0

)
≡ ϕj (x)

(
1
0

)
, (8)

f̃p(x) = 1√
2π

eipx

(
0
1

)
≡ fp(x)

(
0
1

)
, (9)

where −∞ < p < +∞. The (n–n′) system is described by
the Hamiltonian

Ĥ = Ĥ0 + Ŵ =
(

k2

2m
+ U 0

0 p2

2m

)
+

(
0 ε

ε 0

)
. (10)

The states (8) and (9) are the eigenstates of Ĥ0; therefore
it is convenient to use the interaction representation. The

probability of finding at time t a mirror neutron instead of
a neutron reads

Pnn′ =
∫

dp|〈f̃p| exp

{
−i

∫ t

0
dt ′Ŵint(t

′)
}

|ϕ̃j 〉|2, (11)

where Ŵint(t) = eiĤ0t Ŵ e−iĤ0t . In the first order of perturbation
theory we get

Pnn′ =
∫

dp|〈f̃p|
∫ t

0
dt ′Ŵint(t

′)|ϕ̃j 〉|2

= ε2
∫

dp

∣∣∣∣
∫ t

0
dt ′e−i(Ej −Ep)t ′

∣∣∣∣
2

|〈fp|ϕj 〉|2, (12)

where Ej = k2
j

2m
, Ep = p2

2m
. The time-dependent integral is

a standard one,

w(Ep) =
∣∣∣∣
∫ t

0
dt ′e−i(Ej −Ep)t ′

∣∣∣∣
2

= 4 sin2
[ (Ep−Ej )t

2

]
(Ep − Ej )2

. (13)

The overlap of the wave functions reads

gj (p) = |〈fp|ϕj 〉|2 = 4k2
j

πL
(
p2 − k2

j

)2 sin2

(
pL + πj

2

)
,

(14)
j = 1, 2, . . . .

From Eqs. (12), (13), and (14) we obtain

Pnn′ = ε2
∫ +∞

−∞
dpgj (p)w(Ep). (15)

It is convenient to change the integration from dp to dEp

taking into account that g(p) = g(−p).
Then

Pnn′ = 2mε2
∫

dEp

g(Ep)w(Ep)

p
, (16)

where the factor 2 comes from the fact that two plane waves
e±ipx correspond to the same energy Ep. Both functions g(Ep)
and w(Ep) peak at Ep = Ej . According to Eqs. (14) and (13)
the widths 
E

g
p and 
Ew

p of the corresponding maxima are


Eg
p � π/τ, 
Ew

p � 4π/t, (17)

with τ being the trap crossing time. At times t � τ we may
substitute by g(Ep)/p its value at p = kj and take it out of
the integral (16). From Eq. (14) one gets g(Ej ) = L/4π . The
remaining integration in Eq. (16) can be extended to (−∞ <

Ep < +∞), yielding 2πt . Collecting all pieces together we
obtain

Pnn′ = ε2τ t. (18)

At very short times t 
 τ the function w(Ep) becomes
smoother than g(Ep). Hence w(Ep) can be taken out of the
integral (16). The remaining integral is time independent while
w(Ep) ∼ t2. As a result Pnn′ ∼ ε2t2 and we cannot define the
transition probability per unit time [12]. On the other hand,
Eq. (18) is valid only for times shorter than the neutron β-decay
time tβ because we defined the eigenstate (8) neglecting the
β decay. The condition τ 
 t 
 tβ has been satisfied with fair
accuracy in experiments [5,6].
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III. STATIONARY APPROACH WITH MAGNETIC FIELD
INCLUDED

The search for n–n′ oscillations in experiments with bottled
UCN is based on the comparison of UCN storage with
and without a superimposed magnetic field [5,6]. It is assumed
that there is no mirror magnetic field in the laboratory and
therefore the interaction of the neutron with the magnetic field
lifts the degeneracy and thus suppresses the oscillations.

In magnetic field B the energy of the trapped neutron
becomes equal to

Ej = k2
j

2m
+ µB, (19)

where µ = −µn = 1.91µN (µN = e/2mp).
Inclusion of the magnetic field does not alter the functions

w(Ep) and g(p) given by Eqs. (13) and (14). There is, however,
an important difference between our present considerations
and those of the previous section. As we see from Eq. (19),

w(Ep) now peaks at p = ±
√

k2
j + 2mµB while the maximum

of g(p) is as before at p = ±kj . As a result instead of Eq. (16)
we obtain

Pnn′ = 4ε2t

(µB)2τ
√

1 + 2mµB

k2
j

×



cos2 kj L

2

√
1 + 2mµB

k2
j

, j = 1, 3, . . .

sin2 kj L

2

√
1 + 2mµB

k2
j

, j = 2, 4 · · · (20)

This equation can be simplified by taking into account
that the quantities (µB) and k2

j /2m differ by many orders
of magnitude. In Refs. [5] and [6], the value of the magnetic
field varied in the interval (1 − 2)nT � B � (few) µT , which
corresponds to 10−16 eV <∼ µB <∼ 10−13 eV, while k2

j /2m �
10−7 eV (note that the unshielded Earth magnetic field

corresponds to µB � 3 · 10−12 eV 
 k2
j

2m
).

Therefore Eq. (20) easily reduces to

Pnn′ � 4ε2 t

τ

sin2
(

1
2µBτ

)
(µB)2

, (21)

where τ is the trap crossing time. For our model of the trap
described in Sec. II we have τ/2 � 2 · 1014 eV−1. Therefore in
the limit of the weak magnetic field B � nT , Eq. (21) yields

Pnn′ � ε2τ t, (22)

as expected [see Eq. (18)]. In the opposite limit of strong
magnetic field B � (few) µT we have to take into account
that the quantities τ and B in Eq. (21) experience fluctuations
leading to rapid oscillations of the function sin2( 1

2µBτ ). In
particular, the crossing time τ may vary because of either
changes in L at each collision or variations in the neu-
tron velocity. Substituting the rapidly oscillating quantity in
Eq. (21) by its mean value equal to 1/2 we obtain the equation
describing the neutron–mirror-neutron transitions in the strong
magnetic field,

Pnn′ = ε2 2t

(µB)2τ
. (23)

IV. THE WAVE PACKET APPROACH

We now turn to the question formulated in the Introduction,
namely, to the problem of the UCN wave function evolution
and to the calculation of the oscillations in the wave packet
approach. To get physically transparent results and to avoid
numerical calculations suited to a concrete experiment we
assume that the UCN coming to the trap from the source are
described by the Gaussian wave packets [13].

The wave packet moving from the left and for t = 0
centered at x = 0 is given by the expression

�k(x, t = 0) = (πa2)−1/4 exp

{
− (x − x0)2

2a2
+ ikx

}
, (24)

where a is the width of the wave packet and k is its
central momentum. The normalization of the wave packet
(23) corresponds to one particle in the entire one-dimensional
space, ∫ +∞

−∞
dx |�k(x, t = 0)|2 = 1. (25)

Let the UCN energy be equal to the value chosen in
Sec. II, E = 0.8 · 10−7 eV, and let the beam resolution be
equal to 
E/E = 10−3. Thus the set of parameters to be used
is1

E = 0.8 · 10−7 eV,

λ = 2π

k
� 10−5 cm, (26)

a � 3.2 · 10−3 cm.

The condition a � λ ensures the localization of the wave
packet. Note that the above value of E corresponds to the level
Ej with a very high quantum number j � 2 · 107. Next we
estimate the number of levels within 
E. One has


j = 
E

ωcl
= v(
k)

ωcl
= L

πa
� 104. (27)

The large number of levels forming the wave packet is a
necessary condition for the trapped wave packet to be localized
(in free space this condition reads a � λ, see above). The time
evolution of the initial wave packet (24) proceeds according to
the following law,

�k(x, t) =
∫

dx ′G(x, t ; x ′, 0)�k(x ′, 0), (28)

where G(x, t ; x ′, t ′) is the trap Green’s function. In the infinite
well approximation we may use the spectral decomposition
of the Green’s function over the set of eigenfunctions (5) and
write

�k(x, t) =
∞∑

j=1

e−iEj tϕj (x)
∫ L

0
dx ′ϕ∗

j (x ′)�k(x ′, 0). (29)

1The problem of the choice of the wave packet parameters is
addressed in the next section.

065504-3



B. KERBIKOV AND O. LYCHKOVSKIY PHYSICAL REVIEW C 77, 065504 (2008)

The width of the wave packet (29) increases with time
according to

a′ = a

[
1 +

(
t

ma2

)2
]1/2

� a

(
t

ma2

)
,

where for our model the spreading time is ma2 � 1.7 · 10−2 s
and t/ma2 � 60t/s. A so-called collapse time tc [14] corre-
sponds to a′ = L and is equal to tc � 500 s. At t = tc the
wave packet spreads uniformly over the entire well and the
stationary regime considered in Sec. II sets in —see [15].
We note in passing that there is another time scale in the
problem, the so-called revival time trev = 4mL2/π � 2 · 107 s
when the wave packet regains its initial shape (see Ref. [14]
and references therein).

The initial wave packet �k(x, 0) contains only a right
running wave [see Eq. (24)]. The trapped wave packet (29)
contains both right and left running waves; i.e., it correctly
describes reflections from the trap walls. We assume that the
point x0 [see Eq. (24)] is not in the immediate vicinity of
the trap walls; i.e., x0 is at least a few times of a away from
the walls. Then the integration in Eq. (29) can be extended
to the entire one-dimensional space. This yields

F (k, kj ; L, a, x0) ≡
∫ +∞

−∞
dx ′ϕ∗

j (x ′)�k(x ′, 0) = i

(
a
√

π

L

)1/2

×
{

exp

[
−a2(k − kj )2

2
+ i(k − kj )x0

]

− exp[· · · kj → −kj · · ·]
}
. (30)

Then we can calculate the transition probability Pnn′

following the procedure described in Sec. II. Instead of the
wave function (8) we now have

�k(x, t) =
∞∑

j=1

e−iEj tϕj (x)Fj (k), (31)

with Fj (k) being the shorthand notation for the function
Fj (k, kj ; L, a, x0) defined by Eq. (30). The normalization
condition for Fj (k) reads

∑
j

|Fj (k)|2 = 1. (32)

In line with Eq. (15) and following the arguments presented
after Eq. (16), we write

Pnn′ = ε2
∑
j,l

Fj (k)F ∗
l (k)e

i
2 (El−Ej )t

×
∫ +∞

−∞
dp

[
2 sin (Ep−Ej )t

2

(Ep − Ej )

]

×
[

2 sin (Ep−El )t
2

(Ep − El)

]
〈fp|ϕj 〉〈ϕl|fp〉. (33)

Consider first the contribution P
(1)
nn′ of the diagonal terms

with j = l. We have

P
(1)
nn′ = ε

∑
j

|Fj (k)|2
∫ +∞

−∞
dp

4 sin (Ep−Ej )t
2

(Ep − Ej )2
〈fp|ϕj 〉〈ϕj |fp〉

= ε2
∑

j

|Fj (k)|2 2m

kj

2πt
L

4π
= ε2〈τ 〉t, (34)

with 〈τ 〉 being the weighted crossing time

〈τ 〉 =
∑

j

|Fj (k)|2τ (kj ), (35)

and τ (kj ) = mL/kj . Next we turn to the contribution P
(2)
nn′′

of the nondiagonal terms in Eq. (32). In this case we are
dealing with a two-hump function with maxima at Ep = Ej

and Ep = El . Therefore we may write

P
(2)
nn′ = 4πmε2




∑
j

Fj (k)

kj

∑
l

F ∗
l (k)e

1
2 (El−Ej )t

×
[

2 sin (Ej −El )t
2

(Ej − El)

]
〈fj |ϕj 〉〈ϕl|fj 〉 + (j ↔ l)

}
. (36)

Replacing summation over l by integration we obtain

P
(2)
nn′ � 8ε2

∑
j

|Fj |2 m2L2

k2
j

= 8ε2〈τ 2〉, (37)

where

〈τ 2〉 =
∑

j

|Fj |2τ 2
j . (38)

Collecting the two contributions (34) and (37) together we
get the final result

Pnn′ = ε2〈τ 〉t
(

1 + 8
〈τ 2〉
〈τ 〉t

)
. (39)

V. CONCLUSIONS

We have calculated the rate of neutron–mirror-neutron
oscillations for trapped UCN. Two types of UCN wave
functions were used: the stationary solution for a particle
inside a potential well and the Gaussian wave packet. Calcula-
tions were performed in the first-order perturbation theory.
This approximation is legitimate provided Pnn′ 
 1. From
Eqs. (22) and (23) it follows that this condition holds for
τnn′ � 7 s and τnn′ � 0.1 s in the weak and strong magnetic
fields, respectively. Obviously the first-order perturbation
theory describes the transition of the neutron into the mirror
neutron. The inverse process appears only in the second order
in ε. For the analysis of the experiments in Refs. [5] and [6],
the first-order perturbation theory is a fair approximation.

The above analysis has been performed for a simple
one-dimensional trap. We think that such a model correctly
describes the principal features of the process. Generalization
to the three-dimensional rectangular trap is trivial. The
simplest way to generalize our result to the trap with arbitrary
geometry is to substitute the crossing time τ with the effective
crossing time corresponding to a given trap geometry.

065504-4



NEUTRON–MIRROR-NEUTRON OSCILLATIONS IN A TRAP PHYSICAL REVIEW C 77, 065504 (2008)

Experimental data [5,6] were analyzed using the free space
equation (1) with the time t being limited by the crossing
time τ .

Equation (1) contains only time dependence because the
spatial parts of n and n′ wave functions were factored out
using the fact that in free space the coordinate wave functions
of n and n′ have the same form. For bottled UCN the situation
is different. The neutron is confined inside the trap while the
mirror neutron freely crosses the trap walls. Therefore the
use of Eq. (1) to describe oscillations of trapped UCN seems
questionable.2 However, our accurate approach justifies the
analysis of the experimental data based on Eq. (1) [5,6]. This
can be explained by the semiclassical character of the UCN
motion inside the trap of macroscopic size. In the stationary
approach the typical UCN energy corresponds to the states
with j � 1, i.e., to the semiclassical part of the spectrum. In
the wave packet formalism the classical limit corresponds to
(
j ) ∼ (j )1/2 → ∞ [16]. The wave pacets (24) and (26) are
close to this limit. For UCN with extremely low energy, E <∼
10−16 eV, the oscillation pattern changes. We shall consider this
question elsewhere. The fraction of UCN with such energies
in experiments is negligible. Another point that deserves a
dedicated study is decoherence of the UCN wave function
and subsequent randomization of the oscillation process. This
might occur because dephasing of the wave function caused
by collisions with the trap walls and with the residual gas.
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APPENDIX

The calculations presented above were performed for the
infinite well model of a trap. Here we consider the finite
potential and show that there is only a minor difference
between the two models. Consider the potential well defined
by Eq. (2). Matching the logarithmic derivatives of the wave
functions at x = 0 and x = L we obtain the eigenvalue
equation

k′
jL = πj − 2 arcsin

k′
j√

2mV
(A1)

(the notation kj is kept for kj = πj/L). The small parameter
in the problem is

δ =
(

2

mV L2

)1/2

� 2 · 10−8. (A2)

Expanding Eq. (A1) with respect to δ, we obtain

k′
j � πj

L
(1 − δ), E′

j � π2j 2

2mL2
(1 − 2δ). (A3)

Therefore, the levels in the finite well are shifted relative to
the infinite well levels by

Ej − E′
j � 4 · 10−15 eV. (A4)

From Eq. (A3) it follows that the spectrum in the finite well
(2) is the same as in the somewhat wider infinite well

L′ = L(1 + δ). (A5)

In the finite well the wave function penetrates into clas-
sically forbidden regions inside the trap walls. However,
neutron–mirror-neutron transitions inside the walls may be
neglected because both the penetration depth d and the
collision time τcoll are small: d ∼ 10−6 cm, τcoll ∼ 10−8 s.
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