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Cross section and polarization observables for the reaction e+ + e− → a1(1260) + π
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A model independent formalism for the electron positron annihilation reaction e+ + e− → a1(1260) + π has
been derived. The differential and total cross sections and the elements of the spin-density matrix of the a1-meson
were calculated in terms of the electromagnetic form factors of the corresponding γ ∗a1π current. Simple models
of a1 form factors have been fitted to the available cross section data and they allow to give numerical predictions
for the different observables.

DOI: 10.1103/PhysRevC.77.065214 PACS number(s): 13.66.Bc, 13.40.−f, 13.60.−r, 13.88.+e

I. INTRODUCTION

The electron positron annihilation into hadrons constitutes
an important source of information on the internal structure of
the mesons: the light quarks and their interactions as well as
the spectroscopy of their bound states. The experimental data
about these reactions in the low-energy region are also relevant
to the determination of the strong interaction contribution to
the anomalous magnetic moment of the muon, to the test of
standard model predictions for the hadronic tau-lepton decay,
which is related by the conservation of vector currents.

Recently, the construction of the new detectors with a large
solid angle, which can operate at new colliders with high
luminosity, opened new possibilities for the investigation of the
reactions e+ + e− → multihadrons [1]. Not only the statistic
is highly increased, but also the possibility to detect charged as
well as neutral pions allows to draw conclusions on the nature
of the intermediate states.

In the energy region 1 � W � 2.5 GeV (W is the total
energy of the colliding beams) the process of four pion
production is one of the dominant processes of the reaction
e+ + e− →hadrons. Its cross section is larger than 2π pro-
duction and comparable to e+ + e− → µ+ + µ−.

The process of e+e− annihilation into four pions was
firstly detected in Frascati [2] and later on in Novosibirsk
[3]. Through a simultaneous analysis of the differential
distributions in two final channels: 2π+2π− and π+π−2π0,
it was shown in [1] that the reaction predominantly occurs
through the a1(1260)π and ωπ0 intermediate states in the
energy range 1.05–1.38 GeV. It was also found that the
relative fraction of the a1(1260)π state increases with the beam
energy. The measurement of the e+e− → π+π−π+π− cross
section was extended to lower energies. Data obtained with
larger statistical and systematic precision [4] confirmed that
the dominant production mechanism is consistent with the
a1(1260)π intermediate state.

The process of the multihadron production at large energies
was also investigated with the BABAR detector at the

PEP–II asymmetric electron-positron storage ring using the
initial-state radiation [5]. In particular, the cross section for
the process e+e− → π+π−π+π− was measured for center-
of-mass (c.m.) energies from 0.6 to 4.5 GeV, providing
evidence of a resonant structure, with preferred quasi-two-
body production of a1(1260)π . A detailed understanding of
the four-pion final state requires also information from final
states such as π+π−π0π0, to which the ρ+ρ− intermediate
state can contribute. A summary of the hadronic cross section
measurements performed with BABAR via radiative return is
given in Ref. [6].

In this paper we consider the reaction

e−(k1) + e+(k2) → a1(p1) + π (p2), (1)

where a1 is the axial-vector meson a1(1260) with the following
quantum numbers IG(JPC) = 1−(1++). The notation for the
particle four-momenta is given in brackets.

The determination of the pseudoscalar-meson FFs as pions
and kaons requires only cross section measurements. They
have been extensively studied both in the space-like and
time-like regions (see, for example, [7]). Light vector mesons
are less known, because their experimental determination is
more difficult, due to their short lifetimes. However, the t

dependence of the cross section for diffractive vector-meson
electroproduction gives (model-dependent) information on the
charge radius. Radiative decays, such as ρ+ → π+π0γ , allow
to obtain their magnetic moment.

From the theoretical point of view, the processes of the
vector- and axial-mesons production in the electron-positron
annihilation were considered in a number of papers. The
predictions for the differential and total cross sections of
the reaction e+e− → a±

1 + π∓ was given in Ref. [8] in the
framework of the hard-pion current algebra models.

It was shown that the reaction cross section alone could
be, in principle, discriminative toward models. Using the
VMD model, the authors of Ref. [9] investigated the reaction
e+e− → mesons assuming two-body (or quasi-two-body)
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final states, as a1(1260)π and ρ+ρ−. All FFs were taken equal
to unity. Estimations of the cross sections of the processes
e+e− → 3π, 4π were also obtained, using the VMD model,
in Ref. [10].

It appears that the magnitude and energy dependence of
the cross section alone cannot constitute a decisive test on
the validity of VMD models. A recent discussion can be
found in Ref. [11], where existing models [12–14] have
been phenomenologically modified, including parameters to
be fitted on the data. A good description of the cross section is
obtained assuming a1π intermediate state, in addition to ρ and
π , and including higher ρ resonances for energies over 1 GeV.

Due to the conservation of vector current the cross section
of the e+e− → 4π process can be related to the probability of
the τ → 4πντ decay. Therefore, all realistic models describing
the first process, should also be applicable to the description
of the latter one. It was found [15] that the assumption of
the a1(1260)π dominance is in qualitative agreement with
all available data. The free-parameter investigation of the
branching ratios and distribution functions of the four particle
decay of τ → ρππν, in terms of the effective chiral theory of
mesons, is consistent with the data [16]. The theory predicted
the a1 dominance in these four particle decay of the tau-lepton.

The purpose of this paper is to calculate the differential
(and total) cross sections and the elements of the spin-density
matrix of the a1-meson in terms of the electromagnetic form
factors (FFs) of the corresponding γ ∗a1π current. A model
independent formalism, derived in [17] for spin one particles,
and applied to the process e+ + e− → ρ+ + ρ− in [18],
allows to express the experimental observables (differential
cross section, polarization observables, elements of the density
matrix) in terms of hadron FFs. In annihilation reactions, these
FFs should be known, or extrapolated from the space-like
region into the time-like (TL) region, on the basis of analytical
arguments.

II. FORMALISM

The following derivation is based on the one-photon
exchange mechanism. In principle, at large q2, one should take
into account the two-photon-exchange contribution, as it was
suggested a few decades ago [19]. In case of spin one particles,
model independent properties of the two-photon-exchange
contribution in elastic electron-deuteron scattering have been
discussed in Refs. [20,21]. However no experimental evidence
has been found, up to now, on the presence of two-photon
exchange in the scattering [22] as well as in the annihilation
channels [23], and we do not include such contribution which
makes the formalism very complicated.

A. The spin structure of the matrix element

In the one-photon approximation, the differential cross
section of the reaction (1) in terms of the hadronic, Wµν , and
leptonic, Lµν , tensors, neglecting the electron mass, is written
as

dσ

d�
= α2

q6

p

2W
LµνWµν, (2)

where α = 1/137 is the electromagnetic constant, p =√
(q2 + m2 − M2)2 − 4m2q2/2W is the final-particle mo-

mentum in the reaction c.m., m and M are the masses of the
pion and of the a1 meson, respectively. The four-momentum of
the virtual photon is q = k1 + k2 = p1 + p2, with q2 = W 2,
and W is the total energy of the initial beams (note that the cross
section is not averaged over the spins of the initial beams).

The leptonic tensor (for the case of longitudinally polarized
electron beam) is

Lµν = −q2gµν + 2(k1µk2ν + k2µk1ν) + 2iλεµνσρk1σ k2ρ, (3)

where λ is the degree of the electron beam polarization (further
we assume that the electron beam is completely polarized and
consequently λ = 1).

The hadronic tensor can be expressed via the electromag-
netic current Jµ, describing the transitions γ ∗ → πa1, as
follows:

Wµν = JµJ ∗
ν . (4)

The hadron tensor Wµν can be expressed in terms of FFs
of the γ ∗ → πa1 transition, using the explicit form of the
electromagnetic current Jµ. The spin-density matrix of the
a1-meson is composed of three terms, corresponding to
unpolarized, vector and tensor polarized meson:

ρµν=−
(
gµν − p1µp1ν

M2

)
+ i

2M
εµνρσ sρp1σ + 3Qµν. (5)

Here sµ and Qµν are the a1-meson polarization four-vector
and quadrupole tensor, respectively. The four-vector of the
a1-meson vector polarization sµ and the a1-meson quadrupole-
polarization tensor Qµν satisfy the following conditions:

s2 = −1, sp1 = 0, Qµν = Qνµ,

Qµµ = 0, p1µQµν = 0.

Taking into account Eqs. (4) and (5), the hadronic tensor in the
general case can be written as the sum of three terms

Wµν = Wµν(0) + Wµν(V ) + Wµν(T ), (6)

where Wµν(0) corresponds to the case of unpolarized particles
in the final state and Wµν(V )(Wµν(T )) corresponds to the case
of the vector (tensor) polarized a1-meson.

These expressions are general, for any spin one particle in
the final state. Let us consider more particularly, the reaction
e+ + e− → π + a1 which has been shown to be the main
contribution to the 4π final state.

The electromagnetic current of the γ ∗ → πa1 transition
is described by two FFs. Assuming the P - and C-invariance
of the hadron electromagnetic interaction this current can be
written as [10]

Jµ = f1(q2)(q2U ∗
µ − q · U ∗qµ)

+ f2(q2)(q · p2U
∗
µ − q · U ∗p2µ), (7)

where Uµ is the polarization four-vector describing the spin
one a1-meson, and fi(q2), (i = 1, 2) are the electromagnetic
FFs describing the γ ∗ → πa1 transition (note that we singled
out explicitly the electron charge e from the expression for
the electromagnetic current). The FFs fi(q2) are complex
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functions of the variable q2 in the region of the TL momentum
transfer (q2 > 0).

In case of real photon, f1 does not contribute, and the value
f2(0) can be obtained from the experimental data on the decay
width �(a1 → πγ ). The expression of the radiative decay
width � in the axial-vector meson rest frame is

� = 1

π

ω

24M2
|M|2, (8)

where ω is the photon momentum in the axial-vector meson
rest frame, ω = (M2 − m2)/2M, and the matrix element of
the radiative decay is written as M = eeµJµ, where eµ is the
photon polarization four-vector. So, the value of FF f2 at point
q2 = 0 can be obtained from the following expression:

f 2
2 (0) = 12

�M3

α(M2 − m2)3
. (9)

Another estimation of these FFs was obtained in Ref. [10]
where the processes e+e− → 3π, 4π were studied. The spin
structure of the matrix element of the a1ρπ transition is similar
to the γ ∗a1π transition. The two coupling constants describing
the a1ρπ transition were estimated by using the method of hard
pions and knowing the width of the a1-meson (taken about
130 MeV) [10]. The corresponding values: g2/4π ≈ 1.3 and
β = 1.6 were obtained. The following relations hold:

ef1
(
q2 = m2

ρ

) = g

mρ

, ef2
(
q2 = m2

ρ

) = g

mρ

(β − 1).

The explicit expressions for the contributions to the
hadronic tensor are:
Unpolarized term Wµν(0) :

Wµν(0) = W1(q2)g̃µν + W2(q2)

M2
p̃1µp̃1ν g̃µν

= gµν − qµqν

q2
p̃1µ = p1µ − p1q

q2
qµ,

where

W1(q2) = −∣∣q2f1 + 1
2 (q2 − M2 + m2)f2

∣∣2
,

(10)
W2(q2) = q2(q2|f1 + f2|2 − M2|f2|2),

Term for vector polarization Wµν(V ) :

Wµν(V ) = i

M
V1(q2)εµνσρsσ qρ + i

M3
V2(q2)

× [p̃1µενασρsαqσp1ρ − p̃1νεµασρsαqσp1ρ]

+ 1

M3
V3(q2)[p̃1µενασρsαqσp1ρ

+ p̃1νεµασρsαqσp1ρ],

V1(q2) = −M2(q2 + M2 − m2)−1

∣∣∣∣q2f1

+ 1

2
(q2 − M2 + m2)f2

∣∣∣∣2

,

V2(q2) = −M2q2(q2 + M2 − m2)−1

×
[
q2|f1|2 + 1

2
(q2 − M2 + m2)|f2|2

+ 1

2
(3q2 − M2 + m2) Re f1f

∗
2

]
,

V3(q2) = −1

2
M2q2 Im f1f

∗
2 , (11)

Term for tensor polarization Wµν(T ) :

Wµν(T ) = T1(q2)Q̄g̃µν + T2(q2)
Q̄

M2
p̃1µp̃1ν

+ T3(q2)(p̃1µQ̃ν + p̃1νQ̃µ)

+ T4(q2)Q̃µν + iT5(q2)(p̃1µQ̃ν − p̃1νQ̃µ), (12)

where

Q̃µ = Qµνqν − qµ

q2
Q̄, Q̃µqµ = 0,

Q̃µν = Qµν + qµqν

q4
Q̄ − qνqα

q2
Qµα − qµqα

q2
Qνα,

Q̃µνqν = 0, Q̄ = Qαβqαqβ, T1(q2) = 0,

T2(q2) = 3M2|f2|2, (13)

T3(q2) = 3

2
(q2 − M2 + m2)|f2|2 + 3q2 Re f1f

∗
2 ,

T4(q2) = 3|q2f1 + 1

2
(q2 − M2 + m2)f2|2,

T5(q2) = −3q2 Im f1f
∗
2 .

B. Expressions for the observables

Using the definitions of the cross section (2), of the leptonic
(3) and hadronic (6) tensors, one can derive the expression
for the unpolarized differential cross section in terms of the
structure functions W1,2 (after averaging over the spins of the
initial particles)

dσun

d�
= α2

2q4

p

W

{
−W1(q2) + 1

2
W2(q2)

[
τ − 1 − (u − t)2

4M2q2

+ M2 − m2

4M2q2
(2q2 + M2 − m2)

]}
, (14)

where τ = q2/(4M2), t = (k1 − p1)2 and u = (k1 − p2)2. In
the reaction c.m. this expression can be written as

dσun

d�
= α2

2q4

p

W
(A + B sin2 θ ),

A =
∣∣∣∣q2f1 + 1

2
(q2 − M2 + m2)f2

∣∣∣∣2

, (15)

B = 2τp2[q2|f1 + f2|2 − M2|f2|2],

where θ is the angle between the momenta of the axial-meson
( �p) and of the electron beam (�k). Integrating this expression
with respect to the axial-meson angular variables one obtains
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the following formula for the total cross section:

σtot (e
+e− → πa1)

= 2πα2

3q4

p

W

[
3

∣∣∣∣q2f1 + 1

2
(q2 − M2 + m2)f2

∣∣∣∣2

+ 4τp2[q2|f1 + f2|2 − M2|f2|2]

]
. (16)

Let us define an angular asymmetry, R, with respect to the
differential cross section, σπ/2, measured at θ = π/2,

dσun

d�
= σπ/2(1 + R cos2 θ ), R = −B/(A + B). (17)

As it was previously shown in the case of e+ + e− →
d + d̄ [17], this observable is very sensitive to the different
underlying assumptions on the axial-meson FFs and does not
require polarization measurements.

The differential cross section in terms of FFs fi(q2) contains
not only the moduli of these FFs but also their interference
(15). One can choose a linear combinations of these FFs, in
such a way that the unpolarized differential cross section will
contain only moduli. Let us introduce new FFs gi(q2) which
are related to the old ones as follows:

f1 = g1 + g2, f2 = cg1 + dg2, (18)

where c = −2q2/(q2 − M2 + m2), d = (q2 + M2 − m2)/
(M2 − q2 + m2). Then the structure functions Wi describing
the unpolarized part of the hadronic tensor can be written as

W1(q2) = − 4p4q4

(q2 − M2 − m2)2
|g2|2, (19)

W2(q2) = 4p2q4

[
q2

(q2 − M2 + m2)2
|g1|2

− M2

(q2 − M2 − m2)2
|g2|2

]
. (20)

The cross section can be written, in the general case, as
the sum of unpolarized and polarized terms, corresponding
to the different polarization states and polarization directions
of the incident and scattered particles:

dσ

d�
= dσun

d�
[1 + Py + λPx + λPz + PzzRzz + PxzRxz

+Pxx(Rxx − Ryy) + λPyzRyz], (21)

where Pi, Pij , and Rij , i, j = x, y, z are, respectively, the
components of the vector, tensor polarization and of the
quadrupole polarization tensor of the outgoing a1-meson Qµν ,
in its rest system and dσun/d� is the unpolarized differential
cross section. λ is the degree of longitudinal polarization of
the electron beam. It is explicitly indicated, in order to stress
that these specific polarization observables are induced by the
beam polarization.

Let us consider the different polarization observables and
give their expression in terms of the γ ∗ → a1π transition FFs.

(i) The vector polarization of the outgoing axial-meson, Py ,
which does not require polarization in the initial state is

Py = 1

8

√
τ

σ0
[(q2 + M2 − m2)2 − 4M2q2]

× sin(2θ ) Im f1f
∗
2 , (22)

where σ0 = A + B sin2 θ . One can see that this polar-
ization is determined by nonzero phase difference of the
complex FFs f1 and f2.

(ii) The axial-vector meson can be tensor polarized also in
case of unpolarized initial beams. The components of
the tensor polarization are

Pxx = −3

4

1

σ0
sin2 θ

∣∣∣∣q2f1 + 1

2
(q2 − M2 + m2)f2

∣∣∣∣2

,

Pxz = 3

4

√
τ

σ0

sin(2θ )

q2

{
2(q2 + M2 − m2)

∣∣∣∣q2f1

+ 1

2
(q2 − M2 + m2)f2

∣∣∣∣2

+ [(q2 + M2 − m2)2 − 4M2q2]

×
[

1

2
(q2 − M2 + m2)|f2|2 + q2 Re f1f

∗
2

]}
,

Pzz = 3

8

1

σ0

1

M2q2
[(q2 + M2 − m2)2 − 4M2q2]

×
{∣∣∣∣q2f1 + 1

2
(q2 − M2 + m2)f2

∣∣∣∣2

+ 1

2
sin2 θ

[
−q4|f1|2

+ q2(q2 + 3M2 − 3m2) Re f1f
∗
2

+
(

2q2(q2 − M2)

− 3

4
(q2 − M2 + m2)2

)
|f2|2

]}
. (23)

A possible nonzero phase difference between the axial-
meson FFs leads to another T -odd polarization observ-
able proportional to the Ryz component of the axial-
meson tensor polarization. It takes the form

Pyz = −3

2

√
τ

σ0
[(q2 + M2 − m2)2 − 4M2q2]

× sin θ Im f1f
∗
2 . (24)

(iii) Let us consider now the case of a longitudinally polarized
electron beam. The other two components of the axial-
meson vector polarization (Px, Pz) require the initial
particle polarization and are

Px = −1

4

√
τ

σ0
sin θ{2q2(q2 + M2 − m2)|f1|2

+ [(q2 − M2)2 − m4]|f2|2
+ [q2(3q2 − 2M2 − 2m2) − (M2 − m2)2] Re f1f

∗
2 },

Pz = 1

2

1

σ0
cos θ

∣∣∣∣q2f1 + 1

2
(q2 − M2 + m2)f2

∣∣∣∣2

. (25)
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III. SPIN-DENSITY MATRIX OF AXIAL-MESON

For unstable particles, the vector and tensor polarizations
are directly related to the angular distribution of their decay
products; one can show that the angular distribution can be
expressed in terms of the spin-density matrix. Let us calculate
the elements of the spin-density matrix of the axial-meson
which is produced in the reaction e+ + e− → π + a1. The
calculation is done in c.m. of this reaction.

In case of unpolarized initial lepton beams, the convolution
of the lepton Lµν and hadron Wµν tensors can be written as

Sun = SµνUµU ∗
ν , (26)

where Uµ is the polarization four-vector of the detected axial-
meson and the Sµν tensor can be represented in the following
general form:

Sµν = S1gµν + S2qµqν + S3k1µk1ν

+ S4(k1µqν + qµk1ν) + iS5(k1µqν − qµk1ν). (27)

The functions Si(i = 1 − 5) can be written in terms of the two
transition FFs of the axial-meson. Their explicit form is

S1 = −q2

∣∣∣∣q2f1 + 1

2
(q2 − M2 + m2)f2

∣∣∣∣2

,

S2 =
[
q2(q2 − M2) − 1

4
(q2 − M2 + m2 + 2Wp cos θ )2

]
|f2|2

+ q2(q2 + M2 − m2 − 2Wp cos θ ) Re f1f
∗
2 ,

S3 = −4

∣∣∣∣q2f1 + 1

2
(q2 − M2 + m2)f2

∣∣∣∣2

,

S4 = 2q4|f1|2 + 2q2(q2 − M2 + m2 + Wp cos θ )2 Re f1f
∗
2

+ 1

2
(q2 − M2 + m2)(q2 − M2 + m2 + 2Wp cos θ )|f2|2,

S5 = −2q2Wp cos θ Im f1f
∗
2 . (28)

The T -odd structure function S5 is not zero here since the
transition FFs of the axial-meson are complex functions.

The elements of the spin-density matrix of the axial-meson
are defined as

Sρmm′ = SµνU
(m)
µ U (m′)∗

ν , S = Sµν

(
−gµν + p1µp1ν

M2

)
,

(29)

where S = 2q2(A + B sin2 θ ), and U (m)
µ is the polarization

four-vector of the axial-meson with definite (m = 0,±1)
projection on the z axis. In our case it is directed along the
axial-meson momentum and thus U (m)

µ are the polarization
vectors with definite helicity.

The elements of the spin-density matrix of the axial-meson
are

ρ++ = ρ−− = q2

2S
(1 + cos2 θ )

∣∣∣∣q2f1

+ 1

2
(q2 − M2 + m2)f2

∣∣∣∣2

,

ρ00 = q4

M2S
sin2 θ

{
1

4
(q2 + M2 − m2)2|f1|2

+ [2p2q2 + M2(q2 − M2 + m2)] Re f1f
∗
2

+ (m2M2 + p2q2)|f2|2
}
,

ρ+− = ρ−+ = q2

2S
sin2 θ

∣∣∣∣q2f1 + 1

2
(q2 − M2 + m2)f2

∣∣∣∣2

,

ρ+0 = −q4

S

√
τ

2
sin θ cos θ

{
(q2 + M2 − m2)|f1|2

+
(

1 − M2 − m2

q2

) [
(q2 + M2 − m2) Re f1f

∗
2

+1

2
(q2 − M2 − m2)|f2|2

]
+ 2p2f2f

∗
1

}
,

ρ−0 = −ρ+0, ρ0+ = ρ∗
+0, ρ0− = ρ∗

−0. (30)

The spin-density matrix is normalized as T rρ = 1 or ρ++ +
ρ−− + ρ00 = 1. The element ρ+0 is complex and the real and
imaginary parts are written as

Re ρ+0 = −q4

S

√
τ

2
sin θ cos θ

{
(q2 + M2 − m2)|f1|2

+ 1

2

(
1 − M2 − m2

q2

)
(q2 − M2 − m2)|f2|2

+ 1

2

[
3q2 − 2M2 − 2m2 − (M2 −m2)2

q2

]
Ref1f

∗
2

}
,

Im ρ+0 = p2q4

S

√
τ

2
sin 2θ Im f1f

∗
2 . (31)

Let us consider the case when the electron beam is longitu-
dinally polarized. Then the convolution of the spin-dependent
part of the lepton and hadron tensors can be written as

S(λ) = Sµν(λ)UµU ∗
ν , (32)

where λ is the degree of the electron beam polarization and
the Sµν(λ) tensor can be written as

Sµν(λ) = Q1εµναβk1αk2β + Q2(qµaν − qνaµ)

+Q3(qµaν + qνaµ), (33)

where aµ = εµαβγ pαk1βk2γ , p = p1 − p2. The structure func-
tions Qi(i = 1 − 3) can be written in terms of the two
transition FFs of the axial-meson as

Q1 = −2iλ

∣∣∣∣q2f1 + 1

2
(q2 − M2 + m2)f2

∣∣∣∣2

,

Q2 = −2iλ Re

[
q2f1 + 1

2
(q2 − M2 + m2)f2

]
f ∗

2 , (34)

Q3 = 2λq2 Im f1f
∗
2 .

The T -odd structure function Q3 is not zero since FFs are
complex functions in the TL region.

The elements of the spin-density matrix of the a1-meson
that depend on the longitudinal polarization of the electron
beam can be defined as

Sρmm′ (λ) = Sµν(λ)U (m)
µ U (m′)∗

ν , (35)
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and they are expressed in terms of FFs as

ρ++(λ) = −ρ−−(λ)

= λ

S
q2 cos θ

∣∣∣∣q2f1 + 1

2
(q2 − M2 + m2)f2

∣∣∣∣2

,

ρ00(λ) = ρ+−(λ) = ρ−+(λ) = 0,

ρ+0(λ) = −λ

S

√
τ

2
q4 sin θ

{
(q2 + M2 − m2)|f1|2

+
(

1 − M2 − m2

q2

)[
(q2 + M2 − m2) Re f1f

∗
2

+ 1

2
(q2 − M2 − m2)|f2|2

]
+ 2p2f2f

∗
1

}
,

ρ0+(λ) = ρ∗
+0(λ), ρ−0(λ) = ρ+0(λ),

ρ0−(λ) = ρ∗
−0(λ). (36)

The spin-density matrix element ρ+0(λ) is a complex quantity
and its real and imaginary parts are

Re ρ+0(λ) = −λ

S

√
τ

2
q4 sin θ

{
(q2 + M2 − m2)|f1|2

+ 1

2

(
1 − M2 − m2

q2

)
(q2 − M2 − m2)|f2|2

+ 1

2

[
(3q2 − 2M2 − 2m2 − (M2 − m2)2

q2

]
× Re f1f

∗
2

}
,

Im ρ+0(λ) = λ

S

√
2τp2q4 sin θ Im f1f

∗
2 . (37)

The axial-meson FFs are complex functions in the TL region.
So, for the complete determination of FFs it is necessary to
measure three quantities: two moduli of FFs and their phase
difference. Therefore, the measurement of the unpolarized dif-
ferential cross section does not allow to determine completely
FFs. It is necessary to determine the spin–density matrix
elements of the produced axial meson measuring the angular
distribution of its decay products.

The measurement of the angular dependence of the unpolar-
ized differential cross section allows to determine the structure
functions A and B. So, one can determine the following ratio:

R1 = B

A
= p2

2M2

[
1 + 2r cos α +

(
1 − M2

q2

)
r2

]
×

[
1 +

(
1 + m2 − M2

q2

)
r cos α

+ 1

4

(
1 + m2 − M2

q2

)2

r2

]−1

, (38)

where r = |f2|/|f1| and α is the relative phase of two complex
FFs f1 and f2 defined as follows: α = α1 − α2, where α1 =
argf1 and α2 = arg f2. Thus, Eq. (38) contains two unknown
quantities: α and r . Another equation for the determination
of these quantities can be obtained, for example, from the
following ratio of the spin-density matrix elements of the

produced axial meson:

R2 = ρ00

ρ+−
= 8τ

{
1

4
(q2 + M2 − m2)2 + [2p2q2

+M2(q2 − M2 + m2)]r cos α + (m2M2 + p2q2)r2

}
×

[
q4 + q2(q2 − M2 + m2)r cos α

+ 1

4
(q2 − M2 + m2)2r2

]−1

. (39)

And, finally, the phase difference α can be determined by
fixing the sign of sin α from the measured spin-density matrix
element Im ρ0+. Note that the complete determination of two
complex FFs f1 and f2 does not require the polarization of the
initial beams. The measurement of the angular distribution of
the unpolarized differential cross section allows to determine
the structure functions A an B separately. Knowing the ratio r ,
one can determine the moduli |f1| and |f2|.

IV. NUMERICAL RESULTS

VMD inspired models have proved to be very successful
in describing the structure of hadrons. Such models contain
a small number of parameters, with transparent physical
meaning, and can be analytically extended to the full region
of momentum transfer squared. A monopole-like behavior
reproduce quite well the existing experimental data on pion
FFs, and satisfies pQCD asymptotic [24]. In order to predict
the behavior of polarization observables, we suggest a simple
model for the a1 transition FFs, in the TL region.

We used a simple VMD-based parametrization saturated by
vector mesons. The contribution of one vector meson is given
by the Breit-Wigner form

�fi = Cv,iMv

M2
v − q2 + iMv�v

, i = 1, 2, (40)

where Mv and �v are the mass and the width of a vector
meson carrying the interaction. In general one should introduce
all allowed vector mesons, but, as shown in Refs. [11,25],
the largest contribution to the cross section is given by
the ρ(770), ρ ′(1450), and, at higher energies, ρ ′′1700). We
consider only data for the total cross section at energies above
the a1π kinematical threshold, which have been compiled
from Refs. [5,26–28]. The experimental data [5] show a clear
contribution from J/ψ around

√
s = 3.01 GeV. We excluded

the corresponding (four) data points from the fit. The final
form of our parametrization of the two γ ∗πa1 transition form
factors

fi = Cρ,iMρ

M2
ρ − q2 + iMρ�ρ

+ Cρ ′,iMρ ′

M2
ρ ′ − q2 + iMρ ′�ρ ′

+ Cρ ′′,iMρ ′′

M2
ρ ′′ − q2 + iMρ ′′�ρ ′′

, i = 1, 2. (41)

Such parametrization has, therefore, in total six parameters:
three normalization constants, Cρ,i, Cρ ′,i , Cρ ′′,i for each FF.
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FIG. 1. (Color online) Total cross section data for the annihilation
e+e− → π+π−π+π− from [5,26–28]. The line represents the fit of
the total cross section (16) for the reaction e+ + e− → a1 + π with
VMD-based model of transition form factors (41).

The result of the fit for the available data on the total cross
section of the e+e− → π+π−π+π− process from [5,26–28]
is shown in Fig. 1, and corresponds to χ2/ndf = 455/

154 = 2.9. The different sets of data points are quite dispersed,
especially in the region of the maximum. The resulting
normalization constants are given in Table I. The γ ∗πa1

transition form factors (moduli) are presented in Fig. 2. Peaks
can be seen in correspondence with the masses of the chosen
vector mesons. For |f2|, one can see a bump around q2 =
4 GeV2, which results from the interference of the different
terms.

Such fit assumes that the intermediate state a1π saturates
the cross section [4]. If other intermediate channels contribute
to this yield, and only a fraction of the cross section is
due to the a1π intermediate state, then (assuming no depen-
dence on q2) the normalization parameters should be rescaled
by the square root of that fraction.

Figures 3 and 4 show the vector and tensor polarization
observables. One should note here that the vector polarization
of vector mesons can not be measured through their decays
which are driven by strong and electromagnetic interaction
with conservation of P -parity [29]. Figure 5 shows the
predictions for the density matrix elements. These quantities
can be quite large and show a particular behavior, which can be
experimentally verified. Finally, Fig. 6 shows the predictions
for the ratios R1, R2, Eqs. (38), (39).

TABLE I. Optimal values of the normalization constants
Cρ,i , Cρ′,i , Cρ′′,i obtained by the fitting procedure.

i Cρ,i Cρ′,i Cρ′′,i

1 2.35 ± 0.01 −0.089 ± 0.008 −0.131 ± 0.009
2 −4.45 ± 0.11 0.56 ± 0.05 0.38 ± 0.03
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-1
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2f

-110

1

10
(b)

FIG. 2. q2 dependence of the γ ∗πa1 transition form factors f1, f2

(41).

V. AXIAL-MESON DECAY TO THREE PIONS

For completeness, we derive the angular distribution for the
decay of the a1-meson to three pions

a+
1 (p) → π+(q1) + π−(q2) + π+(q3), (42)

where the notation for the particle four-momenta is given
in brackets. We assume that this decay takes place through
a quasi-two-body production of ρπ and σπ where σ (or
f0(600)) is a scalar meson with the following quantum
numbers IG(JPC) = 0+(0++). The ρ- and σ -mesons are
decaying predominantly to ππ final state.

The matrix element of this decay corresponding to the
following mechanism a1 → (ρπ + σπ ) → 3π can be written
as

M = aq1 · U + bq2 · U = UµAµ, (43)

where Uµ is the polarization four-vector describing the a1-
meson and the functions a and b are (in the a1-meson rest
system):

a = G[R−1(Q2) − R−1(q2)] + 1

2
D−1(q2)

× [(F2 − F1)(M2 + m2 − 2Mω1) − 2MF2ω2]
1

2
D−1

+ (Q2)[(F2 − F1)(M2 − m2 − 2Mω1) + 2MF1ω2],

b = GR−1(Q2) − D−1(q2)[(F2 − F1)(Mω1 − m2)

+MF1(M − ω1)] + 1

2
D−1(Q2)

× [(F2 − F1)(m2 − M2 + 2Mω2) − 2MF1ω1],

q2 = M2 + m2 − 2Mω1, Q2 = m2 − M2 + 2M(ω1 + ω2).

(44)

Here ω1 and ω2 are the energies of the positive and negative
pions. The expression for the matrix element takes into account
the identity of the two positive pions. For the intermediate
ρ- and σ -mesons we use a standard Breit-Wigner form and

D(q2) = q2 − m2
ρ + i�ρmρ, R(q2) = q2 − m2

σ + i�σmσ ,

where mρ(�ρ) and mσ (�σ ) are the masses (widths) of the ρ-
and σ -mesons, respectively. The quantities G and F1,2 are
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FIG. 3. Angular dependence of the vector polarization observables Px, Py, Pz at q2 = 2 GeV2, Eqs. (22), (25).

defined as follows:

G = gaσπgσππ , Fi = gρππ f̄i , i = 1, 2,

where f̄i , i = 1, 2 are the coupling constants defining the
a1 → ρπ vertex.

The definition of the different coupling constants and their
relation to the corresponding decay width is given below.

The σ → ππ decay. The amplitude of this decay can be
written as M = gσππϕ∗

1ϕ∗
2ψ , where ϕi and ψ are the wave

functions of the pions and σ -meson, respectively. Then the
expression of the decay width in the σ -meson rest frame is

�(σ → ππ ) = g2
σππ

16πm2
σ

√
m2

σ − 4m2. (45)

The ρ → ππ decay. The matrix element describing this
decay can be written as M = gρππεµ(q1 − q2)µϕ∗

1ϕ∗
2 , where

εµ is the ρ-meson polarization four-vector. q1(q2) and ϕ1(ϕ2)
are the four-momentum and the wave function of the first
(second) pion, respectively. The expression for the width of

xx
P
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FIG. 4. Angular dependence of the tensor polarization observ-
ables Pxx, Pxz, Pzz, Pyz at q2 = 2 GeV2, Eqs. (23), (24).

this decay in the ρ-meson rest frame is

�(ρ → ππ ) = g2
ρππ

48πm2
ρ

(
m2

ρ − 4m2
)3/2

. (46)

The a1 → σπ decay. The matrix element in this case
is M = gaσπUµ(q1 − q2)µϕ∗ψ∗, where Uµ is the a1-meson
polarization four-vector and q1(q2) is the σ (π−)-meson four-
momentum. The width of this decay in the a1-meson rest frame
is

�(a1 → σπ ) = g2
aσπ

48πM5

[(
M2 + m2 − m2

σ

)2 − 4m2M2
]3/2

.

(47)

The a1 → ρπ decay. The matrix element of this decay
is determined by two coupling constants and can be writ-
ten as M = f̄1(q2U · ε∗ − q · Uq · ε∗) + f̄2(q · p2U · ε∗ −
q · Up2 · ε∗), where εµ(Uµ) is the polarization four-vector of
the ρ(a1−)-meson and q(p2) is the four-momentum of the
ρ(π−)-meson. The expression for the width of this decay in
the a1-meson rest frame is

�(a1 → ρπ ) = m2
ρ

192πM5

[(
M2 + m2

ρ − m2
)2 − 4m2

ρM
2
]1/2

× (c1|f̄1|2 + c2|f̄2|2 + 2c12 Re f̄1f̄
∗
2 ),

c1 = 8m2
ρM

2 + (
M2 + m2

ρ − m2)2
,

c2 = 3M2(2m2 − M2) + (
m2

ρ − m2
)2

+ 2
M2

m2
ρ

(M2 − m2)2,

c12 = M4 + 4M2
(
M2 − m2

ρ − m2
)

− (
m2

ρ − m2)2
. (48)

Let us calculate the square of the matrix element for the
a1 → 3π decay using the helicity formalism. In the general
case the a1-meson is described by the spin-density matrix and
one can write

|M|2 = ρλλ′Bλλ′ , Bλλ′ = AλA
∗
λ′ , (49)

where Aλ = U (λ)
µ Aµ and U (λ)

µ is the a1-meson wave function
with definite helicity, ρλλ′ is the a1-meson spin-density matrix
in the helicity representation. The standard choice of the z axis
is along the normal to the decay plane in the a1-meson rest
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FIG. 5. Angular dependence of the elements of the spin density matrix ρ++, ρ00, ρ+−, ρ+0 at q2 = 2 GeV2, in case of unpolarized collision
(solid lines) from Eqs. (30), (31). In case of longitudinally polarized electrons the corresponding elements are shown also [dashed lines, (d),(e)]
from Eqs. (37) and (f) from Eq. (36).

frame [we chose it along the direction �q2 × �q1, where �q1(�q2)
is the three-momentum of the first (second) pion]. Since all
pion momenta are perpendicular to the z axis the quantities
Bλλ′ with zero helicity λ or λ′ are equal to zero. Finally, one
obtains

|M|2 = ρ++B++ + ρ−−B−− + 2 Re ρ+− Re B+−

− 2 Im ρ+− Im B+−. (50)

As it is known, the decay of a particle into a three-body
final state is characterized by two independent variables. We
choose the energy of the negative pion ω2 and angle θ between
the momenta of the first and second pions, i.e., between �q1

and �q2. The x axis is directed along �q2. In this case the
quantities Bλλ′ are

B±± = 1
2

[�q2
1 |a|2 + �q2

2 |b|2

+ 2q1q2(cos θ Re ab∗ ∓ sin θ Im ab∗)
]
,

ReB+− = −1
2

[�q2
1 |a|2 cos 2θ + �q2

2 |b|2 + 2q1q2 cos θ Reab∗],
Im B+− = −q1q2 sin θ Re ab∗ − 1

2 �q2
1 |a|2 sin 2θ, (51)

where q1(q2) is the value of the three-momentum �q1(�q2).
The energy and angle distribution of the decaying a1-meson

is described by the following expression:

d�(a1 → 3π )

dω2dθ
= 1

(2π )4

q1q2

4M

[
M − ω2 + q2

q1
ω1 cos θ

]−1

|M|2.
(52)

The energy ω1 is not an independent variable and it can be
determined in terms of two independent variables using the
following identity:

2q1q2 cos θ = M2 + 2m2 − 2Mω2 + 2ω1(ω2 − M).

We introduced above the general spin-density matrix for the
description of the polarization state of the a1-meson. In the
coordinate representation its expression is given by Eq. (5).
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FIG. 6. q2 behavior of the ratios R1, R2,
Eqs. (38), (39).
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In the a1-meson rest frame this formula is written as

ρij = 1
3δij − i

2εijksk + 3Qij , ij = x, y, z. (53)

This spin-density matrix can be written in the helicity
representation using the following relation:

ρλλ′ = ρijU
(λ)∗
i U

(λ′)
j , λ, λ′ = +,−, 0, (54)

where U
(λ)
i are the a1-meson spin functions which have the

a1-meson spin projection λ on the quantization axis (z-axis).
They are

U (±) = ∓ 1√
2

(1,±i, 0), U (0) = (0, 0, 1). (55)

The elements of the spin-density matrix in the helicity
representation are related to the ones in the coordinate
representation by such a way

ρ±± = 1

3
± 1

2
sz − 3

2
Qzz, ρ00 = 1

3
+ 3Qzz,

ρ+− = −3

2
(Qxx − Qyy) + 3iQxy,

(56)

ρ+0 = 1

2
√

2
(sx − isy) − 3√

2
(Qxz − iQyz),

ρ−0 = 1

2
√

2
(sx + isy) + 3√

2
(Qxz + iQyz), ρλλ′ = (ρλ′λ)∗.

To obtain these relations the condition Qxx + Qyy + Qzz = 0
was applied.

The factor 1/3 in the unpolarized part of the spin-density
matrix was introduced, as for the decay it is necessary to
average over the spins of the a1-meson.

VI. CONCLUSION

Using the parametrization of the electromagnetic transition
γ ∗ → a1(1260)π in terms of two FFs, we investigated the
polarization phenomena in the annihilation reaction (1).
We calculated the differential (and total) cross section and

various polarization observables as functions of the FFs.
The spin-density matrix elements of the produced axial
meson have been also calculated. Explicit formulas for
the decay of the a1-meson into three pions have been
given.

FFs are complex in the time-like region and have been
parametrized according to a VMD inspired Q2 dependence,
saturated by vector mesons. The parameters have been fitted
to the data, assuming that all the four pion yield is due to
reaction (1). If other intermediate channels contribute to this
yield, and only a fraction of the cross section is due to the a1π

intermediate state, then the normalization parameters should
be rescaled by the square root of that fraction (assuming no
dependence on q2).

The q2 dependence of the FFs shows, as expected, peaks in
correspondence of the masses of the considered vector mesons.
An interesting feature appears for f2 at Q2 ∼ 4 GeV2, which
is due to an interference of the different terms. Note that none
of the considered vector mesons corresponds to a mass of such
value. An interference of such origin can be the reason for the
plateau seen in the cross section data, which, however does
not appear with large intensity in our fit.

The reaction (1) has been clearly detected in the exper-
iments. The present results can be useful for the analysis
of the experimental data and for the determination of the
γ ∗ → a1(1260)π transition FFs.
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