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Properties of nucleon resonances by means of a genetic algorithm
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We present an optimization scheme that employs a genetic algorithm (GA) to determine the properties of
low-lying nucleon excitations within a realistic photo-pion production model based upon an effective Lagrangian.
We show that with this modern optimization technique it is possible to reliably assess the parameters of the
resonances and the associated error bars as well as to identify weaknesses in the models. To illustrate the
problems the optimization process may encounter, we provide results obtained for the nucleon resonances
�(1230) and �(1700). The former can be easily isolated and thus has been studied in depth, while the latter is
not as well known experimentally.
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I. INTRODUCTION

In recent years, in order to study the properties of low-lying
nucleon resonances and assess their parameters (masses,
widths, and electromagnetic coupling constants), significant
experimental and theoretical efforts have been devoted to
the process of meson production from the nucleon, which
is achieved by exciting the nucleon resonances by means of
photonic or electronic probes, and to the study of the decays
of these resonances into mesons (mainly pions) [1]. The pa-
rameters of these resonances, predicted by several theoretical
models of baryons—lattice quantum chromodynamics [2],
Skyrme models [3], quark models [4]—can be compared to
the ones extracted from experimental data, which usually
requires the aid of reaction models. This process of extracting
the nucleon excitations parameters from experimental data is
thus a crucial requirement in order to validate different hadron
models, as it provides a guide for improving hadron models and
for identifying the most reliable ones [5]. Together with pion
scattering off the nucleon, single pion photoproduction is the
most suitable process for studying the low-lying baryon spec-
trum. In fact, in recent years the experimental database [6] has
increased considerably and many experimental programs have
been run at different facilities such as LEGS (Brookhaven) [7]
and MAMI (Mainz) [8].

The extraction of the parameters of the resonances by
means of a comparison of the results of reaction models to
experimental data is an excellent example of a highly involved
optimization task. Problems in which a set of parameters
must be established through comparison with experimental
data are ubiquitous in physics. Often, optimization has been
considered a minor topic (at times even trivial) by the particle
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and nuclear physics community which has relied on gradient-
based optimization tools such as MINUIT [10]. Sometimes,
however, optimization problems are very complicated and
gradient-based routines alone are not sufficient for the purpose,
because the function to fit presents a complex structure with
many local optima in which the codes get trapped before
reaching anywhere near the desired absolute optimum. Thus,
until relatively recently, fitting model parameters to data has
been a kind of art. This was particularly the case when
thousands of data needed to be compared to the results of
sophisticated models that depended on more than just a few
parameters. In such cases, many instances of the optimization
procedure have to be repeated, after manually adjusting the
parameters, and specific care must be taken to prevent the
optimization procedure from getting stuck at the many possible
local minima positions.

Recently, in nuclear and particle physics, more credit is
being given to modern optimization procedures [11–16] and
to error estimations on the parameters stemming from the fits.
Modern and sophisticated optimization techniques such as
simulated annealing [17] and genetic algorithms (GA) [18]
have been developed over the last twenty years and have
been applied to problems which are impossible to tackle with
conventional tools.

In this paper we present a hybrid optimization procedure
which combines a GA with a gradient-based (“hill-climbing”)
routine E04FCF from the NAG library [9]. The GA performs
the bulk of the optimization efforts, ensuring that the parameter
space is fully surveyed and local minima are avoided, while
the conventional gradient-based routine, when applied to the
preliminary minima found by the GA, provides fine-tuning
and speeds up convergence. We have applied this tool to a
complex, multiparametric optimization problem, namely the
determination of nucleon resonances parameters by comparing
the results of a realistic model for the photo-pion production
reaction to data. As a byproduct, the optimization procedure
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provides insight into the reliability of the values (error bars)
of the parameters extracted and information on their physical
significance.

This paper is organized as follows. In Sec. II we briefly
present the model for pion photoproduction on free nucleons
from threshold up to 1.2 GeV developed in Refs. [13–15]. In
Sec. III we present the strategy applied to solve the problem.
In Sec. IV we present the GA in detail. In Sec. V we show
the results obtained by the algorithm, analyze its performance
and comment on the error bar estimates and the physical
significance of the parameters extracted. Finally, in Sec. VI
we present our conclusions.

II. THE REACTION MODEL

The reaction model is based upon a phenomenological
Lagrangian and it allows us to isolate the contribution of
the resonances, calculate their bare properties, and compare
these properties with the values provided by nucleonic models
[13,19]. In addition to Born terms (those which involve only
photons, nucleons, and pions) and vector-meson exchange
terms (ρ and ω), the model includes all four star resonances
quoted in the Particle Data Group (PDG) [20] up to 1.8 GeV
of mass and up to spin−3/2: �(1232), N (1440), N (1520),
�(1620), N (1650), �(1700), and N (1720). The internal
structure of the nucleonic excitations shows up in the values
of the electromagnetic coupling constants that appear in
the Lagrangian. The model displays chiral symmetry, gauge
invariance, and crossing symmetry, and incorporates a con-
sistent treatment of the interaction with spin-3/2 particles that
avoids well-known pathologies of previous models [13,14,21].
Furthermore, the dressing of the resonances is considered
by means of a phenomenological width which takes into
account decays into one and two π ’s and one η. This width
is included in a way that fulfils crossing symmetry and thus
it contributes to both the direct and crossed channels of the
resonances. We assume that the final state interactions (FSI) in
the πN rescattering factorize and can be included through the
distortion of the πN final state wave function. We include this
distortion in a phenomenological way by incorporating a phase
δFSI to the electromagnetic multipoles. We fix this phase so that
the total phase of the electromagnetic multipole is identical to
that of the energy dependent solution of SAID [6]. In this way,
we disentangle the parameters of the electromagnetic vertex
from the FSI effects.

III. MINIMIZATION STRATEGY

Our minimization procedure follows the one in [12]
although we use a more sophisticated GA and employ the
E04FCF routine from the NAG library [9] instead of the MINUIT

[10] code. We apply the minimization scheme to a realistic
meson production model and the aim of our minimization is
different. While in [12] the aim was to establish the existence
of certain resonances, in this paper our goal is to determine
the parameters of well-established nucleon resonances and to
obtain estimates on the reliability of these parameters and their
associated error bars.

The function to minimize is the χ2 defined by

χ2 =
∑

j

(
Mexp

j − Mth
j (λ1, . . . , λn)

)2

(
�Mexp

j

)2 , (1)

where Mexp stands for the current energy independent ex-
traction of the multipole analysis of SAID up to 1.2 GeV for
E0+,M1−, E1+,M1+, E2−, and M2− multipoles in the three
isospin channels I = 3

2 , p, n for the γp → π0p process [6].
�Mexp is the experimental error and Mth is the multipole
value given by the model. It depends on parameters λ1, . . . , λn.
We have taken into account 1880 data for the real part of
the multipoles and the same amount for the imaginary part.
Thus, 3760 data points have been used in the fits. Unlike
cross sections or asymmetries, electromagnetic multipoles are
not directly measured quantities and some elaboration of the
raw experimental data is needed to obtain these multipoles.
However, we have chosen, as it is very often done in this field,
to fit electromagnetic multipoles instead of other observables.
Several reasons are mentioned when fitting to multipoles. On
one hand, electromagnetic multipoles are more sensitive to
coupling properties than other observables, so deficiencies in
the model may show up more clearly. The second reason is
that, in principle, all the observables can be expressed in terms
of multipoles. Thus, if the multipoles are properly fitted by the
model, so should be other observables.

In order to determine the resonance parameters that best fit
the data, we have written a hybrid optimization code based on
a GA combined with the E04FCF routine from the NAG library
[9]. Although GA, are computationally more expensive than
other algorithms, in a minimization problem it is much less
likely for them to get stuck at local minima than it is for other
methods, namely gradient-based minimization methods. GAs
allow us to explore a large parameter space more efficiently.
Thus, in a multiparameter minimization such as the one we
face here, they are probably a very efficient way of searching
for the best minimum. In the next section we will go through
the details of the GA.

The parameters for the model (λj ) are divided into two
different kinds: (i) Those that are obtained from models or
experiments other than pion photoproduction, namely vector-
meson coupling constants (three parameters) and masses
and widths of the nucleon resonances (14 parameters, one
mass and one width for each resonance which have been
taken from [22]), and (ii) those that are extracted from
pion photoproduction data, namely electromagnetic coupling
constants (15 parameters) and the cutoff 
 for Born terms
and vector-meson exchanges. We have allowed the algorithm
to vary all the parameters (see Tables I and II). However,
the parameters in the first group have been varied within a
very small range, the experimentally allowed values for the
vector-meson coupling constants and ±2 MeV for the masses
and widths of the nucleon resonances. The reason for allowing
these parameters to vary, even though the range of variation
is minimal, is to make room for the algorithm to search for
the global minimum and to take into account the error bars for
these parameters into the possible solution. This should help
to prevent the algorithm for being trapped in local minima.
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TABLE I. Ranges for the parameter values of the nucleon
resonances. Masses and decay widths have been taken within the
ranges provided by [22]. The helicity amplitudes are denoted by
AI

λ, where I stands for isospin and λ for the helicity of the initial
photon-nucleon state.

M∗ (GeV) � (GeV) AI
λ (GeV−1/2)

�(1232) [1.215,1.219] [0.094,0.098] [−1,1]
N(1440) [1.381,1.385] [0.314,0.318] [−1,1]
N(1520) [1.502,1.506] [0.110,0.114] [−1,1]
N(1535) [1.523,1.527] [0.100,0.104] [−1,1]
�(1620) [1.605,1.609] [0.146,0.150] [−1,1]
N(1650) [1.661,1.665] [0.238,0.242] [−1,1]
�(1700) [1.724,1.728] [0.116,0.120] [−1,1]
N(1720) [1.740,1.755] [0.119,0.278] [−1,1]

The variation range for the second group of parameters are
chosen to explore a large region of parameter space. Hence
we avoid introducing prejudgments on their values based on
previous analysis. We prefer to use the helicity amplitudes
(for their definition and connection with coupling constants
see Refs. [13,14,20]) to define the ranges, instead of the
electromagnetic coupling constants. We allow them to vary
in the range [−1, 1] GeV−1/2.

The cutoff 
 is included in the form factors that multiply the
Born terms and vector-meson exchange invariant amplitudes.
We use the form factors suggested in [23], which respect gauge
invariance and crossing symmetry. For these Born terms

F̂B(s, u, t) = F (s) + F (u) + G(t) − F (s)F (u) − F (s)G(t)

−F (u)G(t) + F (s)F (u)G(t), (2)

where

F (l) = [
1 + (l − M2)2/
4]−1

, l = s, u; (3)

G(t) = [
1 + (

t − m2
π

)2
/
4

]−1
. (4)

and s, u, and t are the Mandelstam variables. For vector
mesons, we adopt F̂V (t) = G(t) with the change mπ → mV .
To reduce the number of free parameters for the model we use
the same 
 for both vector mesons and Born terms.

The form factors take non-resolved structure effects and
higher order terms in the scattering matrix expansion into
account. Thus, the cutoff 
 is related to the energy scale of
the effective theory and the sensible values for 
 should be
of the order of the nucleon mass (actually, in our best fit we
obtain 
 = 0.943 MeV). For this reason, in the minimization
process, we restrict 
 to the range [0.1, 2.0] GeV.

In order to perform the minimization, the range of variation
of each parameter is mapped into the [0, 1] interval for the GA
and into (−∞,+∞) for the E04FCF routine. This latter step is

TABLE II. Ranges for the values of the
parameters of vector mesons and cutoff 
.

FωNN [20.61, 21.11]
Kω [−0.17, −0.15]
Kρ [6.1, 6.3]

 (GeV) [0.1, 2.0]

done by means of the transformation

xj = arcsin

[
λj − λmax

j

λmax
j − λmin

j − 1

]
, (5)

where λj is the model parameter, xj is the mapping of λj

into (−∞,+∞), λmax
j is the highest value of the range of

variation, and λmin
j is the lowest value. With regard to the

range of variation allowed for the parameters, we must note
that gradient routines work more efficiently if variations of
similar magnitude on each of the search parameters introduce
a similar variation on the function to minimize. The E04FCF

user is advised to explore the region of parameters to minimize
and to provide adequate rescaling of the problem before calling
the routine. While the NAG library provides tools that help in
this task, in our combined algorithm we take advantage of the
knowledge obtained on the variation of the objective function
during the previous evaluations performed by the GA. We use
this exploration to normalize the χ2 to unity and to rescale
all the parameters affecting this function so that, according
to the last evaluations of the best individuals explored by the
GA, after rescaling of both the parameters and the function to
optimize, the region explored by the NAG E04FCF routine in
its search for the minima is expected to lie in a hypercube of
unit volume. We have indeed verified that this normalization
and rescaling procedure improves NAG routine performance.

Our minimization strategy includes the following aspects:

(i) A first generation is made out of individuals randomly
generated within reasonable values of the parameters.

(ii) Next, the GA is run for 400 generations (see definition
further on). This number is determined after inspecting
the best individual evolution for each generation and
from comparisons with benchmark problems of similar
size. We do not really need that many as 400 generations
(see Fig. 1), but we preferred to let the algorithm run for
more generations than necessary in order to ensure that
convergence was achieved.

(iii) After the 400 generations have been run, we introduce the
GA solution as the initial value for the E04FCF routine
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FIG. 1. Example of the evolution for a champion in one run of
the GA. For the first generations (up to generation 40 or 50) evolution
is driven by crossover. After this, small improvements are seen due
to mutations.
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from NAG libraries [9]. We use the routine for fine-
tuning. The E04FCF routine implements an algorithm
that looks for the unconstrained minimum of a sum of
squares,

Minimize
[
F (x1, . . . , xn) =

m∑
j=1

|fj (x1, . . . , xn)|2
]
, (6)

of m nonlinear functions in n variables (m � n). This
algorithm does not require the derivatives to be known.
From a starting point x

(1)
1 , . . . , x(1)

n (in our case supplied
by the GA) the routine applies a quasi-Newton method
in order to find the minimum. This method uses a
finite-difference approximation to the Hessian matrix to
define the search direction. It is a very accurate and fast
converging algorithm once we have an initial solution
that is close to the minimum we seek. Therefore, it is
well suited for our fine-tuning purpose.

We note that many attempts to solve our optimization
procedure solely by means of E04FCF completely failed,
even when we guided the initial ranges of the parameters
by hand. The NAG routine got stuck in the first local
minimum, usually very far from the one obtained by the
GA.

(iv) We store the solution obtained by the combined al-
gorithm and we start again, by generating a different
random seed for the initial population of the GA. After
running the minimization code 20 times, we obtain
twenty different minima. If we find that all the χ2 divided
by χ2

min (the minimum χ2 among all the fits) are close to
unity, we stop the fitting procedure.

IV. GENETIC ALGORITHM

Genetic algorithms are a specific kind of stochastic opti-
mization methods based upon the idea of evolution. There are
many excellent textbooks on GAs [18]. Here we will describe
the main features of GAs that are needed to understand our
implementation. GAs encode the possible solutions to the
proposed problem and deal with many of these solutions at
the same time. Indeed, a set of these possible solutions (also
called individuals or genes) form a population. Each individual
in the population is classified according to its fitness value,
computed in terms of some objective function related to our
optimization problem. In our case, the individual encodes the
parameters of the Lagrangian and the objective function is
essentially the χ2 of the multipole values compared to the
prediction of each Lagrangian represented in the population.
GAs implement operators such as crossing among individuals
and mutation [25]. As long as both the encoding of the
problem and the GA operators exhibit good schema properties
(that means that the offspring obtained after breeding two
or more individuals with some good properties in terms of
fitness are, more often than not, more fit than any of their
parents), the evolution or repeated application of the genetic
operators on the population, combined with a mechanism of
natural selection (survival of the fittest), would cause some
individuals to accumulate the good properties (subschema)

initially distributed among different individuals in the early
population. Provided that the number of individuals in the
population is large enough for many good subschemas to be
represented in at least some individual of the population, then
the GAs would evolve toward very fit individuals, that is, good
solutions to the problem. In this work, the obvious subschema
are the parameters of each resonance and a simple encoding
in which every individual is composed of a set of possible
values for the parameters of our Lagrangian, would do the
job. We encode the possible solutions to the problem (i.e.,
a complete set of parameters for the Lagrangian) as a series
of integer numbers within the range from 0 to a maximum
value N . For each parameter, this integer number represents
the value of said parameter within the range desired by the
user. For instance, a stored value of 0 would indicate that the
value of the corresponding parameter equals the minimum
allowed within the range. Conversely, the maximum value N

would represent the stored parameter reaching the maximum
allowed within the range. We denote this maximum value of
these integers N as the granularity of our encoding strategy.
A large value of N implies a very thin granularity, that is,
relatively small changes in each parameter are possible in
our encoding strategy and individuals that are very similar
in terms of the parameters they represent and consequently,
in their fitness, can be encoded. On the other hand, if we
want to sample the parameter space with reasonable density,
a too thin granularity would require a very large number
of individuals. As we have just mentioned, an important
choice to make for every GA is the number of individuals
in the population. When the population size increases, the
chances for relatively less fit individuals of mating with other
individuals and generating better offspring before disappearing
from the population, decrease exponentially. We must realize
that even the less fit individuals (some of them) may have good
subschema needed to encoded the best solution. Some of these
subschema may not be present in other more fit individuals in
the population, at least during the early stages of the evolution.
According to results of tests with our Lagrangian as well as
benchmarks with other functions that are easy to compute
and have well known minima, we have determined that the
maximum number of individuals we may safely employ in
a population for our GA is around 400. For this size of the
population, granularity values from 100 to 1000 have been
employed in our GA without problems.

In what remains of this section we simply provide a detailed
explanation on how the GA we have programed works. Our
GA proceeds as follows (Fig. 2):

(i) Initial population. We provide a first generation con-
sisting of individuals (400 in our calculations) that
are randomly generated with reasonable values of the
parameters [26].

(ii) Selection scheme. The genetic algorithm we use em-
ploys a scaled selection scheme and employs the elitist
model [24]. In this model, the best individual (or cham-
pion) from the previous generation is always included
in the current population, ensuring that the best solution
this far is preserved. This decreases significantly the time
the GA takes to find an acceptable solution. It has been
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Generation i

Scaling

25% Best 75% Remainder

New population

25% Best 25% Fight
25%

Half-elitist
Crossover

25%
Random
Crossover

Scaling
Next iteration

Champion Rest of the population

Mutation
(individuals randomly selected)

Generation (i + 1)

Reached final generation?

Solution

Start

Yes

No

FIG. 2. GA scheme (see text in Sec. IV).

proved [24] that the GA which introduces elitism (that
is, the guaranteed survival of the champion at every step
of the GA evolution) will eventually converge to the
absolute optimum, while, in general, the ones that do not
protect the champion will never reach the optimum [27].

With regard to the remainder of the population, besides
the champion, the individuals from the previous genera-
tion (that is, the population in its earlier state) are ranked
according to the fitness function, in our case the χ2 value.
After this step, we introduce scaling of the population
[28] determining the probability that an individual has
to mate and survive. We provide a 0.8 probability to the
worst individual and 1.0 to the best one. This is done in
order to maintain genetic diversity. Indeed, it is necessary
to prevent that the best and the worst individuals have a
too different survival probability. If we do not take care
to preserve genetic diversity in this way, the appearance
of a very fit individual would make the forthcoming
offspring collapse to the characteristics of that particu-
larly fit individual too soon. Another important technique
to maintain diversity is mutation, which is discussed
further on.

(iii) After scaling, we classify the population into two sets.
Set (a) is composed of the best 25% of the individuals
and set (b) by the remaining 75%. We produce the new
generation in the following way:
(a) 25% of the individuals are taken from the most fit

ones from the previous generation. That is, set (a) is
copied into the next generation.

(b) Another 25% is selected through a fight among all
the individuals (tournament). The outcome of the
fight is randomly decided, depending on probability.
Even in the least favorable case (that is, if the worse
individual fights with the best one), the winning
probability of (the worst) individual is 15%. Winning
probabilities are computed accordingly to the fitness
of each contender.

(c) Another 25% is obtained by means of half-elitist
crossover. This means that we mate an individual
from the best 25% of the previous generation [set (a)]
with any other individual in sets (a) or (b). Both
individuals are picked randomly from their respec-
tive sets.

(d) The remaining 25% of the offspring are generated
by mating individuals that are selected randomly
without restrictions from sets (a) or (b).

We apply two different kinds of crossover: one point
crossover and arithmetic crossover [28]. In one point
crossover, a random crossover point for both parents is
selected. We split each chromosome from the parents
into two pieces. We take the second piece of the second
parent and attach it to the first piece of the first parent.
In this way we obtain an individual that is a mixture of
the two original ones. For the arithmetic crossover, we
choose at random a number r between 0 and 1, and the
offspring is calculated weighting the parents with weight
r and (1 − r):

λ
offspring
i = r · λ

parent1
i + (1 − r) · λ

parent2
i . (7)

Half of the crossovers our GA implements are one point
and the other half are arithmetic. The kind of crossover
to apply to a given pair of parents is chosen at random.

(iv) We evaluate the new population and identify the new
champion. As previously mentioned, it will be preserved
(elitism). We select other individuals to mutate from the
rest of the population excluding the champion. Indeed, in
each iteration of our GA we introduce as many mutations
as the number of individuals in the population divided
by three. These mutations are distributed at random
among all the individuals (excluding the champion) of
the population generated following the previous steps.
We apply two types of mutation [29]. The permutation
mutation exchanges two parameters selected at random.
The gaussian mutation changes the value of a parameter
by a small amount. The amount of change induced by this
mutation is random within a small range. The reason to
introduce mutations is that, quite often, the crossover op-
erator and the selection method are too effective and they
end up driving the GA toward a population of individuals
that are almost exactly the same. When the population
consists of similar individuals, the likelihood of finding
new solutions typically decreases. The mutation operator
introduces an additional randomness into the search. It
helps to maintain diversity and to find solutions that
crossover alone might not discover.

(v) After these steps are taken, we say that a new generation
is built. If we have not reached the limit in the number of
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C. FERNÁNDEZ-RAMÍREZ et al. PHYSICAL REVIEW C 77, 065212 (2008)

generations, we run the algorithm again with the current
set of individuals as the initial population.

When the maximum number of generations has been
reached, we take the set of parameters encoded by the
champion as the solution given by GA to our problem.
If sufficient generations have been run, most of the
individuals will have close values for the fitness function.

It has been proven that there is no optimal algorithm that
adapts well (that is, reaches a solution in the least number of
evaluations) to all kind of problems. This is often referred to
as the no free lunch theorem in optimization [30]. Our goal
here however is not to find the optimal algorithm that obtains
the minimum to our problem in less evaluations but, rather, to
develop a general tool that can be applied to many different
models of parameter data fitting without specific fine-tuning
nor human intervention, even if the performance of the tool
is suboptimal in terms of the number of operations. In this
regard, GAs are a handy choice, as they are suitable for many
different problems. Thanks to scaling and elitism, our GA
converges neither too quickly nor too slowly and generally it
is able to find good candidates for the global optimum.

When the individuals are very fit, it can be hard for the
GA to evolve further, mainly because the path to the best
individual may involve two or more consecutive mutations
where each of these mutations on their own will produce
a less fit individual that will sooner be removed from the
population. The occurrence of such two favorable mutations
in the same individual is unlikely and tailored procedures
must be implemented to introduce specific mutations that are
adequate for particular problems, or more complex operators
like the ‘tunneling algorithm’ [31] or complex rules to
encode the values of the functions, like Mendelian operators
implementing a nondominant character for some genes [32]. In
our work, however, we prefer to employ a hybrid optimization
method that combines a standard hill-climbing algorithm
with a GA. Hybrid optimization methods have been under
study intensively [12,33]. We have compared several ways
of hybridizing GAs and conventional gradient based hill-
climbing algorithms, such as introducing the hill-climbing
algorithm as another mutation operator. However, we have
noticed that this will only make the GA converge sooner,
very often too soon, resulting in it getting stuck at any of the
many local minima. From our experience, if the hill-climbing
procedure is introduced just at the end of the evolution, when
the GA has converged, the best results are achieved and a
robust algorithm that requires no human intervention is this
way configured. Also, no granularity is introduced in this final
step of optimization. Indeed, the NAG routine is not restricted
to integer values of the parameters, but instead represents each
parameter as floating point values. Thus, we can also consider
that the GA finds the best optimum that can be represented
within the grid implied by the granularity N , and starting from
this point of the grid, the NAG routine refines a search not
bound to any grid values.

V. RESULTS

In Fig. 3 we show examples of fits to electromagnetic mul-
tipoles for the γp → π0p process and the overall agreement
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FIG. 3. Examples of the fits obtained to the electromagnetic
multipoles for the reaction γp → π 0p. Curve conventions: Solid:
Real part of the electromagnetic multipole; Dashed: Imaginary part
of the electromagnetic multipole. Data are from Ref. [6].

obtained. The values of the parameters are summarized in
Table III. In Fig. 1 we display an example of the evolution of the
champion along the generations. 200 generations are sufficient
enough to achieve convergence, but we run the algorithm for
another 200 generations to see the effects of mutations, which
can reach areas of the parameter space that are not being fully
surveyed by means of crossover.

We observe that at the early stages of the evolution the
fitness function improves quickly, as crossover works to
concentrate the good schema from other individuals into a
good individual. Actually, a very steep slope in this region

TABLE III. Helicity amplitudes obtained in the fits in GeV−1/2.

A
p

1/2 A�
1/2 An

1/2 A
p

3/2 A�
3/2 An

3/2

�(1232) – −0.120 – – −0.229 –
N (1440) 0.060 – −0.089 – – –
N (1520) −0.007 – 0.032 0.107 – −0.085
N (1535) 0.014 – −0.137 – – –
�(1620) – −0.023 – – – –
N (1650) −0.022 – 0.003 – – –
�(1700) – 0.139 – – −0.127 –
N (1720) 0.143 – 0.126 −0.004 – −0.444
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FIG. 4. Many local minima and the effect of the fine tuning per-
formed by the E04FCF routine in the χ 2/χ 2

min are shown. Conventions:
Open circles, χ 2/χ 2

min obtained by the GA alone (400 generations
with 300 individuals each); Solid squares: χ2/χ 2

min obtained by the
GA plus the NAG routine.

might indicate that evolution is too fast and that less fit
individuals could disappear from the population before their
good properties are transmitted to more fit individuals.

When a jump in the χ2/χ2
min happens, it is due to the

appearance of a more fit new individual, either due to crossover
or to mutation. In Fig. 4 we can verify the existence of many
local minima (so this is certainly an ill-posed optimization
problem) and the fine tuning achieved by the NAG routine
which improves minima by approximately 2%.

An important issue to consider in GAs is efficiency. As we
have already mentioned, the parameter space has to be dis-
cretized with a certain granularity and the algorithm searches
for the best solution within the discretized version of the
parameter space. The size of this space significantly affects the
efficiency of the algorithm, thus a balance between granularity
and computing time has to be achieved. The gradient based
routine allows us to gain precision and efficiency because we
do not need the GA to reach the minimum, we simply need it to
provide a value close enough for the E04FCF routine can reach
it. In other words the GA has to reach the region where the
minimum lies, and once in this region, reaching the minimum
is a task for the gradient-based routine.

We must emphasize that the use of our algorithm is
unattended. That is, we submit the script that starts 20 instances
of the GA+NAG procedure, and after the equivalent to five
CPU-days (Opteron, 2 GHz), we get the results for the
optimized set of parameters. No further human intervention
was needed to choose initial values of the parameters or to
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FIG. 5. Helicity amplitudes (equivalent to the coupling constants of the Lagrangians) of the �(1232). In all the figures we show the twenty
minima obtained in the full minimization procedure (GA+NAG, see Fig. 4). The upper-left hand figure (a) shows the χ2/χ 2

min versus the
amplitude A�

1/2. The lower-left hand figure (b) shows the χ 2/χ 2min versus the amplitude A�
3/2. The right panel (c) shows A�

1/2 versus A�
3/2

parameters.
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C. FERNÁNDEZ-RAMÍREZ et al. PHYSICAL REVIEW C 77, 065212 (2008)

1.025

1.020

1.015

1.010

1.005

1.000

0.180.160.140.120.10

χ2 /χ
2 m

in

A1/2
∆     (GeV-1/2)

(a)

1.025

1.020

1.015

1.010

1.005

1.000

-0.09-0.11-0.13-0.15

χ2 /χ
2 m

in

A3/2
∆     (GeV-1/2)

(b)

0.18

0.17

0.16

0.15

0.14

0.13

0.12

0.11

0.10
-0.09-0.10-0.11-0.12-0.13-0,14-0.15

A
1/

2
∆    

  (
G

eV
-1

/2
)

A3/2
∆     (GeV-1/2)

(c)
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min versus the
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FIG. 7. Evolution of the minimization for the helicity amplitudes
of the �(1700). Asterisks: minima obtained after 50 generations
plus NAG; open squares: minima obtained after 150 generations plus
NAG; solid circles: minima obtained after 400 generations plus NAG.

guide the evolution. While the GA+NAG may require more
(costly) evaluations of the objective function, it is robust and
needs no training nor good guesses of the initial parameters.
Now that computer power seems to be an increasingly available
resource, the unattended mode of operation makes this hybrid
algorithm a very interesting alternative for these optimization
problems.

Figures 5 and 6 show a typical situation that may arise
when the parameters are being determined. For �(1232)
the minimum is well-established and all the minima are
constrained in a small region. The size of the region where
the minima lie may provide a better estimation of the error
associated with the parameters than the one provided by the
correlation matrix. On the other hand, in Fig. 5 the value
for the A�

1/2 helicity amplitude appears to be in one of two
split regions that are too close to be physically distinguished
(left-upper panel). One region is centered at −0.120 and the
other at −0.119 GeV−1/2. The identification of these regions
is one of the functionalities that GAs provide and one of their
main advantages. When multiple regions containing minima
of similar quality appear, the possible physical implications
should be considered and further analysis to assess whether
these different regions hold physical meaning (see Sec. V A)
is required.

We also show the minima of the �(1700) that are con-
strained in just one region. However, this region is larger than
for the �(1232) and the experimental information available
for this resonance, thus, yields parameters that are not as well
established as for other nucleon excitations.
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FIG. 8. Evolution of the minimization of the �(1700) helicity
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The evolution of the position of the parameters for different
instances of the GA+NAG procedure as the number of
generations employed in the GA increases, is shown for the
�(1700) resonance in Figs. 7 and 8. We can observe how the
region of the minimum decreases while the GA evolves. For
the 50 generations plus NAG run (asterisks in Figs. 7 and 8)
the χ2 is far away from its best value. This case exemplifies

what happens when the parameters are assessed using the
E04FCF after the GA had not been converged and therefore the
GA is merely providing ‘very smart guesses’, for the starting
point of the gradient based routine. We observe in this case
that the results spread over a wide range of values of the
parameters, showing that indeed this is a hard optimization
problem. Indeed, we expect that the starting values provided
by unconverged instances of the GA are in fact much better
that the ones we may figure without the aid of the GA. It is
clear that to reach even an average quality optimum would be
extremely hard (if not impossible) without the GA phase of
our algorithm. After 150 generations plus NAG (open squares
in Figs. 7 and 8) the result looks much better, showing a region
where the values of the parameters are well delimited. The χ2

is remarkably better and close to the best values obtained after
400 generations plus NAG (solid circles in Figs. 6, 7, and 8).

A. Minima split in various regions

The amount and quality of data are of great importance
in assessing the parameters of any model. The pion photo-
production multipole data set employed for the fits in this
work is the largest and of the highest quality ever available.
It was released in 2006 and includes 3760 data points. It
is interesting to see what would happen if we employ the
2005 SAID database instead, which includes up to 1.0 GeV
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FIG. 9. Helicity amplitudes (equivalent to the coupling constants of the Lagrangians) of the �(1700). We show thirty minima obtained in
the full minimization procedure (GA+NAG) for the 2005 SAID database up to 1 GeV of photon energy with the model in Ref. [14]. The upper
hand left figure (a) shows the χ 2/χ 2

min versus the amplitude A�
1/2. The lower left hand figure (b) shows the χ 2/χ 2

min versus the amplitude A�
1/2.

The figure on the right (c) shows A�
1/2 versus A�

3/2.
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obtained after 50 generations plus NAG; open squares:
minima obtained after 100 generations plus NAG; solid circles:
minima obtained after 400 generations plus NAG. The formation
of the two regions where the minima group can clearly be seen.

photon energy and considerably fewer (1526) data points,
as done in Refs. [13,14,19]. We find that the results change
for the not so well-determined resonances as is the case of
the �(1700) one. We find in this case several minima lying
in more than one region. Figure 9 is equivalent to Fig. 6
but in this case fitting to the former data set. It becomes
apparent how the minima split into two distinct regions.
Figure 10 is equivalent to Fig. 8 and shows how the regions
are formed as the algorithm evolves. It also shows that a
gradient method alone leads the optimization to incorrect
answers most of the time. There are several possible reasons
for the appearance of this minima structure. For instance, this
can be caused by deficiencies in the model or in the data.
We must keep in mind however, that this result can even
have a physical meaning such as a possible shape coexistence
for a state that can fit the data equally well for two sets of
parameter values. This would have to be studied within a
model in which the resonance is included as a combination of
both states and re-fit to experimental data. However, it seems
that this is not the situation we encountered here. The results
presented in the previous subsection and in Fig. 6 clearly
indicate that improving the database and extending the model
to higher energies (which allows one to account for the tail of
the �(1700) resonance) are sufficient to collapse the two χ2

regions into one single region.

VI. FINAL REMARKS

We have presented a hybrid optimization procedure which
combines a GA with the gradient-based routine E04FCF from
the NAG libraries. We have successfully applied this algorithm
to determine the coupling constants of the low-lying nucleon
resonances within a realistic Lagrangian model of the pion
photoproduction reaction. The results for the couplings were
summarized in Table III.

Traditional optimization tools are often useless for this kind
of multiparameter optimizations when the parameter space is
large and the function to fit presents many local minima. The
assessment of the low-lying resonances properties by means of
reaction models is an example of a very difficult optimization
problem for conventional algorithms [12–14].

The hybrid optimization procedure presented in this paper
is a powerful and versatile optimization tool that can be applied
to many problems in physics that involve the determination of
a set of parameters from data. It is a promising method for
extracting both reliable physical parameters as well as their
confidence intervals. Indeed, computing correlations among
different parameters by comparing different solutions obtained
by the hybrid optimization method, in a manner similar to what
is shown in the panel on the right in Fig. 6, is probably more
meaningful than the simple covariance matrices returned by
gradient based optimization routines.

Finally, we have shown how we can use the procedure we
have outlined to identify weaknesses in the model and assess
the reliability of the parameters obtained. Not only the error
bars have to be considered when quoting the uncertainty in the
determination of a parameter, but also whether the minima are
concentrated into one single region or split into several ones,
and the possible physical explanations of such situation.
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